Discussiones Mathematicae General Algebra and Applications 38 (2018) 255–271 doi:10.7151/dmgaa.1295

FOLDING THEORY OF IMPLICATIVE AND OBSTINATE IDEALS IN BL-ALGEBRAS

Akbar Paad

Department of Mathematics University of Bojnord, Bojnord, Iran e-mail: akbar.paad@gmail.com

Abstract

In this paper, the concepts of *n*-fold implicative ideals and *n*-fold obstinate ideals in BL-algebras are introduced. With respect to this concepts, some related results are given. In particular, it is proved that an ideal is an *n*-fold implicative ideal if and only if is an *n*-fold Boolean ideal. Also, it is shown that a BL-algebra is an *n*-fold integral BL-algebra if and only if trivial ideal {0} is an *n*-fold obstinate ideal. Moreover, the relation between *n*-fold obstinate ideals and *n*-fold (integral) obstinate filters in BL-algebras are studied by using the set of complement elements. Finally, it is proved that ideal *I* of BL-algebra *L* is an *n*-fold obstinate ideal if and only if $\frac{L}{T}$ is an *n*-fold obstinate BL-algebra.

Keywords: BL-algebra, ideal, n-fold implicative ideal, n-fold obstinate ideal.

2010 Mathematics Subject Classification: 03G25, 03G05, 06D35, 06E99.

1. INTRODUCTION

BL-algebras are the algebraic structure for Hájek basic logic [7] in order to investigate many valued logic by algebraic means. His motivations for introducing BLalgebras were of two kinds. The first one was providing an algebraic counterpart of a propositional logic, called Basic Logic, which embodies a fragment common to some of the most important many-valued logics, namely Lukasiewicz Logic, Gödel Logic and Product Logic. This Basic Logic (BL for short) is proposed as "the most general" many-valued logic with truth values in [0, 1] and BL-algebras are the corresponding Lindenbaum-Tarski algebras. The second one was to provide an algebraic mean for the study of continuous t-norms (or triangular norms) on [0, 1]. In 1958, Chang [1] introduced the concept of an *MV*-algebra which is one of the most classes of BL-algebras. Turunen [12] introduced the notion of an implicative filter and a Boolean filter in BL-algebras. Boolean filters are an important class of filters, because the quotient BL-algebra induced by these filters are Boolean algebras. The notion of (fuzzy) ideal has been introduced in many algebraic structures such as lattices, rings, MV-algebras. Ideal theory is very effective tool for studying various algebraic and logical systems. In the theory of *MV*-algebras, as various algebraic structures, the notion of ideal is at the center, while in BL-algebras, the focus has been on deductive systems also filters. The study of BL-algebras has experienced a tremendous growth over resent years and the main focus has been on filters. In 2013, Lele [6], introduced the notions of (Boolean, prime) ideals and analyzed the relationship between ideals and filters by using the set of complement elements. In 2017, Yang and Xin [11], introduced implicative ideals in BL-algebras and studied some characterizations of them by the pseudo implication operation and proved the implicative ideals coincide with Boolean ideals in BL-algebras.

This motivates us to introduce the notions of *n*-fold implicative and *n*-fold obstinate ideals in *BL*-algebras and investigate the relations among *n*-fold implicative ideals, *n*-fold obstinate ideals and the other ideals in *BL*-algebras. In particular, we prove that an ideal is an *n*-fold implicative ideal if and only if is an *n*-fold Boolean. Also, we prove that a *BL*-algebra is an *n*-fold integral *BL*-algebra if and only if trivial ideal $\{0\}$ is an *n*-fold obstinate ideal. Moreover, we study relation between *n*-fold obstinate ideals and *n*-fold (integral) obstinate filters in *BL*-algebras by using the set of complement elements. Finally, we prove that ideal *I* of *BL*-algebra *L* is an *n*-fold obstinate ideal if and only if $\frac{L}{T}$ is an *n*-fold obstinate *BL*-algebra.

2. Preliminaries

In this section, we give some fundamental definitions and results. For more details, refer to the references.

Definition [7]. A *BL*-algebra is an algebra $(L, \lor, \land, \odot, \rightarrow, 0, 1)$ of type (2, 2, 2, 2, 2, 0, 0) such that

- (BL1) $(L, \lor, \land, 0, 1)$ is a bounded lattice,
- $(BL2) \ \ (L,\odot,1)$ is a commutative monoid,
- (BL3) $z \leq x \rightarrow y$ if and only if $x \odot z \leq y$, for all $x, y, z \in L$,
- $(BL4) \quad x \land y = x \odot (x \to y),$
- $(BL5) \ (x \to y) \lor (y \to x) = 1.$

We denote $x^n = \overbrace{x \odot \cdots \odot x}^{n-times}$, if n > 0 and $x^0 = 1$, for all $x, y \in L$.

A *BL*-algebra *L* is called a Gödel algebra (1-fold implicative *BL*-algebra) if $x^2 = x \odot x = x$, for all $x \in L$ and *L* is called an *MV*-algebra if $(x^-)^- = x$, for all $x \in L$, where $x^- = x \to 0$. A *BL*-algebra *L* is called a Boolean algebra if $x \vee x^- = 1$, for all $x \in L$.

Proposition 1 [2, 3]. In any BL-algebra the following hold:

 $\begin{array}{ll} (BL6) \ x \leq y \ if \ and \ only \ if \ x \rightarrow y = 1, \\ (BL7) \ y \leq x \rightarrow y, \ and \ x \odot y \leq x, y, \\ (BL8) \ x \leq y \ implies \ y \rightarrow z \leq x \rightarrow z \ and \ z \rightarrow x \leq z \rightarrow y, \\ (BL9) \ (x \rightarrow y)^{--} = x^{--} \rightarrow y^{--}, \\ (BL10) \ (x \odot y)^{--} = x^{--} \odot y^{--}, \\ (BL11) \ (x \odot y)^{-} = x \rightarrow y^{-}, \\ (BL12) \ x^{---} = x^{-}, \ x \leq x^{--} \ and \ x \odot x^{-} = 0, \\ (BL13) \ x \rightarrow (y \rightarrow z) = (x \odot y) \rightarrow z, \\ (BL14) \ x \leq y \ implies \ y^{-} \leq x^{-}, \\ (BL15) \ x \leq y \ implies \ z \odot x \leq z \odot y, \\ (BL16) \ (x \wedge y)^{--} = x^{--} \wedge y^{--}, \ for \ all \ x, y, z \in L. \\ n-times \end{array}$

Note that by (BL13) $(x \to (\cdots (x \to (x \to y))) \cdots) = x^n \to y$, for all $x, y \in L$. The following theorems and definitions are from [4, 5, 8, 10] and we refer the reader to them, for more details.

Definition. Let L be a BL-algebra, n be a natural number and F be a nonempty subset of L. Then

- (i) F is called a *filter* of L if $x \odot y \in F$, for any $x, y \in F$ and if $x \in F$ and $x \leq y$ then $y \in F$, for all $x, y \in L$. A proper filter F is called a *maximal filter* of L if it is not properly contained in any other proper filter of L.
- (ii) F is called an *n*-fold implicative filter of L if $1 \in F$ and for all $x, y, z \in L$,

$$x^n \to (y \to z) \in F$$
 and $x^n \to y \in F$ imply $x^n \to z \in F$.

(iii) A proper filter F is called an *n*-fold obstinate filter if for all $x, y \in L$,

$$x, y \notin F$$
 imply $x^n \to y \in F$ and $y^n \to x \in F$.

(iv) A proper filter F is called an *n*-fold integral filter if for all $x, y \in L$,

$$(x^n \odot y^n)^- \in F$$
 implies $(x^n)^- \in F$ or $(y^n)^- \in F$

Definition [10]. Let L be a BL-algebra and n be a natural number. Then (i) L is called an *n*-fold integral BL-algebra if for all $x, y \in L$

$$x^n \odot y^n = 0$$
 then $x^n = 0$ or $y^n = 0$.

(ii) L is called an n-fold obstinate BL-algebra if L is an MV-algebra and $x^n = 0$, for all $x \in L \setminus \{1\}$.

Definition [6, 8, 9]. Let L be a BL-algebra and I be a nonempty subset of L. Then

- (i) I is called an *ideal* of L, if $x \oslash y := x^- \to y \in I$, for any $x, y \in I$ and if $y \in I$ and $x \le y$ then $x \in I$, for all $x, y \in L$. The operation \oslash is associative. Moreover, a set I containing 0 of L is an ideal if and only if for all $x, y \in L$, $x^- \odot y \in I$ and $x \in I$ imply $y \in I$.
- (ii) A proper ideal I of L is called a *prime ideal* of L if $x \land y \in I$ implies $x \in I$ or $y \in I$, for all $x, y \in L$.
- (iii) A proper ideal I is called a *maximal ideal* of L if it is not properly contained in any other proper ideal of L.
- (iv) An ideal I of L is called a *n*-fold Boolean ideal if $x^n \wedge (x^n)^- \in I$, for all $x \in L$ and an ideal I of L is called a Boolean ideal if $x \wedge x^- \in I$, for all $x \in L$.
- (v) An ideal I of L is called an *n*-fold integral ideal, if for all $x, y \in L$,

$$(x \odot y)^n \in I$$
 implies $x^n \in I$ or $y^n \in I$.

Let L be a *BL*-algebra, we define the pseudo implication operation \rightarrow by $x \rightarrow y := x \odot y^-$, for any $x, y \in L$. It is easy to see that $z \leq x \oslash y$ if and only if $z \rightarrow x \leq y$.

Moreover, we denote $x_{\oslash}^n = \overbrace{x \oslash \cdots \oslash x}^{n-times}$, when n is a natural number.

Lemma 2 [11]. Let L be a BL-algebra, for any $x, y, z \in L$, we have:

(i)
$$x \leq y$$
 implies $z \rightarrow y \leq z \rightarrow x$ and $x \rightarrow z \leq y \rightarrow z$,
(ii) $(x \rightarrow y) \rightarrow z = (x \rightarrow z) \rightarrow y = x \rightarrow (y \otimes z)$,
(iii) $x \rightarrow 0 = x, 0 \rightarrow x = 0, x \rightarrow x = 0$,
(iv) $(x \rightarrow z) \rightarrow (y \rightarrow z) \leq x \rightarrow y$,
(v) $(x \rightarrow z) \leq (y \rightarrow z) \otimes (x \rightarrow y)$,
(vi) $x \leq x \otimes x$.

Lemma 3 [11]. Let I be a nonempty subset of a BL-algebra L. Then I is an ideal of L if and only if it satisfies:

- (i) $0 \in I$,
- (ii) for any $x, y \in L$, if $x \rightharpoonup y \in I$ and $y \in I$, then $x \in I$.

Lemma 4 [11]. Let I be an ideal of BL-algebra L. Then the following hold: for any $x, y, z \in L$

- (i) $x \rightarrow y \in I$ if and only if $y^- \rightarrow x^- \in I$.
- (ii) $x \rightarrow y \in I$ if and only if $x^{--} \rightarrow y \in I$.
- (iii) $(y \rightharpoonup x^{-}) \rightharpoonup z \in I$ if and only if $(z^{-} \rightharpoonup y^{-}) \rightharpoonup x^{-} \in I$.
- (iv) $x \in I$ if and only if $x^{--} \in I$.

Theorem 5 [11]. Let P be a proper ideal of BL-algebra L. Then P is a prime ideal if and only if $x \rightarrow y \in P$ or $y \rightarrow x \in P$, for all $x, y \in L$.

Definition [6]. Let L be a BL-algebra and X any subset of L. Then the set of complement elements (with respect to X) is denoted by N(X) and is defined by

$$N(X) = \{ x \in L \mid x^- \in X \}.$$

Theorem 6 [6]. Let I be an ideal of BL-algebra L. Then the binary relation \equiv_I on L which is defined by

$$x \equiv_I y$$
 if and only if $x^- \odot y \in I$ and $y^- \odot x \in I$

is a congruence relation on L. Define $\cdot, \rightharpoonup, \sqcup, \sqcap$ on $\frac{L}{I}$, the set of all congruence classes of L, as follows:

$$[x] \cdot [y] = [x \odot y], \ [x] \rightharpoonup [y] = [x \to y]$$
$$[x] \sqcup [y] = [x \lor y], \ [x] \sqcap [y] = [x \land y].$$

Then $\left(\frac{L}{I},\cdot,\rightharpoonup,\sqcup,\sqcap,[0],[1]\right)$ is a BL-algebra which is called quotient BLalgebra with respect to I. In addition, it is clear $[x]^{--} = [x]$, for all $x \in L$. Consequently, the quotient BL-algebra via any ideal is always an MV-algebra.

Theorem 7 [9]. Let I be an ideal of L. Then the following conditions are equivalent:

- (i) I is an n-fold integral ideal of L,
- (ii) I is a maximal and n-fold Boolean ideal of L,
- (iii) I is a prime and n-fold Boolean ideal of L,
- (iv) I is a proper ideal and for all $x \in L$, $x^n \in I$ or $(x^n)^- \in I$.

Theorem 8 [9]. Let I be an ideal of L. Then I is an n-fold integral ideal if and only if N(I) is an n-fold obstinate filter of L.

Theorem 9 [9]. Let F be a proper filter of L. Then F is an n-fold integral filter if and only if N(F) is an n-fold integral ideal of L.

Theorem 10 [9]. In any BL-algebra L, the following conditions are equivalent:

- (i) $\{0\}$ is an n-fold integral ideal of L,
- (ii) any ideal of L is an n-fold integral ideal,
- (iii) L is an n-fold integral BL-algebra.

Theorem 11 [9]. Let I be an ideal of L. Then I is an n-fold integral ideal of L if and only if $\frac{L}{T}$ is an n-fold obstinate BL-algebra.

Theorem 12 [9]. Let L be a Boolean algebra or a Gödel algebra. Then every ideal of L is implicative.

From now on, in this paper $(L, \land, \lor, \odot, \rightarrow, 0, 1)$ (or simply) L is a BL-algebra, unless otherwise stated.

3. N-FOLD IMPLICATIVE IDEALS IN BL-ALGEBRAS

In this section we introduce two new class of ideals in BL-algebras that called n-fold implicative ideals and we give some related results.

Definition. A nonempty subset I of L is called an n-fold implicative ideal if it satisfies:

(i) $0 \in I$,

(ii) $(x \rightharpoonup y) \rightharpoonup z_{\oslash}^{n} \in I$ and $y \rightharpoonup z_{\oslash}^{n} \in I$ imply $x \rightharpoonup z_{\oslash}^{n} \in I$, for all $x, y, z \in L$.

An 1-fold implicative ideal is called an implicative ideal of L.

Example 13 [6]. Let $L = \{0, a, b, c, d, e, f, 1\}$ be such that 0 < a < b < c < 1, 0 < d < e < f < 1, a < e and b < f. Define \odot and \rightarrow as follows:

\odot	0	a	b	c	d	e	f	1
0	0	0	0	0	0	0	0	0
a	0	a	a	a	0	a	a	a
b	0	a	a	b	0	a	a	b
c	0	a	b	c	0	a	b	С
d	0	0	0	0	d	d	d	d
e	0	a	a	a	d	e	e	e
f	0	a	a	b	d	e	e	f
1	0	a	b	c	d	e	f	1

Table 1

	Table 2									
\rightarrow	0	a	b	c	d	e	f	1		
0	1	1	1	1	1	1	1	1		
a	d	1	1	1	d	1	1	1		
b	d	f	1	1	d	f	1	1		
c	d	e	f	1	d	e	f	1		
d	c	c	c	c	1	1	1	1		
e	0	c	c	c	d	1	1	1		
f	0	b	c	c	d	f	1	1		
1	0	a	b	c	d	e	f	1		

Table 2

Then $(L, \wedge, \vee, \odot, \rightarrow, 0, 1)$ is a *BL*-algebra. Let $I = \{0, d\}$. Then *I* is a 2-fold implicative ideal of *L*.

Proposition 14. Let I be an n-fold implicative ideal of L. Then I is an ideal of L.

Proof. Suppose that I is an *n*-fold implicative ideal of L and $x, y \in L$. If $x \to y \in I$ and $y \in I$, then $(x \to y) \to 0^n_{\oslash} = x \to y \in I$ and $y \to 0^n_{\oslash} = y \in I$. By hypothesis $x = x \to 0^n_{\oslash} \in I$, hence I is an ideal of L.

The following example shows that the converse of Proposition 14, does not hold in general.

Example 15 [6]. Let $L = \{0, a, b, 1\}$, where 0 < a < b < 1. Let $x \land y = \min\{x, y\}$, $x \lor y = \max\{x, y\}$ and operations \odot and \rightarrow are defined as the following tables:

\odot 0 a b 1 0 0 0 0 0 a 0 0 0 a b 0 0 a b			Table 4							
	\odot	0	a	b	1	\rightarrow	0	a	b	1
	0	0	0	0	0	0	1	1	1	1
	a	0	0	0	a	a	b	1	1	1
	b	0	0	a	b	b	a	b	1	1
	1	0	a	b	1	1	0	a	b	1

Then $(L, \lor, \land, \odot, \rightarrow, 0, 1)$ is a *BL*-algebra. Now, let $I = \{0\}$. Then *I* is an ideal of *L* and since $(1 \rightarrow b) \rightarrow b = b^- \odot b^- = a \odot a = 0 \in I$, $b \rightarrow b = b \odot b^- = b \odot a = 0 \in I$ and $1 \rightarrow b = 1 \odot b^- = a \notin I$, then *I* is not a 1-fold implicative ideal of *L*.

Theorem 16. Let I be an ideal of L. Then the following conditions are equivalent: (i) I is an n-fold implicative ideal of L,

(ii) for any $a \in L$, the set $I_{a_{\emptyset}^n} := \{x \in L \mid x \rightharpoonup a_{\emptyset}^n \in I\}$ is an ideal of L.

Proof. (i) \Rightarrow (ii) Suppose that I is an n-fold implicative ideal of L and $a \in L$. For any $x, y \in L$, if $x \rightharpoonup y \in I_{a_{\emptyset}^n}$ and $y \in I_{a_{\emptyset}^n}$, then $(x \rightharpoonup y) \rightharpoonup a_{\emptyset}^n \in I$ and $y \rightharpoonup a_{\emptyset}^n \in I$, hence $x \rightharpoonup a_{\emptyset}^n \in I$, and so $x \in I_{a_{\emptyset}^n}$. Moreover, since $0 \rightharpoonup a_{\emptyset}^n = 0 \odot (a_{\emptyset}^n)^- = 0 \in I$, we obtain $0 \in I_{a_{\emptyset}^n}$. Therefore, $I_{a_{\emptyset}^n}$ is an ideal of L.

(ii) \Rightarrow (i) Suppose that $I_{a_{\oslash}^n}$ is an ideal of L, for any $a \in L$. For any $x, y, z \in L$, if $(x \rightharpoonup y) \rightharpoonup z_{\oslash}^n \in I$ and $y \rightharpoonup z_{\oslash}^n \in I$, then $x \rightharpoonup y \in I_{z_{\bigotimes}^n}$ and $y \in I_{z_{\bigotimes}^n}$. Now, sinc $e I_{z_{\bigotimes}^n}$ is an ideal of L, we have $x \in I_{z_{\bigotimes}^n}$, and so $x \rightharpoonup z_{\oslash}^n \in I$. Therefore, I is an n-fold implicative ideal of L.

Theorem 17. Let I be an n-fold implicative ideal of L. Then for any $a \in L$, $I_{a_{\emptyset}^n}$ is the least ideal of L containing I and a.

Proof. Let I be an n-fold implicative ideal of L and $a \in L$. Then by Theorem 16, $I_{a_{\emptyset}^n}$ is an ideal of L and by (BL7), for any $x \in I$, $x \to a_{\emptyset}^n = x \odot (a_{\emptyset}^n)^- \leq x$, we get $x \to a_{\emptyset}^n \in I$, and so $x \in I_{a_{\emptyset}^n}$. Hence $I \subseteq I_{a_{\emptyset}^n}$. Moreover, by (BL7), (BL12), (BL14) and (BL15),

$$\begin{aligned} a \rightharpoonup a_{\oslash}^{n} &= a \rightharpoonup \left(a_{\oslash}^{n-1} \oslash a\right) = a \odot \left(a_{\oslash}^{n-1} \oslash a\right)^{-} \\ &= a \odot \left(\left(a_{\oslash}^{n-1}\right)^{-} \rightarrow a\right)^{-} \le a \odot a^{-} = 0. \end{aligned}$$

Hence, $a \rightarrow a_{\oslash}^n = 0 \in I$, and so $a \in I_{a_{\oslash}^n}$. Now, if J is an ideal of L containing I and a, then for any $x \in I_{a_{\oslash}^n}$, we get that $x \rightarrow a_{\oslash}^n \in I \subseteq J$. Since J is an ideal of n-times

L and $a \in J$, we have $a_{\emptyset}^n = a \otimes \cdots \otimes a \in J$ and so $x \in J$. Therefore, $I_{a_{\emptyset}^n} \subseteq J$ and so $I_{a_{\emptyset}^n}$ is the least ideal of L containing I and a.

Theorem 18. Let I be a nonempty subset of L. Then the following conditions are equivalent:

- (i) I is an n-fold implicative ideal of L,
- (ii) I is an ideal of L and for any $x, y \in L, x \rightharpoonup y_{\oslash}^{n+1} \in I$ implies $x \rightharpoonup y_{\oslash}^{n} \in I$,
- (iii) I is an ideal of L and for any $x, y, z \in L$, $(x \to y) \to z_{\oslash}^n \in I$ implies $(x \to z_{\oslash}^n) \to (y \to z_{\oslash}^n) \in I$,
- (iv) $0 \in I$, and if $(x \rightarrow y_{\oslash}^{n+n}) \rightarrow z \in I$ and $z \in I$, then $x \rightarrow y_{\oslash}^{n} \in I$, for any $x, y, z \in L$.
- (v) $0 \in I$, and if $(x \rightarrow y_{\oslash}^{n+1}) \rightarrow z \in I$ and $z \in I$, then $x \rightarrow y_{\oslash}^{n} \in I$, for any $x, y, z \in L$.

Proof. (i) \Rightarrow (ii) Let *I* be an *n*-fold implicative ideal of *L*. Then by Proposition 14, *I* is an ideal of *L*. Now, if $x \rightarrow y_{\oslash}^{n+1} \in I$, for $x, y \in L$, then by Lemma

2(ii), $(x \rightarrow y) \rightarrow y_{\oslash}^{n} = x \rightarrow y_{\oslash}^{n+1} \in I$ and since by Lemma 2(ii) and (iii), $y \rightarrow y_{\oslash}^{n} = y \rightarrow y \oslash y_{\oslash}^{n-1} = (y \rightarrow y) \rightarrow y_{\oslash}^{n-1} = 0 \rightarrow y_{\oslash}^{n-1} = 0 \in I$, we get $x \rightarrow y_{\oslash}^{n} \in I$.

(ii) \Rightarrow (iii) Assume that (ii) holds. Let $x, y, z \in L$ and $(x \rightharpoonup y) \rightharpoonup z_{\emptyset}^{n} \in I$. By Lemma 2(i), (ii) and (iv),

$$((x \rightharpoonup (y \rightharpoonup z_{\oslash}^{n})) \rightharpoonup z_{\oslash}^{n}) \rightharpoonup z_{\oslash}^{n} = ((x \rightharpoonup z_{\oslash}^{n}) \rightharpoonup (y \rightharpoonup z_{\oslash}^{n})) \rightharpoonup z_{\oslash}^{n} \le (x \rightharpoonup y) \rightharpoonup z_{\oslash}^{n}$$

Then $((x \to (y \to z_{\oslash}^{n})) \to z_{\oslash}^{n}) \to z_{\oslash}^{n} \in I$, and so $(x \to (y \to z_{\oslash}^{n})) \to z_{\oslash}^{(n+n-1)+1} \in I$ and by hypothesis $(x \to (y \to z_{\oslash}^{n})) \to z_{\oslash}^{(n+n-1)} \in I$. By continuing this process we get that $(x \to (y \to z_{\oslash}^{n})) \to z_{\oslash}^{(n+1)} \in I$. Hence, $(x \to (y \to z_{\oslash}^{n})) \to z_{\oslash}^{n} \in I$. Therefore, $(x \to z_{\oslash}^{n}) \to (y \to z_{\oslash}^{n}) \in I$.

(iii) \Rightarrow (iv) Assume that (iii) holds. Obviously, $0 \in I$. Let $(x \to y_{\oslash}^{n+n}) \to z \in I$ and $z \in I$, for $x, y, z \in L$. Since I is an ideal of L, we have $x \to y_{\oslash}^{n+n} \in I$. Now, since by Lemma 2(ii), $(x \to y_{\oslash}^n) \to y_{\oslash}^n = x \to y_{\oslash}^{n+n} \in I$, then by (iii), $(x \to y_{\oslash}^n) \to (y_{\oslash}^n \to y_{\oslash}^n) \in I$ and since $y_{\oslash}^n \to y_{\oslash}^n = 0$, then $x \to y_{\oslash}^n \in I$.

 $(iv) \Rightarrow (i)$ Suppose that (iv) is valid. Firstly, we show that I is an ideal of L. For any $x, y \in L$, if $x \rightharpoonup y \in L$ and $y \in I$, then

$$(x \to 0^{n+n}_{\oslash})) \to y = (\cdots (x \to 0) \to 0) \cdots \to 0) \to y$$
$$= (\cdots (x \to 0) \to 0) \to 0) \to y$$
$$\vdots$$
$$= x \to y \in I.$$

And since $y \in I$, it follows that by (iv), $x = x \rightarrow 0_{\emptyset}^{n} \in I$. Hence, I is an ideal of L. Now, let $(x \rightarrow y) \rightarrow z_{\emptyset}^{n} \in I$ and $y \rightarrow z_{\emptyset}^{n} \in I$, for $x, y, z \in L$. Then by Lemma 2(ii) and (iv),

$$((x \rightharpoonup z_{\oslash}^{n}) \rightharpoonup z_{\oslash}^{n}) \rightharpoonup (y \rightharpoonup z_{\oslash}^{n}) \leq ((x \rightharpoonup z_{\oslash}^{n}) \rightharpoonup y = (x \rightharpoonup y) \rightharpoonup z_{\oslash}^{n}.$$

And since $(x \to y) \to z_{\oslash}^n \in I$, we obtain $((x \to z_{\oslash}^n) \to z_{\oslash}^n) \to (y \to z_{\oslash}^n) \in I$, hence $(x \to z_{\oslash}^{n+n}) \to (y \to z_{\oslash}^n) \in I$. Now, since $y \to z_{\oslash}^n \in I$, so by (iv), $x \to z_{\oslash}^n \in I$. Therefore, I is an *n*-fold implicative ideal of L.

 $\begin{array}{l} (\mathrm{iv}) \Rightarrow (\mathrm{v}) \text{ Let } (x \rightharpoonup y_{\oslash}^{n+1}) \rightharpoonup z \in I \text{ and } z \in I, \text{ for } x, y, z \in L. \text{ Then by the} \\ \text{similarly proof } ((\mathrm{iv}) \Rightarrow (\mathrm{i})), I \text{ is an ideal of } L. \text{ Moreover, since } y_{\oslash}^{n+1} \leq y_{\oslash}^{n+n}, \text{ we} \\ \text{conclude that by Lemma 2(i), } x \rightharpoonup y_{\oslash}^{n+n} \leq x \rightharpoonup y_{\oslash}^{n+1}. \text{ Hence, } (x \rightharpoonup y_{\oslash}^{n+n}) \rightharpoonup z \leq \\ x \rightharpoonup (y_{\oslash}^{n+1}) \rightharpoonup z \text{ and since } (x \rightharpoonup y_{\oslash}^{n+1}) \rightharpoonup z \in I, \text{ we get } (x \rightharpoonup y_{\oslash}^{n+n}) \rightharpoonup z \in I. \\ \text{Now, since } z \in I, \text{ we have by (iv), } x \rightharpoonup y_{\oslash}^{n} \in I. \end{array}$

 $(\mathbf{v}) \Rightarrow (\mathrm{ii})$ By the similarly proof $((\mathbf{iv}) \Rightarrow (\mathbf{i}))$, I is an ideal of L. Now, if $x \rightharpoonup y_{\oslash}^{n+1} \in I$, then $(x \rightharpoonup y_{\oslash}^{n+1}) \rightharpoonup 0 \in I$ and so by $(\mathbf{v}), x \rightharpoonup y_{\oslash}^{n} \in I$.

Theorem 19. Let $I \subseteq J$, where I and J be two ideals of L and I be an n-fold implicative ideal of L. Then J is an n-fold implicative ideal, too.

Proof. Let I be an n-fold implicative ideal of $L, I \subseteq J$ and $(x \rightharpoonup y) \rightharpoonup z_{\oslash}^{n} \in J$, for $x, y, z \in L$. Denote $u = (x \rightharpoonup y) \rightharpoonup z_{\oslash}^{n}$. Then by Lemma 2(i) and (iii), $((x \rightharpoonup u) \rightharpoonup y) \rightharpoonup z_{\oslash}^{n}) = ((x \rightharpoonup y) \rightharpoonup z_{\oslash}^{n}) \rightharpoonup u = u \rightharpoonup u = 0 \in I$. Since I is an *n*-fold implicative ideal of L, it follows by by Theorem 18,

$$((x \rightharpoonup u) \rightharpoonup z_{\oslash}^{n}) \rightharpoonup (y \rightharpoonup z_{\oslash}^{n}) \in I \subseteq J.$$

Hence, by Lemma 2(ii), $((x \rightarrow z_{\oslash}^{n}) \rightarrow (y \rightarrow z_{\oslash}^{n})) \rightarrow u \in J$ and since J is an ideal of L and $u \in J$, we have $(x \rightarrow z_{\oslash}^{n}) \rightarrow (y \rightarrow z_{\oslash}^{n}) \in J$. Therefore, by Theorem 18, J is an *n*-fold implicative ideal of L.

Lemma 20. For any BL-algebra L and $x, y \in L$,

- (i) $(x_{\emptyset}^{n})^{-} = (x^{-})^{n}$.
- (ii) $(x^n)^- = (x^-)^n_{\oslash}$.
- (iii) $(x \oslash y)^{--} = x^{--} \oslash y^{--}$.
- (iv) $(x \oslash y)^- = x^- \rightharpoonup y^{--}$.

Proof. (i) For any $x \in L$, by (BL9), (BL11) and (BL12),

$$(x^- \to x)^{--} = x^{---} \to x^{--} = x^- \to x^{--} = (x^- \odot x^-)^-.$$

Then $(x^- \to x)^- = (x^- \to x)^{---} = (x^- \odot x^-)^{--} = x^{---} \odot x^{---} = x^- \odot x^-$. Hence,

$$(x \oslash x)^- = (x^- \to x)^- = x^- \odot x^-.$$

Now, since the operation \oslash is associative, we get

$$(x_{\oslash}^{n})^{-} = (\overbrace{x \oslash \cdots \oslash x}^{n-times})^{-}$$

$$= (\overbrace{(x \oslash \cdots \oslash x)}^{(n-1)-times} \bigotimes (x)^{-}$$

$$= (\overbrace{x \oslash \cdots \oslash x)}^{(n-1)-times} \odot x^{-}$$

$$\vdots$$

$$= (x \oslash x)^{-} \odot (\overbrace{x^{-} \odot \cdots \odot x^{-}}^{(n-2)-times}$$

$$= \overbrace{x^{-} \odot \cdots \odot x^{-}}^{n-times}$$

$$= (x^{-})^{n}.$$

265

(ii) For any $x \in L$, by (BL9), (BL11) and (BL12),

$$(x \odot x)^{-} = ((x \odot x)^{-})^{--}$$
$$= (x \to x^{-})^{--}$$
$$= x^{--} \to x^{---}$$
$$= x^{--} \to x^{-}$$
$$= x^{-} \oslash x^{-}.$$

Now,

$$(x^{n})^{-} = \overbrace{(x \odot \cdots \odot x)^{-}}^{n-times}$$

$$= (\overbrace{(x \odot \cdots \odot x)}^{(n-1)-times} \odot x)^{-}$$

$$= (\overbrace{x \odot \cdots \odot x)^{-}}^{(n-1)-times} \odot x^{-}$$

$$\vdots$$

$$= (x \odot x)^{-} \oslash (\overbrace{x^{-} \oslash \cdots \oslash x^{-}}^{(n-2)-times}$$

$$= \overbrace{x^{-} \oslash \cdots \oslash x^{-}}^{n-times}$$

$$= (x^{-})_{\oslash}^{n}.$$

(iii) Let $x, y \in L$. Then by the definition \oslash and (BL9), $(x \oslash y)^{--} = (x^- \to y)^{--} = x^{---} \to y^{--} = x^{--} \oslash y^{--}$.

(iv) Let $x, y \in L$. Then by the definition \oslash , $(x \oslash y)^- = (x^- \to y)^-$. Now, by (*BL*9), (*BL*11) and (*BL*12),

$$((x^{-} \to y)^{-})^{-} = (x^{-} \to y)^{--}$$

= $x^{---} \to y^{--}$
= $x^{-} \to y^{--}$
= $(x^{-} \odot y^{-})^{-}$.

And by (BL10) and (BL12),

$$(x^{-} \longrightarrow y)^{-} = ((x^{-} \longrightarrow y)^{-})^{--}$$
$$= ((x^{-} \odot y^{-})^{-})^{-}$$
$$= x^{-} \odot y^{-}$$
$$= x^{-} \odot y^{---}$$
$$= x^{-} \longrightarrow y^{--}.$$

Therefore, $(x \oslash y)^- = x^- \rightharpoonup y^{--}$.

Theorem 21. Let I be an ideal of L. Then I is an n-fold implicative ideal of L if and only if it satisfies the condition

(n-PI): $(y \rightharpoonup (x^n)^-) \rightharpoonup z \in I$ and $x^n \rightharpoonup y \in I$ imply $x^n \rightharpoonup z \in I$, for any $x, y, z \in L$.

Proof. Let I be an n-fold implicative ideal of L. For any $x, y, z \in L$, let $(y \rightharpoonup (x^n)^-) \rightharpoonup z \in I$ and $x^n \rightharpoonup y \in I$. Then by Lemma 4(i) and (iii), $(z^- \rightharpoonup y^-) \rightharpoonup (x^n)^- \in I$ and $y^- \rightharpoonup (x^n)^- \in I$. Now, by Lemma 20(ii), $(z^- \rightharpoonup y^-) \rightharpoonup (x^-)^n_{\oslash} \in I$ and $y^- \rightharpoonup (x^-)^n_{\oslash} \in I$ and since I is an n-fold implicative ideal of L, we have $z^- \rightharpoonup (x^-)^n_{\oslash} \in I$. Now, by Lemma 4(i), $((x^-)^n_{\oslash})^- \rightharpoonup z^{--} \in I$ and so by Lemma 20(i), $(x^{--})^n \rightharpoonup z^{--} \in I$. Moreover, since by (BL12) and (BL15), $x^n \leq (x^{--})^n$, it follows that by Lemma 2(i), $x^n \rightharpoonup z^{--} \leq (x^{--})^n \rightharpoonup z^{--} \in I$. Hence, $x^n \odot (z^{--})^- \in I$ and so $x^n \odot z^- \in I$. Therefore, $x^n \rightharpoonup z \in I$.

Conversely, let I satisfy the condition $(\mathbf{n}-\mathbf{PI})$ and $(x \to y) \to z_{\oslash}^{n} \in I$, $y \to z_{\oslash}^{n} \in I$, for $x, y, z \in L$. Then by Lemma 2(ii), $x \to y \oslash z_{\oslash}^{n} \in I$ and so by Lemma 4(i), $(y \oslash z_{\oslash}^{n})^{-} \to x^{-} \in I$ and $(z_{\oslash}^{n})^{-} \to y^{-} \in I$. Now, by Lemma 20(iv), $(y^{-} \to ((z_{\oslash}^{n})^{-}))^{-}) \to x^{-} \in I$ and so Lemma 20(i), $(y^{-} \to ((z^{-})^{n})^{-}) \to x^{-} \in I$ and since $(z^{-})^{n} \to y^{-} \in I$, we get by condition $(\mathbf{n}-\mathbf{PI}), (z^{-})^{n} \to x^{-} \in I$. Hence, by Lemma 20(ii), $(z_{\oslash}^{n})^{-} \to x^{-}$, and so by Lemma 4(i), $x \to z_{\oslash}^{n} \in I$. Therefore, Iis an n-fold implicative ideal of L.

Theorem 22. Let I be an n-fold implicative ideal of L. Then I is an (n+1)-fold implicative ideal of L.

Proof. Let I be an n-fold implicative ideal of L and $x \to y_{\odot}^{n+2}$, for $x, y \in L$. Then by Lemma 2(ii),

$$(x \rightharpoonup y) \rightharpoonup y_{\oslash}^{n+1} = x \rightharpoonup y \oslash y_{\oslash}^{n+1} = x \rightharpoonup y_{\oslash}^{n+2} \in I.$$

Now, by Theorem 18, $(x \rightarrow y) \rightarrow y_{\oslash}^{n} \in I$ and so $x \rightarrow y_{\oslash}^{n+1} = (x \rightarrow y) \rightarrow y_{\oslash}^{n} \in I$. Hence, by Theorem 18, I is an (n+1)-fold implicative ideal of L.

Theorem 23. Let I be an ideal of L. Then I is an n-fold implicative ideal of L if and only if $x_{\bigcirc}^{2n} \rightarrow x_{\oslash}^{n} \in I$, for any $x \in L$.

Proof. Let I be an n-fold implicative ideal of L and $x \in L$. Since by Lemma 2(ii), $(x_{\oslash}^{2n} \rightharpoonup x_{\oslash}^n) \rightharpoonup x_{\oslash}^n = x_{\oslash}^{2n} \rightharpoonup x_{\oslash}^n \oslash x_{\oslash}^n = x_{\oslash}^{2n} \rightharpoonup x_{\oslash}^{2n} = 0 \in I$, and $x_{\oslash}^n \rightharpoonup x_{\oslash}^n = 0 \in I$, we get $x_{\oslash}^{2n} \rightharpoonup x_{\oslash}^n \in I$.

Conversely, suppose that for any $x \in L$, $x_{\oslash}^{2n} \rightharpoonup x_{\oslash}^n \in I$, and $(x \rightharpoonup y) \rightharpoonup z_{\oslash}^n \in I$, $y \rightharpoonup z_{\oslash}^n \in I$, for $x, y, z \in L$. Then by Lemma 2(ii) and (iv), $((x \rightharpoonup z_{\oslash}^n) \rightharpoonup z_{\oslash}^n) \rightharpoonup (y \rightharpoonup z_{\oslash}^n) \leq (x \rightharpoonup z_{\oslash}^n) \rightharpoonup y = (x \rightharpoonup y) \rightharpoonup z_{\oslash}^n$. Since $(x \rightharpoonup y) \rightharpoonup z_{\oslash}^n \in I$ and I is an ideal of L, we have

$$((x \rightharpoonup z_{\oslash}^n) \rightharpoonup z_{\oslash}^n) \rightharpoonup (y \rightharpoonup z_{\oslash}^n) \in I.$$

267

And since $y \rightharpoonup z_{\oslash}^n \in I$, by Lemma 3,

$$(x \rightharpoonup z_{\varnothing}^n) \rightharpoonup z_{\oslash}^n \in I.$$

Moreover, by Lemma 2(v),

$$x \rightharpoonup z_{\oslash}^n \leq (z_{\oslash}^n \oslash z_{\oslash}^n \rightharpoonup z_{\oslash}^n) \oslash (x \rightharpoonup z_{\oslash}^n \oslash z_{\oslash}^n).$$

And since $x \to z_{\oslash}^n \oslash z_{\oslash}^n = (x \to z_{\oslash}^n) \to z_{\oslash}^n \in I$ and by hypothesis $z_{\oslash}^n \oslash z_{\oslash}^n \to z_{\oslash}^n = z_{\oslash}^{2n} \to z_{\oslash}^n \in I$, we have $(z_{\oslash}^n \oslash z_{\oslash}^n \to z_{\oslash}^n) \oslash (x \to z_{\oslash}^n \oslash z_{\oslash}^n) \in I$. Hence $x \to z_{\oslash}^n \in I$. Therefore, I is an *n*-fold implicative ideal of L.

Theorem 24. Let I be an ideal of L. Then I is an n-fold implicative ideal of L if and only if I is an n-fold Boolean ideal of L.

Proof. Let I be an n-fold implicative ideal of L. Then by Theorem 22, $x_{\oslash}^{2n} \rightharpoonup x_{\oslash}^n \in I$, for any $x \in L$. By Lemma 2(ii),

$$\begin{split} x_{\oslash}^{2n} & \rightharpoonup x_{\oslash}^{n} \ = \ x_{\oslash}^{n} \oslash x_{\oslash}^{n} \ \rightarrow \ x_{\oslash}^{n} \\ & = \ \left((x_{\oslash}^{n})^{-} \rightarrow x_{\oslash}^{n} \right) \ \rightharpoonup \ x_{\oslash}^{n} \\ & = \ \left((x_{\oslash}^{n})^{-} \rightarrow x_{\oslash}^{n} \right) \odot (x_{\oslash}^{n})^{-} \\ & = \ \left((x_{\oslash}^{n})^{-} \odot ((x_{\oslash}^{n})^{-} \rightarrow x_{\oslash}^{n} \right) \\ & = \ \left(x_{\oslash}^{n} \right)^{-} \land \ x_{\oslash}^{n} \\ & = \ x_{\oslash}^{n} \land (x_{\oslash}^{n})^{-}. \end{split}$$

Hence, for any $x \in L$, $x_{\oslash}^n \wedge (x_{\oslash}^n)^- \in I$ and since $(x^-)_{\oslash}^{2n} \rightharpoonup (x^-)_{\oslash}^n \in I$, by similar way $(x^-)_{\oslash}^n \wedge ((x^-)_{\oslash}^n)^- \in I$. Now, since by Lemma 20(i), $((x^-)_{\oslash}^n)^- = (x^{--})^n$, then $(x^-)_{\oslash}^n \wedge (x^{--})^n \in I$ and since by (BL12), $(x^-)_{\oslash}^n \wedge x^n \leq (x^-)_{\oslash}^n \wedge (x^{--})^n$, we get $(x^-)_{\oslash}^n \wedge x^n \in I$. Moreover, by Lemma 4(iv), $((x^-)_{\oslash}^n \wedge x^n)^{--} \in I$. Hence, applying (BL16), we have $((x^-)_{\oslash}^n)^{--} \wedge (x^n)^{--} \in I$. Now, by Lemma 20(i), $((x^-)_{\oslash}^n)^{--} = (((x^-)_{\oslash}^n)^{--} = ((x^{--})^n)^{--} = (x^n)^{--}$. Hence,

$$(x^n)^- \wedge (x^n)^{--} = ((x^-)^n_{\oslash})^{--} \wedge (x^n)^{--} \in I.$$

By (BL12), $x^n \leq (x^n)^{--}$ and so $(x^n)^- \wedge x^n \leq (x^n)^- \wedge (x^n)^{--}$ and since I is an ideal of L, we have $(x^n)^- \wedge x^n \in I$, for any $x \in L$. Therefore, I is an *n*-fold Boolean ideal of L.

Conversely, Let I be an n-fold Boolean ideal of L. Then for any $x \in L$, $((x^-)^n)^- \wedge (x^-)^n \in I$. By Lemma 20(i),

$$((x_{\oslash}^{n})^{-})^{-} \wedge (x_{\oslash}^{n})^{-} = ((x^{-})^{n})^{-} \wedge (x^{-})^{n} \in I.$$

Since I is an ideal of L and by (BL12),

$$x^n_{\oslash} \wedge (x^n_{\oslash})^- \leq (x^n_{\oslash})^{--} \wedge (x^n_{\oslash})^- = ((x^n_{\oslash})^-)^- \wedge (x^n_{\oslash})^-,$$

we obtain $x_{\oslash}^n \wedge (x_{\oslash}^n)^- \in I$, and so $x_{\oslash}^{2n} \rightharpoonup x_{\oslash}^n \in I$. Therefore, by Theorem 23, I is an *n*-fold implicative ideal of L.

Theorem 25. In a BL-algebra L, the following conditions are equivalent:

- (i) any ideal I of L is an n-fold implicative,
- (ii) $\{0\}$ is an n-fold implicative ideal of L,

(iii) for any $a \in L$, the set $L(a) = \{x \in L \mid x \rightharpoonup a_{\emptyset}^n = 0\}$ is an ideal of L.

Proof. (i) \Leftrightarrow (ii) It follows from Theorem 19.

(ii) \Leftrightarrow (iii) For any $a, x, y \in L$, if $x \to y \in L(a)$ and $y \in L(a)$, then $(x \to y) \to a_{\oslash}^n = 0 \in \{0\}, y \to a_{\oslash}^n = 0 \in \{0\}$ and since $\{0\}$ is an *n*-fold implicative ideal of L, we have $x \to a_{\oslash}^n \in \{0\}$. Hence, $x \to a_{\oslash}^n = 0$ and so $x \in L(a)$. Therefore, L(a) is an ideal of L.

(iii) \Leftrightarrow (ii) Let $(x \rightarrow y) \rightarrow z_{\emptyset}^{n} \in \{0\}$ and $y \rightarrow z_{\emptyset}^{n} \in \{0\}$, for $x, y, z \in L$. Then $(x \rightarrow y) \in L(z_{\emptyset}^{n})$ and $y \in L(z_{\emptyset}^{n})$ and since $L(z_{\emptyset}^{n})$ is an ideal of L, we get $x \in L(z_{\emptyset}^{n})$, and so $x \rightarrow z_{\emptyset}^{n} = 0$. Hence, $\{0\}$ is an *n*-fold implicative ideal of L.

Proposition 26. Let L be Boolean algebra or Gödel algebra. Then any ideal of L is an n-fold implicative ideal of L for any natural number n.

Proof. It follows from Theorems 12 and 22.

Theorem 27. Let I be a proper ideal of a L. Then the following conditions are equivalent:

(i) I is a maximal and n-fold implicative ideal of L,

(ii) $x, y \notin I$ imply $x \rightharpoonup y_{\emptyset}^n \in I$ and $y \rightharpoonup x_{\emptyset}^n \in I$, for all $x, y \in L$,

- (iii) if $x \notin I$, then there exists natural number m such that $((x_{\oslash}^n)^-)_{\oslash}^m \in I$,
- (iv) $(x^{-})^{n}_{\oslash} \in I$ or $((x^{-})^{n}_{\oslash})^{-} \in I$, for all $x \in L$,
- (v) I is a prime and n-fold implicative ideal of L,
- (vi) I is a prime and n-fold Boolean ideal of L.

Proof. (i) \Leftrightarrow (ii) Let I be a maximal and n-fold implicative ideal of L and $x, y \notin I$. I. Then by Theorem 17, $I_{y_{\emptyset}^n} = \{z \in L \mid z \rightharpoonup y_{\emptyset}^n \in I\}$ is the least ideal of L containing I and y and since I is maximal ideal of L and $y \notin I$, we have $I_{y_{\emptyset}^n} = L$, and so $x \in I_{y_{\emptyset}^n}$. Therefore, $x \rightharpoonup y_{\emptyset}^n \in I$. By similar way $y \rightharpoonup x_{\emptyset}^n \in I$.

(ii) \Leftrightarrow (iii) Suppose that $x \notin I$. Since I is a proper ideal, we have $1 \notin I$ and so by hypothesis $1 \rightarrow x_{\oslash}^n = (x_{\oslash}^n)^- \in I$. Hence, for some natural number m, $((x_{\oslash}^n)^-)_{\oslash}^m \in I$.

(iii) \Leftrightarrow (iv) For any $x \in L$, if $x^- \in I$, then $(x^-)^n_{\oslash} \in I$. Assume that $x^- \notin I$, then there exists natural number m such that $(((x^-)^n_{\oslash})^-)^m_{\oslash} \in I$ and since by Lemma 2(vi), $((x^-)^n_{\oslash})^- \leq (((x^-)^n_{\oslash})^-)^m_{\oslash}$ and I is an ideal of L, we get that $((x^-)^n_{\oslash})^- \in I$. Thus, (iv) is valid.

(iv) \Leftrightarrow (v) Let $(x^{-})_{\oslash}^{n} \in I$ or $((x^{-})_{\oslash}^{n})^{-} \in I$, for all $x \in L$. Then by Lemma 20(ii), $(x^{n})^{-} \in I$ or $(x^{n})^{--} \in I$, for all $x \in L$, and since I is an ideal of L, we obtain $(x^{n})^{-} \in I$ or x^{n} implicational gebran I, for all $x \in L$. Now, by Theorem 7, I is a prime and n-fold Boolean ideal of L and so by Theorem 24, I is a prime and n-fold implicative ideal of L.

 $(v) \Leftrightarrow (vi)$ It follows from Theorem 24.

 $(vi) \Leftrightarrow (i)$ Let I be a prime and n-fold Boolean ideal of L. Then by Theorem 7, I is a maximal and n-fold Boolean ideal of L. Hence, by Theorem 24, I is a maximal and n-fold implicative ideal of L.

4. N-FOLD OBSTINATE IDEALS IN BL-ALGEBRAS

In this section we introduce a new class of ideals in BL-algebras that called *n*-fold obstinate ideals and we give some results.

Definition. Let I be an ideal of L. I is called an *n*-fold obstinate ideal if it satisfies:

 $x, y \notin I$ imply $x \rightharpoonup y_{\oslash}^n \in I$ and $y \rightharpoonup x_{\oslash}^n \in I$, for all $x, y \in L$

Example 28. [6] Let $L = \{0, a, b, 1\}$, where 0 < a < b < 1. Let $x \land y = \min\{x, y\}$, $x \lor y = \max\{x, y\}$ and operations \odot and \rightarrow are defined as the following tables:

Table 3					Table 4					
\odot	0	a	b	1	\rightarrow	0	a	b	1	
0	0	0	0	0	0	1	1	1	1	
a	0	0	a	a	a	a	1	1	1	
b	0	a	b	b	b	0	a	1	1	
1	0	a	b	1	1	0	a	b	1	

Then $(L, \lor, \land, \odot, \rightarrow, 0, 1)$ is a *BL*-algebra. Now, let $I = \{0\}$. Then *I* is a 2-fold obstinate ideal of *L*, but it is not a 1-fold obstinate ideal. Indeed, $a, b \notin \{0\}$ and $b \rightarrow a = b \odot a^- = b \odot a = a \notin \{0\}$.

Theorem 29. Let I be an ideal of L. Then I is an n-fold obstinate ideal of L if and only if I is an n-fold integral ideal of L.

Proof. It follows from Theorems 7 and 27.

Theorem 30. Let I be a proper ideal and F be a proper filter of L. Then

- (i) I is an n-fold obstinate ideal if and only if N(I) is an n-fold obstinate filter of L.
- (ii) F is an n-fold integral filter if and only if N(F) is an n-fold obstinate ideal of L.

Proof. It follows from Theorems 8, 9 and 29.

The following theorem describes the relationship between n-fold obstinate ideals and n-fold integral BL-algebras.

Theorem 31. In any BL-algebra L, the following conditions are equivalent:

- (i) $\{0\}$ is an n-fold obstinate ideal of L,
- (ii) any ideal of L is an n-fold obstinate ideal,
- (iii) L is an n-fold integral BL-algebra.

Proof. It follows from Theorems 10 and 29.

Theorem 32. Let I be an ideal of L. Then I is an n-fold obstinate ideal of L if and only if $\frac{L}{T}$ is an n-fold obstinate BL-algebra.

Proof. It follows from Theorems 11 and 29.

Example 33. Let *L* be *BL*-algebra given in Example 28 and $I = \{0\}$, which is a 2-fold obstinate ideal of *L*. We have $\frac{L}{I} = \{[0], [a], [1]\}$, where $[0] = \{0\}, [a] = \{a\}$ and $[1] = \{b, 1\}$. Note that $\frac{L}{I}$ is an *MV*-algebra and $[a]^2 = [a^2] = [0]$. Hence, $\frac{L}{I}$ is a 2-fold obstinate *BL*-algebra.

5. Conclusion

The results of this paper are devoted to study two new classes of ideals that is called *n*-fold implicative ideals and *n*-fold obstinate ideals. We presented a characterization and several important properties of *n*-fold implicative ideals and *n*-fold obstinate ideals. In particular, we proved that an ideal is *n*-fold implicative ideal if and only if is an *n*-fold Boolean ideal. Also, we proved that a *BL*-algebra is an *n*-fold integral *BL*-algebra if and only if trivial ideal $\{0\}$ is an *n*-fold obstinate ideal. Moreover, we studied the relation between n-fold obstinate ideals and *n*fold (integral) obstinate filters in *BL*-algebras by using the set of complement elements.

References

- [1] C.C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc. 88 (1958) 467–490. doi:10.1090/S0002-9947-1958-0094302-9
- [2] A. Di Nola, G. Georgescu and A. Iorgulescu, Pseduo BL-algebras Part I, Mult. Val. Logic, 8 (2002) 673–714.
- [3] A. Di Nola and L. Leustean, Compact representations of BL-algebras, Department of Computer Science, University Aarhus. BRICS Report Series, (2002).
- [4] M. Haveshki and E. Eslami, n-Fold filters in BL-algebras, Math. Log. Quart. 54 (2008) 178-186.
- [5] S. Motamed and A.B. Saeid, *n-Fold obstinate filters in BL-algebras*, Neural. Comput. Applic. **20** (2011) 461–472.
- [6] C. Lele and J.B. Nganou, MV-algebras derived from ideals in BL-algebras, Fuzzy Sets and Systems **218** (2013) 103–113.
- [7] P. Hájek, Metamathematics of Fuzzy Logic, Trends in Logic 4 (Kluwer Academic Publishers, 1998), ISBN:9781402003707.
- [8] A. Paad, Integral ideals and maximal ideals in BL-algebras, An.Univ. Craiova Ser. Mat. Inform. **43** (2016) 231–242.
- [9] A. Paad, n-Fold integral ideals and n-fold Boolean ideals in BL-algebras, Afr. Mat. **28** (2017) 971–984.
- [10] A. Paad and R.A. Borzooei, Generalization of integral filters in BL-algebras and n-fold integral BL-algebras, Afr. Mat. 26 (2015) 1299-1311.
- [11] Y. Yang and X. Xin, On characterization of BL-algebras via implicative ideals, Italian J. Pure and Appl. Math. 37 (2017) 493–506.
- [12] E. Turunen, Boolean deductive systems of BL-algebras, Arch. Math. Logic. 40 (2001) 467 - 473.

Received 5 July 2018 Revised 3 September 2018 Accepted 8 September 2018