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Abstract

In this paper, we study the planar and outerplanar indices of some graphs
associated to a commutative ring. We give a full characterization of these
graphs with respect to their planar and outerplanar indices when R is a
finite ring.
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1. Introduction

The investigation of graphs related to algebraic structures is a very large and
growing area of research. One of the most important classes of graphs considered
in this framework is that of Cayley graphs. These graphs have been considered,
for example in [6, 18, 20, 21] and [22]. Let us refer the readers to the survey
article [25] for extensive bibliography devoted to various applications of Cayley
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graphs. Several other classes of graphs associated with algebraic structures have
been also actively investigated. See for example [23] and [24]. Graphs associated
to rings have been studied with respect to several ring constructions. See [1–5],
[7, 9, 10, 11, 13, 17] and [19].

A graph is said to be planar if it can be drawn in the plane, such that
its edges intersect only at their ends. A subdivision of a graph is any graph
that can be obtained from the original graph by replacing edges by paths. A
remarkable characterization of the planar graphs was given by Kuratowski in
1930. Kuratowski’s Theorem states that a graph is planar if and only if it contains
no subdivision of K5 or K3,3, where Kn is a complete graph with n vertices and
Km,n is a complete bipartite graph, with parts of sizes m and n (cf. [14, p. 153]).
Also, an undirected graph is an outerplanar graph if it can be drawn in the plane
without crossings in such a way that all of the vertices belong to the unbounded
face of the drawing. There is a characterization for outerplanar graphs that says
a graph is outerplanar if and only if it does not contain a subdivision of K4 or
K2,3. Also, we denote the path with n vertices by Pn.

Given a graph G, we denote the kth iterated line graph of G by Lk(G). In
particular L0(G) = G and L1(G) = L(G) is the line graph of G. For a graph G
we define the planar index as the smallest k such that Lk(G) is non-planar. We
denote the planar index of G by ξ(G). If Lk(G) is planar for all k > 0, we define
ξ(G) = ∞.

It was shown in [26] that if G is non-planar, then L(G) is also non-planar.
Also, if H is a subgraph of G, in [15, Lemma 4], it was shown that ξ(G) 6 ξ(H),
and hence the planar index of a graph is the minimum of the planar indices of its
connected components. Moreover, in [15], the authors gave a full characterization
of connected graphs with respect to their planar index.

Theorem 1.1 [15, Theorem 10]. Let G be a connected graph. Then:

(i) ξ(G) = 0 if and only if G is non-planar.

(ii) ξ(G) = ∞ if and only if G is either a path, a cycle, or K1,3.

(iii) ξ(G) = 1 if and only if G is planar and either ∆(G) > 5 or G has a vertex

of degree 4 which is not a cut-vertex.

(iv) ξ(G) = 2 if and only if L(G) is planar and G contains one of the graphs Hi

in Figure 1 as a subgraph.

(v) ξ(G) = 4 if and only if G is one of the graphs Xk or Yk (Figure 1) for some

k > 2.

(vi) ξ(G) = 3 otherwise.

The outerplanar index of a graph G, which is denoted by ζ(G), is the smallest
integer k such that the kth iterated line graph of G is non-outerplanar. It is well-
known that if G is non-outerplanar then L(G) is also non-outerplanar. If G is an
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outerplanar graph then ζ(G) = 1 + max{k|Lk(G) is outerplanar}.
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In [16], the authors gave a full characterization of all graphs with respect to
their outerplanar index.

Theorem 1.2 [16, Theorem 3.4]. Let G be a connected graph. Then:

(a) ζ(G) = 0 if and only if G is non-outerplanar.

(b) ζ(G) = ∞ if and only if G is a path, a cycle, or K1,3.

(c) ζ(G) = 1 if and only if G is planar and G has a subgraph homeomorphic to

K1,4 or K1 + P3 in Figure 2.

(d) ζ(G) = 2 if and only if L(G) is planar and G has a subgraph isomorphic to

one of the graphs G2 and G3 in Figure 2.

(e) ζ(G) = 3 if and only if G ∈ I(d1, d2, . . . , dt) where di > 2 for i = 2, . . . , t−1,
and d1 > 1 (Figure 2).

If H is a subgraph of G, in [16, Lemma 3.1], it was shown that ζ(G) 6 ζ(H),
and hence the outerplanar index of a graph is the minimum of the outerplanar
indices of its connected components.

In Section 2, we study the planarity of the iterated line graphs of the Jacob-
son graphs and we give a full characterization of Jacobson graphs with respect
to their planar index. Also, we determine all finite commutative rings with out-
erplanar Jacobson graphs and we characterize all Jacobson graphs with respect
to their outerplanar index. In Section 3, we study the graph Ω∗(R). This graph
was introduced in [8]. In this section, we present a characterization for all com-
mutative rings R with at least two maximal ideals with respect to their planar
and outerplanar indices of Ω∗(R).
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Throughout this paper, all rings are assumed to be finite commutative rings
with non-zero identity. We denote the ring of integers modulo n by Zn, the
Jacobson radical of R by J(R), and the characteristic of R by Char(R). Also,
we write Pn for a path of order n, Cn for a cycle of order n, Kn for a complete
graph of order n, and nK1 for an empty graph of order n.

2. Planar and outerplanar index of the Jacobson graphs

The concept of the Jacobson graph of a commutative ring, denoted by JR, was
introduced by Azimi, Erfanian and Farrokhi D.G. in [12]. The Jacobson graph
of R is a graph with vertex set R \ J(R), such that two distinct vertices a and
b in R \ J(R) are adjacent if and only if 1 − ab is not a unit of R. In [12], the
authors studied some basic results on the structure of this graph. They obtained
some graph theoretical properties of JR including its connectivity, perfectness
and planarity.

In this section, we determine all finite commutative rings with outerplanar
Jacobson graphs, and we give a full characterization of the Jacobson graphs with
respect to their planar and outerplanar indices.

In [12], the authors completely determined those finite rings whose Jacobson
graph is planar.

Theorem 2.1 [12, Theorem 4.3]. Let R be a finite ring. Then JR is planar if

and only if either R is a field, or R is isomorphic to one of the following rings:

(i) Z4, Z2 × Z2, Z2[x]/(x
2) of order 4,

(ii) Z6 of order 6,
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(iii) Z8, Z2×Z4, Z2×Z2×Z2, Z2[x]/(x
3), Z4[x]/(2x, x

2), Z2×Z2[x]/(x
2 + x+ 1),

Z4[x]/(2x, x
2 − 2), Z2[x, y]/(x, y)

2 of order 8, and

(iv) Z9, Z3 × Z3, Z3[x]/(x
2) of order 9.

Since the planar index of a non-planar graph is zero, in order to characterize
the planar index of the Jacobson graphs, we only consider the planar Jacobson
graphs.

Theorem 2.2. Let R be a finite ring. Then the following statements hold.

(i) ξ(JR) = ∞ if and only if R is a field or R is isomorphic to one of the rings

Z4, Z2 × Z2, Z2[x]/(x
2), Z9 or Z3[x]/(x

2).

(ii) ξ(JR) = 1 if and only if R is isomorphic to one of the rings Z2 × Z4, Z2 ×
Z2 × Z2, Z2 × Z2[x]/(x

2 + x+ 1) or Z3 × Z3.

(iii) ξ(JR) = 2 if and only if R is isomorphic to one of the rings Z6, Z8,

Z2[x]/(x
3), Z4[x]/(2x, x

2), Z4[x]/(2x, x
2 − 2) or Z2[x, y]/(x, y)

2.

(iv) ξ(JR) = 0 otherwise.

Proof. As we know, ξ(JR) = 0 if and only if JR is not planar. So, we assume
that JR is planar. Let R be a finite field. If Char(R) = 2, then by [12, Theorem

2.2], one can easily see that JR is a union of P1 and |R|−2
2 copies of P2. Also,

if Char(R) 6= 2, then by [12, Theorem 2.2], we have that JR is a union of two

copies of P1 and |R|−3
2 copies of P2. Therefore, if R is a field, then ξ(JR) = ∞.

The Jacobson graphs of the rings Z4 and Z2[x]/(x
2) are isomorphic to P2, and

the Jacobson graph of Z2 × Z2 is isomorphic to P1. So the planar index of the
Jacobson graphs of Z4, Z2×Z2 and Z2[x]/(x

2) are infinity. Also, by [12, Theorem
2.2], the Jacobson graph of the rings Z9 and Z3[x]/(x

2), consists of two connected
components each of them is isomorphic to K3, and hence by Theorem 1.1, we
have ξ(JZ9

) = ∞ = ξ(JZ3[x]/(x2)).

Let R ∼= Z2 × Z4. Then JR is pictured in Figure 3 and by Theorem 1.1, we
have ξ(JZ2×Z4

) = 1.

Figure 3. JZ2×Z4
.
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If R is isomorphic to Z2 × Z2 × Z2, then its Jacobson graph is pictured in
Figure 4, and by Theorem 1.1, ξ(JZ2×Z2×Z2

) = 1.

Figure 4. JZ2×Z2×Z2
.

If R is isomorphic to Z2×Z2[x]/(x
2 + x+ 1), then its Jacobson graph is pic-

tured in Figure 5, and clearly by Theorem 1.1, we have ξ
(

JZ2×Z2[x]/(x2+x+1)

)

=1.

Figure 5. JZ2×Z2[x]/(x2+x+1).

If R is isomorphic to Z3 × Z3, then its Jacobson graph is pictured in Figure
6, and by Theorem 1.1, ξ(JZ3×Z3

) = 1.

Figure 6. JZ3×Z3
.

If R ∼= Z6, then by Figure 7, we see that JZ6
contains the graph H3 in Figure

1, and so by Theorem 1.1, we have ξ(JZ6
) = 2.
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Now, let R be isomorphic to any of the rings Z8, Z2[x]/(x
3), Z4[x]/(2x, x

2),
Z4[x]/(2x, x

2 − 2) or Z2[x, y]/(x, y)
2. Since all these rings are local rings of order

8 with associated field of order 2, by [12, Theorem 3.5], their Jacobson graphs
are isomorphic to the complete graph K4. Hence, by Theorem 1.1, their planar
index is equal to 2.

Now, by the above discussion the results hold.

In the rest of this section, first we investigate the outerplanarity of the Jacob-
son graph and then we determine the outerplanar index of the Jacobson graph
when R is a finite commutative ring.

Theorem 2.3. Let R be a finite ring. Then JR is outerplanar if and only if

either R is a field, or R is isomorphic to one of the following rings:

Z4, Z2 × Z2, Z2[x]/(x
2), Z6, Z9, Z3 × Z3, Z3[x]/(x

2).

Proof. Since every outerplanar graph is planar, in order to determine outerpla-
nar Jacobson graphs, it is enough to consider planar Jacobson graphs. In view
of Theorem 2.1, if R is isomorphic to any of the rings Z2 × Z4, Z2 × Z2 × Z2 or
Z2 × Z2[x]/(x

2 + x+ 1), then by Figures 3, 4 and 5, JR contains the complete
graph K4, which implies that it is not outerplanar. If R is any of the local rings
Z8, Z2[x]/(x

3), Z4[x]/(2x, x
2), Z4[x]/(2x, x

2 − 2) or Z2[x, y]/(x, y)
2, then, by [12,

Theorem 3.5], JR is isomorphic to K4, which is not outerplanar. Also, if R is iso-
morphic to any of the rings Z4, Z2×Z2, Z2[x]/(x

2), Z6, Z9, Z3×Z3 or Z3[x]/(x
2),

then one can easily check that JR is outerplanar.

Now, by the above discussion, the result holds.

Since the outerplanar index of a non-outerplanar graph is zero, it is enough
to investigate the outerplanar index of outerplanar Jacobson graphs.

Theorem 2.4. Let R be a finite ring. Then the following statements hold.

(i) ζ(JR) = ∞ if and only if R is a field or R is isomorphic to one of the rings

Z4, Z2 × Z2, Z2[x]/(x
2), Z9 or Z3[x]/(x

2).

(ii) ζ(JR) = 1 if and only if R ∼= Z3 × Z3.
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(iii) ζ(JR) = 2 if and only if R ∼= Z6.

(iv) ζ(JR) = 0 otherwise.

Proof. Since ζ(JR) = 0 when JR is not outerplanar, we may suppose that JR is
outerplanar. Now, by Theorem 2.3, R is a field or R is one of the following rings:

Z4, Z2 × Z2, Z2[x]/(x
2), Z6, Z9, Z3 × Z3, Z3[x]/(x

2).

If R is a field, then since JR is a union of some copies of P1 and P2, we have
ζ(JR) = ∞. The Jacobson graphs of the rings Z4 and Z2[x]/(x

2) are isomorphic
to P2, and the Jacobson graph of Z2×Z2 is isomorphic to P1. So the outerplanar
index of the Jacobson graphs of Z4, Z2 ×Z2 and Z2[x]/(x

2) are infinity. Also, by
[12, Theorem 2.2], the Jacobson graph of the rings Z9 and Z3[x]/(x

2), consists
of two connected components each of them is isomorphic to K3, and hence by
Theorem 1.2, we have ζ(JZ9

) = ∞ = ζ
(

JZ3[x]/(x2)

)

.

Now, if R ∼= Z3 ×Z3, then by Figure 6, JR contains K1,4 as a subgraph, and
so by Theorem 1.2, we have ζ (JZ3×Z3

) = 1.

If R ∼= Z6, then by Figure 7, JR contains the graph G3 in Figure 2 as a
subgraph, and therefore we have ζ(JZ6

) = 2.

One can easily check that, by the above discussion, the results hold.

3. Planar and outerplanar index of Ω∗(R)

Let R be a commutative ring which is not a field. In [8], Alilou and et al.

introduced a simple graph associated with the set of all nonzero proper ideals of
R. The vertex set of this graph is the set of all nonzero proper ideals of R and two
distinct vertices I and J are adjacent whenever IAnn(J) = (0) or JAnn(I) = (0).
They denoted this graph by Ω∗(R).

In the following theorem, we classify all rings R with at least two maximal
ideals with respect to their planar index of the graph Ω∗(R).

Theorem 3.1. Let R be a ring with at least two maximal ideals. Then

(i) ξ(Ω∗(R)) = ∞ if and only if

(a) R has at most four nonzero proper ideals.

(b) R ∼= F1 × F2 or R ∼= F1 × F2 × F3 where Fi is a field for each i.

(ii) ξ(Ω∗(R)) = 1 if and only if

(a) R ∼= F1 × F2 × F3 × F4 where Fi is a field for each i.

(b) R ∼= F1 ×F2 ×R3 where Fi is a field for i = 1, 2 and R3 has exactly one

nonzero proper ideal.



Planar and outerplanar indices of some graphs 63

(c) R ∼= F×S where F is a field and (S,m) is a local commutative ring with

at least two nonzero proper ideals and S satisfies one of the following

conditions.

(c1) S has exactly two nonzero proper ideals m and m2.

(c2) S has exactly three ideals m, m2 and m3.

(d) R ∼= R1×R2 where (Ri,mi) is a local commutative ring with exactly one

nonzero proper ideal for i = 1, 2.

(iii) ξ(Ω∗(R)) = 0 otherwise.

Proof. Let R be a ring with at least two maximal ideals. Since for every non-
planar graphs, we have that ξ(Ω∗(R)) = 0, it is sufficient to study the cases which
the graph Ω∗(R) is planar. In [8, Theorem 20], the authors proved that Ω∗(R) is
planar if and only if one of the following cases hold:

Case 1. R has at most four nonzero proper ideals. By [8, Observation 7], if
|Max(R)| > 3, then Ω∗(R) has a cycle on six vertices, a contradiction. So, we
may assume that |Max(R)| = 2. Since R is Artinian, R ∼= R1 × R2 where Ri

is a local ring for i = 1, 2. Suppose mi is the unique maximal ideal of Ri for
i = 1, 2. If m1 6= (0) and m2 6= (0), then R has at least five nonzero proper
ideals, a contradiction. Thus we may assume that R1 is a field. If R2 is a field,
then Ω∗(R) = 2K1 which implies that ξ(Ω∗(R)) = ∞. Also, if m2 6= (0), then it
is easy to see that Ω∗(R) = P4 which implies that ξ(Ω∗(R)) = ∞.

Case 2. R ∼= R1×R2 where (Ri,mi) is a local commutative ring with exactly
one nonzero proper ideal for i = 1, 2. By Figure 8, ∆(Ω∗(R1 ×R2)) 6 4, but this
graph has a vertex of degree 4 which is not a cut vertex. Thus ξ(Ω∗(R)) = 1.

m1 × R2 m1 × 0

0 × R2 m1 × m2 R1 × 0

0 × m2 R1 × m2

Figure 8. Ω∗(R1 ×R2).

Case 3. R ∼= F1×F2×R3 where Fi is a field for i = 1, 2 and R3 has exactly one
nonzero proper ideal. By Figure 9, we have that ∆(Ω∗(F1 ×F2 ×R3)) = 6 which
implies that L(Ω∗(F1 × F2 ×R3)) is not planar. Hence ξ(Ω∗(F1 × F2 ×R3)) = 1.
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0 × 0 × R3

0 × F2 × R3 F1 × 0 × R3

0 × F2 × m3F1 × 0 × m3

0 × 0 × m3

F1 × F2 × m3

0 × F2 × 0 F1 × 0 × 0

F1 × F2 × 0

Figure 9. Ω∗(F1 × F2 × R3).

Case 4. R ∼= F1×F2× · · · ×Fm where m = 2, 3 or 4 and Fi is a field for each
i. If m = 2 or 3, then Ω∗(R) ∼= 2K1, C6, respectively. So ξ(Ω∗(R)) = ∞. Also,
if m = 4, then, by Figure 10, we have that ∆(Ω∗(F1 × F2 × F3 × F4)) = 6. So
L(Ω∗(F1 × F2 × F3 × F4)) is not planar and hence ξ(Ω∗(F1 × F2 × F3 × F4)) = 1.

0 × 0 × F3 × F4

0 × 0 × F3 × 0

0 × F2 × F3 × 0F1 × 0 × F3 × 00 × F2 × F3 × F4

F1 × F2 × F3 × 0

F1 × 0 × F3 × F4

0 × F2 × 0 × 0
F1 × 0 × 0 × 0

F1 × F2 × 0 × 0
0 × F2 × 0 × F4 F1 × 0 × 0 × F4

F1 × F2 × 0 × F4

0 × 0 × 0 × F4

Figure 10. Ω∗(F1 × F2 × F3 × F4).
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Case 5. R ∼= F × S where F is a field and (S,m) is a local commutative
ring with at least two nonzero proper ideals and S satisfies one of the following
conditions.

Case 5.1. S has exactly two nonzero proper ideals m and m2. By Figure 11,
∆(Ω∗(R)) 6 4, but this graph has a vertex of degree 4 which is not a cut vertex.
Thus ξ(Ω∗(R)) = 1.

F× 0

F×m2 F×m

0×m2 0×m

0× S

Figure 11. Ω∗(F× S) where S has exactly two proper nonzero ideals m and m2.

Case 5.2. S has exactly three ideals m, m2 and m3. By Figure 12, we have
that ∆(Ω∗(F×S)) = 6. So L(Ω∗(F×S)) is not planar and hence ξ(Ω∗(F×S)) = 1.

F × m 0 × m

F × m
2

0 × m
2

0 × S

F × 0

F × m
3 0 × m

3

Figure 12. Ω∗(F× S) where S has exactly three proper nonzero ideals m, m2 and m3.

In the rest of this section, we investigate when the graph Ω∗(R) is outerplanar
and we characterize all rings with at least two maximal ideals with respect to their
outerplanar index.

Lemma 3.2. Let R be a ring with at least two maximal ideals. The graph Ω∗(R)
is outerplanar if and only if

(i) R = F1 × F2 or R = F1 × F2 × F3 where Fi is a field for each i.
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(ii) R = F1 × R2 where F1 is a field and R2 has exactly one nonzero proper

ideal m.

(iii) R = F1 × S where F1 is a field and S has exactly two nonzero proper ideals

m and m2.

Proof. Since every outerplanar graph is planar, we only study the planar cases.
As we mentioned before, by [8, Theorem 20], Ω∗(R) is planar if and only if one
of the following cases hold:

Case 1. R has at most four nonzero proper ideals. In this case, by the proof
of Case 1 of previous theorem, we have Ω∗(R) = 2K1 or P4, which implies that
Ω∗(R) is outerplanar.

Case 2. R ∼= R1 × R2 where (Ri,mi) is a local commutative ring with
exactly one nonzero proper ideal for i = 1, 2. By Figure 8, by setting V1 =
{0 × m2,m1 × m2,m1 × 0} and V2 = {m1 × R2, R1 × m2}, this graph has a
subdivision of K2,3 which implies that Ω∗(R) is not outerplanar.

Case 3. R ∼= F1 × F2 ×R3 where Fi is a field for i = 1, 2 and R3 has exactly
one nonzero proper ideal. By Figure 9, the graph Ω∗(R) has a subdivision of K4

as a subgraph which implies that Ω∗(F1 × F2 ×R3) is not outerplanar.

Case 4. R ∼= F1 × F2 × · · · × Fm where m = 2, 3 or 4 and Fi is a field for
each i. If m = 2 or 3, then Ω∗(R) ∼= 2K1, C6, respectively. So the graph Ω∗(R)
is outerplanar. Also, if m = 4, then, by Figure 10, we have a copy of K4 in the
graph Ω∗(R). So Ω∗(F1 × F2 × F3 × F4) is not outerplanar.

Case 5. R ∼= F × S where F is a field and (S,m) is a local commutative
ring with at least two nonzero proper ideals and S satisfies one of the following
conditions.

Case 5.1. S has exactly two nonzero proper ideals m and m2. By Figure 11,
Ω∗(R) is outerplanar.

Case 5.2. S has exactly three ideals m, m2 and m3. By Figure 12, we can
find a copy of K4 or K2,3 in the graph Ω∗(R). Thus Ω∗(R) is not outerplanar.

In the following theorem, we study the outerplanar index of the graph Ω∗(R).
We give a full characterization of all rings with at least two maximal ideals with
respect to their outerplanar graphs.

Theorem 3.3. Let R be a ring with at least two maximal ideals. Then

(a) ζ(Ω∗(R)) = 0 if and only if G is non-outerplanar.

(b) ζ(Ω∗(R)) = ∞ if and only if R = F1 × F2, R = F1 × F2 × F3 or R = F×R2

where F is a field and R2 has exactly one nonzero proper ideal m.
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(c) ζ(Ω∗(R)) = 1 if and only if R = F × S where S has exactly two nonzero

proper ideals m and m2.

Proof. It follows easily from Theorem 1.2 and Lemma 3.2.
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