COMMUTATIVITY OF PRIME RINGS WITH SYMMETRIC BIDERIVATIONS

B. Ramoorthy Reddy
Research Scholar
Department of Mathematics, S.V. University
Tirupati-517502, Andhra Pradesh, India
e-mail: ramoorthymaths@gmail.com
AND
C. Jaya Subba Reddy
Assistant professor
Department of Mathematics, S.V. University
Tirupati-517502, Andhra Pradesh, India
e-mail: cjsreddysvu@gmail.com

Abstract

The present paper shows some results on the commutativity of R : Let R be a prime ring and for any nonzero ideal I of R, if R admits a biderivation B such that it satisfies any one of the following properties (i) $B([x, y], z)=$ $[x, y]$, (ii) $B([x, y], m)+[x, y]=0$, (iii) $B(x o y, z)=x o y$, (iv) $B(x o y, z)+$ $x o y=0$, (v) $B(x, y) o B(y, z)=0$, (vi) $B(x, y) o B(y, z)=x o z$, (vii) $B(x, y) o B(y, z)+x o y=0$, for all $x, y, z \in R$, then R is a commutative ring.

Keywords: prime ring, biderivation, commutativity and ideals.
2010 Mathematics Subject Classification: 16W25, 16N60, 16U80.

1. Introduction

In this paper, we study the relationship between the action of a prime ring R and the behaviour of some biadditive mappings defined on R. In all that follows unless specifically stated otherwise, R will be an associative ring with center $Z(R)$, for all $x, y \in R$. The symbols $[x, y]$ and $x o y$ render the commutator $(x y-y x)$ and
the anticommutator $(x y+y x)$ respectively. We use the following basic identities without any specific mention in the entire paper:

$$
\begin{aligned}
{[x y, z] } & =x[y, z]+[x, z] y,[x, y z]=y[x, z]+[x, y] z \\
x o(y z) & =(x o y) z-y[x, z]=y(x o z)+[x, y] z \\
(x y) o z & =x(y o z)-[x, z] y=(x o z) y+x[y, z]
\end{aligned}
$$

Recall that R is prime if $a R b=(0)$, implies either $a=0$ or $b=0$, and is semiprime if $a R a=(0)$, implies $a=0$. An additive mapping $d: R \rightarrow R$ is called derivation if $d(x y)=d(x) y+x d(y)$, holds for all pairs $x, y \in R$. Herstein [6] proved that a prime ring of characteristic not two with a nonzero derivation satisfying $d(x) d(y)=d(y) d(x)$, for all $x, y \in R$ must be commutative. Bell and Daif [4] showed that a prime ring of arbitrary characteristic with nonzero derivation d satisfying $d(x y)=d(y x)$, for all $x, y \in R$ must be commutative. Derivations with certain properties were investigated in various papers (see [2, 3, 10], and [7]). Further, Ashraf and Rehman [1] investigated the commutativity of R satisfying any one of the properties (i) $d([x, y])=[x, y]$, (ii) $d(x o y)=x o y$, (iii) $d(x) o d(y)=$ 0 , (iv) $d(x) o d(y)=x o y$, for all $x, y \in R$. A mapping $B(.,):. R \times R \rightarrow R$ is said to be symmetric if $B(x, y)=B(y, x)$ holds for all pairs $x, y \in R$. A symmetric biadditive mapping $B(.,):. R \times R \rightarrow R$ is called a symmetric biderivation if either $B(x y, z)=B(x, z) y+x B(y, z)$ or $B(x, y z)=B(x, y) z+y B(x, z)$ is fulfilled for all $x, y, z \in R$. The concept of symmetric biderivation has been introduced by Maksa [8]. A mapping $f: R \rightarrow R$ is said to be commuting on R if $[f(x), x]=0$ holds for all $x \in R$. Currently, many researchers are focussed to analyze the concept of commutings, related mappings with symmetric biderivations on a prime and semiprime rings (see [11, 12], and [13]). Motivated by these work of Ashraf [1] on derivations, we investigated the commutativity of biadditive mappings on R i.e., if R admits a biderivation B such that it satisfies any one of the following (i) $B([x, y], z)=[x, y]$, (ii) $B([x, y], m)+[x, y]=0$, (iii) $B(x o y, z)=x o y$, (iv) $B(x o y, z)+x o y=0,(\mathrm{v}) B(x, y) o B(y, z)=0$, (vi) $B(x, y) o B(y, z)=x o z$, (vii) $B(x, y) o B(y, z)+x o y=0$, for all $x, y, z \in R$, then R is a commutative ring.

To prove the main Theorems we need the following lemmas.
Lemma 1 ([5], Theorem 4). Let R be a prime ring and I a nonzero left ideal of R. If R admits a nonzero biderivation B such that $[x, B(x, y)]$ is central for all $x, y \in I$, then R is commutative.

Lemma 2 ([9], Lemma 3). If a prime ring R contains a nonzero commutative right ideal, then R is commutative.

Lemma 3. Let R be a prime ring and I a nonzero ideal of R. If R admits a biderivation B such that $B^{2}(x, y)=0$, for all $x, y \in I$, then $B(x, y)=0$.

Proof. We have $B^{2}(x, y)=0$, for all $x, y \in I$. Put $y z$ instead of y, for any $z \in I$ to get $0=B(x, y) B(z, m)+B(y, m) B(x, z)$, for any $m \in I$. Put $z r$ instead of z, for any $r \in I$ and then put $m=x$ to get $B(x, y) z B(x, y)=0$, then $B(x, y) I R B(x, y)=0$, by the primeness of R forces that either $B(x, y)=0$ or $B(x, y) I=0$. If $B(x, y) I=0$, for all $x, y \in I$, then $B(x, y) R I=0$. Because of $I \neq 0$, we find that $B(x, y)=0$ for all $x, y \in I$. In both the cases $B(x, y)=0$.

Theorem 1. Let R be a prime ring and I a nonzero ideal of R. If R admits a biderivation B such that $B([x, y], z)=[x, y]$, for all $x, y, z \in I$, then R is commutative.

Proof. We have B is a biderivation such that, $B([x, y], z)=[x, y]$, for any $x, y, z \in I$. If $B=0$, then $[x, y]=0$, which implies that $[x, y] r=0$, when the substitution of y by $y r$, for any $r \in I$. That is $[x, y] I=0$, since I is non zero, obviously R is commutative using Lemma 2 . Now consider a nonzero symmetric biderivation B such that $B([x, y], z)=[x, y]$ and use the commutator identity to get the equation

$$
B(x, z) y+x B(y, z)-B(y, z) x-y B(x, z)=[x, y]
$$

put $y m$ instead of y, for any $m \in I$ in the above equation, we get

$$
\begin{gathered}
B(y, z) x m+y B(x, z) m+x y B(m, z)-y m B(x, z) \\
-B(y, z) m x-y B(m, z) x=y[x, m]
\end{gathered}
$$

again put x instead of m in the above equation, we find that $[x, y] B(x, z)=0$. Again put $y m$ instead of y in the above equation, we get $[x, y] \operatorname{IRB}(x, z)=0$. Thus the primeness of R forces either $[x, y] I=0$ or $B(x, z)=0$, since our assumption that B is a non zero biderivation, therefore $[x, y] I=0$. So using Lemma $2, R$ is commutative.

Theorem 2. Let R be a prime ring and I a nonzero ideal of R. If R admits a biderivation B such that $B([x, y], m)+[x, y]=0$, for all $x, y, z \in I$, then R is commutative.

Proof. We have B is a biderivation such that, $B([x, y], m)+[x, y]=0$, for all $x, y \in I$. If $B=0$, then our result is obvious as in the proof of Theorem 4. So assume that a non zero biderivation and use the basic identity to get

$$
B(x, m) y+x B(y, m)-B(y, m) x-y B(x, m)+[x, y]=0 .
$$

Replace y by $y z$, for any $z \in I$ in the above equation, we get $B(y, m)[x, z]+$ $[x, y] B(z, m)=0$. Again replace z by x in the above equation to get $[x, y] B(x, m)$ $=0$, then replace y by $y z$ for $z \in I$ in the above equation, we find that
$[x, y] \operatorname{IRB}(x, m)=0$. Thus the primeness of R forces either $[x, y] I=0$ or $B(x, m)$ $=0$, since our assumption that B is a non zero biderivation, therefore $[x, y] I=0$. So using Lemma 2, R is commutative.

Theorem 3. Let R be a prime ring and I a nonzero ideal of R. If R admits a biderivation B such that $B(x o y, z)=x o y$, for all $x, y, z \in I$, then R is commutative.

Proof. For any $x, y, z \in I$, we have $B(x o y, z)=x o y$. If $B=0$, then $x o y=0$, for all $x, y \in I$. Put $y z$ instead of y in above equation and using the identity to get $(x o y) z-y[x, z]=0$ which implies $y[x, z]=0$, for any $y \in I$ then $\operatorname{IR}[x, z]=0$. Since I is nonzero and by the primeness of $R,[x, z]=0$. Hence by Lemma $2, R$ is commutative. Hence onwards we assume that $B \neq 0$ for any $x, y, z \in I, B(x o y, z)=$ xoy. Using the identity it can be rewritten as $B(x, z) o y+x o B(y, z)=x o y$. Put $y z$ instead of y in above equation, we get $(B(x, z) o y+x o B(y, z)) x+(x o y) B(x, z)=(x o y) x$, using the above equation, to get $(x o y) B(x, z)=0$, again put $m y$ instead of y, for any $m \in I$, in above equation to find $(m(x o y)+[x, m] y) B(x, z)=0$, which implies $[x, m] \operatorname{IRB}(x, z)=0$, by primeness of R, B is nonzero and by Lemma 2 , we get R is commutative.

Utilizing the above procedure with necessary variations we can show the following.

Theorem 4. Let R be a prime ring and I a nonzero ideal of R. If R admits a biderivation B such that $B(x o y, z)+$ xoy $=0$, for all $x, y, z \in I$, then R is commutative.

Proof. A careful investigation of the proof of above theorem shows that a prime ring R is commutative if it satisfies the property $x o y=0$. Thus it is natural to explore the behaviour of rings satisfying the property $B(x o y, z)+x o y=0$, with a non zero biderivation is commutative using the same techniques with necessary variations.

In the present section we shall study the behaviour of the ring satisfying any one of the properties $B(x, y) o B(y, z)=0, B(x, y) o B(y, z)=x o z$ and $B(x, y) o B(y, z)+x o y=0$, for all $x, y, z \in I$.

Theorem 5. Let R be a prime ring and I a nonzero ideal of R. If R admits a biderivation B such that $B(x, y) o B(y, z)=0$, for all $x, y, z \in I$, then R is commutative.

Proof. For any $x, y, z \in I$, we have $B(x, y) o B(y, z)=0$. If $B=0$, then the result is trival. So assume that B is nonzero biderivation. Replacing z by $z m$, for any $m \in I$ in the hypothesis equation, we get this result that $[B(x, y), z] B(y, m)-$
$B(y, z)[B(x, y), m]=0$ and again replace m by $m B(x, y)$ in above equation, we find
$[B(x, y), z] B(y, m) B(x, y)+[B(x, y), z] m B^{2}(x, y)-B(y, z)[B(x, y), m] B(x, y)=0$.
On simplifying above equation, we have $[B(x, y), z] m B^{2}(x, y)=0$. Hence $[B(x, y), z] I R B^{2}(x, y)=0$. By the primeness of R forces that either $B^{2}(x, y)=0$ or $[B(x, y), z] I=0$. If $B^{2}(x, y)=0$, by Lemma $3, B(x, y)=0$ which is a contradiction. So $[B(x, y), z] I=0$. Since I is a nonzero and by Lemma $2, R$ is commutative.

Theorem 6. Let R be a prime ring and I a nonzero ideal of R. If R admits a biderivation B such that $B(x, y) o B(y, z)=$ xoz, for all $x, y, z \in I$, then R is commutative.

Proof. For any $x, y, z \in I$, we have $B(x, y) o B(y, z)=x o z$. If $B=0$ then $x o z=$ 0 . Remember that the procedure given in the beginning of the proof of Theorem 3 are still valid in the present situation and hence we get the required result. Therefore we assume that $B \neq 0$, we have $B(x, y) o B(y, z)=x o z$. Replacing z by $z m$, for any $m \in I$ in the above equation, we get

$$
\begin{gathered}
(B(x, y) o B(y, z)) m-B(y, z)[B(x, y), m]+(B(x, y) o z) B(y, m) \\
-z[B(x, y), B(y, m)]=(x o z) m-z[x, m]
\end{gathered}
$$

now by our hypothesis the above relation yields that

$$
-B(y, z)[B(x, y), m]+(B(x, y) o z) B(y, m)-z[B(x, y), B(y, m)]+z[x, m]=0
$$

for any $r \in R$, replace z by $r z$ in above equation, we get $[B(x, y), r] z B(y, m)-$ $B(y, r) z[B(x, y), m]=0$. Now substituting $B(x, y)$ for r in the above relation, we find that $B^{2}(x, y) R I[B(x, y), m]=(0)$. By the primeness of R, either $B^{2}(x, y)=$ 0 or $I[B(x, y), m]=0$. If $B^{2}(x, y)=0$ then by Lemma $3, B(x, y)=0$, which is a contradiction. On the other hand $I[B(x, y), m]=(0)$, since I is a nonzero ideal of R and R is prime, the above relation yields that $[B(x, y), m]=0$, for all $x, y, m \in I$. Hence by Lemma $1, R$ is commutative.

Using the similar arguments we can prove the following.
Theorem 7. Let R be a prime ring and I a nonzero ideal of R. If R admits a biderivation B such that $B(x, y) o B(y, z)+x o z=0$, for all $x, y, z \in I$, then R is commutative.

Acknowledgement

The authors are thankful to the referee for his/her valuable suggestions.

References

[1] M. Ashraf and N.U. Rehman, On commutativity of rings with derivations, Result. Math. 42 (2002) 03-08.
[2] M. Ashraf and N.U. Rehman, On derivation and commutativity in prime rings, East-West J. Math. 3 (2001) 87-91.
[3] M. Atteya and D. Resan, Commuting derivations of semiprime rings, Int. J. Math. Sci. 6 (2011) 1151-1158.
[4] H.E. Bell and M.N. Daif, On derivations and commutativity in prime rings, Acta Math. Hungar. 66 (1995) 337-343.
[5] H.E. Bell and W.S. Martindale, Centralizing mappings of semiprime rings, Canad. Math. Bull. 30 (1987) 92-101.
[6] I.N. Herstein, A note on derivations, Canad. Math. Bull. 21 (1978) 369-370. doi:10.4153/CMB-1978-065-x
[7] T.K. Lee, Derivations and centralizing mappings in prime rings, Taiwanese. J. Math. 1 (1997) 333-342.
[8] G. Maksa, On the trace of symmetric biderivations, C.R. Math. Rep. Sci. Canada 9 (1987) 302-307.
[9] J.H. Mayne, Centralizing mappings of prime rings, Canad. Math. Bull. 27 (1984) 122-126. doi:10.4153/CMB-1984-018-2
[10] E.C. Posner, Derivations in prime ring, Proc. Amer. Math. Soc. 8 (1957) 1093-1100.
[11] J. Vukman, Symmetric biderivations on prime and semi prime rings, Aequationes. Math. 38 (1989) 245-254.
[12] J. Vukman, Two results concerning symmetric biderivations on prime rings, Aequationes. Math. 40 (1990) 181-189.
[13] M.S. Yenigul and N. Argac, Ideals and symmetric biderivations on prime and semiprime rings, Math. J. Okayama Univ. 35 (1993) 189-192.

Received 15 February 2018
Revised 27 August 2018
Accepted 1 September 2018

