FOLDING THEORY OF IMPLICATIVE AND OBSTINATE IDEALS IN BL-ALGEBRAS

Akbar Paad
Department of Mathematics University of Bojnord, Bojnord, Iran
e-mail: akbar.paad@gmail.com

Abstract

In this paper, the concepts of n-fold implicative ideals and n-fold obstinate ideals in $B L$-algebras are introduced. With respect to this concepts, some related results are given. In particular, it is proved that an ideal is an n-fold implicative ideal if and only if is an n-fold Boolean ideal. Also, it is shown that a $B L$-algebra is an n-fold integral $B L$-algebra if and only if trivial ideal $\{0\}$ is an n-fold obstinate ideal. Moreover, the relation between n-fold obstinate ideals and n-fold (integral) obstinate filters in $B L$-algebras are studied by using the set of complement elements. Finally, it is proved that ideal I of $B L$-algebra L is an n-fold obstinate ideal if and only if $\frac{L}{I}$ is an n-fold obstinate $B L$-algebra.

Keywords: $B L$-algebra, ideal, n-fold implicative ideal, n-fold obstinate ideal.
2010 Mathematics Subject Classification: 03G25, 03G05, 06D35, 06E99.

1. Introduction

$B L$-algebras are the algebraic structure for Hájek basic logic [7] in order to investigate many valued logic by algebraic means. His motivations for introducing $B L$ algebras were of two kinds. The first one was providing an algebraic counterpart of a propositional logic, called Basic Logic, which embodies a fragment common to some of the most important many-valued logics, namely Lukasiewicz Logic, Gödel Logic and Product Logic. This Basic Logic ($B L$ for short) is proposed as "the most general" many-valued logic with truth values in $[0,1]$ and $B L$-algebras are the corresponding Lindenbaum-Tarski algebras. The second one was to provide an algebraic mean for the study of continuous t-norms (or triangular norms)
on [0, 1]. In 1958, Chang [1] introduced the concept of an $M V$-algebra which is one of the most classes of $B L$-algebras. Turunen [12] introduced the notion of an implicative filter and a Boolean filter in $B L$-algebras. Boolean filters are an important class of filters, because the quotient $B L$-algebra induced by these filters are Boolean algebras. The notion of (fuzzy) ideal has been introduced in many algebraic structures such as lattices, rings, $M V$-algebras. Ideal theory is very effective tool for studying various algebraic and logical systems. In the theory of $M V$-algebras, as various algebr aic structures, the notion of ideal is at the center, while in $B L$-algebras, the focus has been on deductive systems also filters. The study of $B L$-algebras has experienced a tremendous growth over resent years and the main focus has been on filters. In 2013, Lele [6], introduced the notions of (Boolean, prime) ideals and analyzed the relationship between ideals and filters by using the set of complement elements. In 2017, Yang and Xin [11], introduced implicative ideals in BL-algebras and studied some characterizations of them by the pseudo implication operation and proved the implicative ideals coincide with Boolean ideals in $B L$-algebras.

This motivates us to introduce the notions of n-fold implicative and n-fold obstinate ideals in $B L$-algebras and investigate the relations among n-fold implicative ideals, n-fold obstinate ideals and the other ideals in $B L$-algebras. In particular, we prove that an ideal is an n-fold implicative ideal if and only if is an n-fold Boolean. Also, we prove that a $B L$-algebra is an n-fold integral $B L$ algebra if and only if trivial ideal $\{0\}$ is an n-fold obstinate ideal. Moreover, we study rela tion between n-fold obstinate ideals and n-fold (integral) obstinate filters in $B L$-algebras by using the set of complement elements. Finally, we prove that ideal I of $B L$-algebra L is an n-fold obstinate ideal if and only if $\frac{L}{I}$ is an n-fold obstinate $B L$-algebra.

2. Preliminaries

In this section, we give some fundamental definitions and results. For more details, refer to the references.

Definition [7]. A $B L$-algebra is an algebra $(L, \vee, \wedge, \odot, \rightarrow, 0,1)$ of type $(2,2,2,2$, $0,0)$ such that
$(B L 1) \quad(L, \vee, \wedge, 0,1)$ is a bounded lattice,
(BL2) $(L, \odot, 1)$ is a commutative monoid,
(BL3) $z \leq x \rightarrow y$ if and only if $x \odot z \leq y$, for all $x, y, z \in L$,
(BL4) $x \wedge y=x \odot(x \rightarrow y)$,
$(B L 5) \quad(x \rightarrow y) \vee(y \rightarrow x)=1$.

We denote $x^{n}=\overbrace{x \odot \cdots \odot x}^{n-\text { times }}$, if $n>0$ and $x^{0}=1$, for all $x, y \in L$.
A $B L$-algebra L is called a Gödel algebra (1 -fold implicative $B L$-algebra) if $x^{2}=x \odot x=x$, for all $x \in L$ and L is called an $M V$-algebra if $\left(x^{-}\right)^{-}=x$, for all $x \in L$, where $x^{-}=x \rightarrow 0$. A $B L$-algebra L is called a Boolean algebra if $x \vee x^{-}=1$, for all $x \in L$.
Proposition 1 [2, 3]. In any BL-algebra the following hold:
(BL6) $x \leq y$ if and only if $x \rightarrow y=1$,
(BL7) $y \leq x \rightarrow y$, and $x \odot y \leq x, y$,
(BL8) $x \leq y$ implies $y \rightarrow z \leq x \rightarrow z$ and $z \rightarrow x \leq z \rightarrow y$,
(BL9) $(x \rightarrow y)^{--}=x^{--} \rightarrow y^{--}$,
(BL10) $(x \odot y)^{--}=x^{--} \odot y^{--}$,
(BL11) $(x \odot y)^{-}=x \rightarrow y^{-}$,
(BL12) $x^{---}=x^{-}, x \leq x^{--}$and $x \odot x^{-}=0$,
(BL13) $x \rightarrow(y \rightarrow z)=(x \odot y) \rightarrow z$,
(BL14) $x \leq y$ implies $y^{-} \leq x^{-}$,
(BL15) $x \leq y$ implies $z \odot x \leq z \odot y$,
(BL16) $(x \wedge y)^{--}=x^{--} \wedge y^{--}$, for all $x, y, z \in L$.
Note that by $(B L 13)(\overbrace{x \rightarrow(\cdots(x \rightarrow(x}^{n-t i m e s} \rightarrow y))) \cdots)=x^{n} \rightarrow y$, for all $x, y \in$ L. The following theorems and definitions are from $[4,5,8,10]$ and we refer the reader to them, for more details.

Definition. Let L be a $B L$-algebra, n be a natural number and F be a nonempty subset of L. Then
(i) F is called a filter of L if $x \odot y \in F$, for any $x, y \in F$ and if $x \in F$ and $x \leq y$ then $y \in F$, for all $x, y \in L$. A proper filter F is called a maximal filter of L if it is not properly contained in any other proper filter of L.
(ii) F is called an n-fold implicative filter of L if $1 \in F$ and for all $x, y, z \in L$,

$$
x^{n} \rightarrow(y \rightarrow z) \in F \text { and } x^{n} \rightarrow y \in F \text { imply } x^{n} \rightarrow z \in F .
$$

(iii) A proper filter F is called an n-fold obstinate filter if for all $x, y \in L$,

$$
x, y \notin F \text { imply } x^{n} \rightarrow y \in F \text { and } y^{n} \rightarrow x \in F .
$$

(iv) A proper filter F is called an n-fold integral filter if for all $x, y \in L$,

$$
\left(x^{n} \odot y^{n}\right)^{-} \in F \text { implies }\left(x^{n}\right)^{-} \in F \text { or }\left(y^{n}\right)^{-} \in F \text {. }
$$

Definition [10]. Let L be a $B L$-algebra and n be a natural number. Then
(i) L is called an n-fold integral $B L$-algebra if for all $x, y \in L$

$$
x^{n} \odot y^{n}=0 \text { then } x^{n}=0 \text { or } y^{n}=0 .
$$

(ii) L is called an n-fold obstinate $B L$-algebra if L is an $M V$-algebra and $x^{n}=0$, for all $x \in L \backslash\{1\}$.

Definition $[6,8,9]$. Let L be a $B L$-algebra and I be a nonempty subset of L. Then
(i) I is called an ideal of L, if $x \oslash y:=x^{-} \rightarrow y \in I$, for any $x, y \in I$ and if $y \in I$ and $x \leq y$ then $x \in I$, for all $x, y \in L$. The operation \oslash is associative. Moreover, a set I containing 0 of L is an ideal if and only if for all $x, y \in L$, $x^{-} \odot y \in I$ and $x \in I$ imply $y \in I$.
(ii) A proper ideal I of L is called a prime ideal of L if $x \wedge y \in I$ implies $x \in I$ or $y \in I$, for all $x, y \in L$.
(iii) A proper ideal I is called a maximal ideal of L if it is not properly contained in any other proper ideal of L.
(iv) An ideal I of L is called a n-fold Boolean ideal if $x^{n} \wedge\left(x^{n}\right)^{-} \in I$, for all $x \in L$ and an ideal I of L is called a Boolean ideal if $x \wedge x^{-} \in I$, for all $x \in L$.
(v) An ideal I of L is called an n-fold integral ideal, if for all $x, y \in L$,

$$
(x \odot y)^{n} \in I \text { implies } x^{n} \in I \text { or } y^{n} \in I .
$$

Let L be a $B L$-algebra, we define the pseudo implication operation \rightharpoonup by $x \rightharpoonup$ $y:=x \odot y^{-}$, for any $x, y \in L$. It is easy to see that $z \leq x \oslash y$ if and only if $z \rightharpoonup x \leq y$.

Moreover, we denote $x_{\varnothing}^{n}=\overbrace{x \oslash \cdots \varnothing x}^{n \text {-times }}$, when n is a natural number.
Lemma 2 [11]. Let L be a BL-algebra, for any $x, y, z \in L$, we have:
(i) $x \leq y$ implies $z \rightharpoonup y \leq z \rightharpoonup x$ and $x \rightharpoonup z \leq y \rightharpoonup z$,
(ii) $(x \rightharpoonup y) \rightharpoonup z=(x \rightharpoonup z) \rightharpoonup y=x \rightharpoonup(y \oslash z)$,
(iii) $x \rightharpoonup 0=x, 0 \rightharpoonup x=0, x \rightharpoonup x=0$,
(iv) $(x \rightharpoonup z) \rightharpoonup(y \rightharpoonup z) \leq x \rightharpoonup y$,
(v) $(x \rightharpoonup z) \leq(y \rightharpoonup z) \oslash(x \rightharpoonup y)$,
(vi) $x \leq x \oslash x$.

Lemma 3 [11]. Let I be a nonempty subset of a BL-algebra L. Then I is an ideal of L if and only if it satisfies:
(i) $0 \in I$,
(ii) for any $x, y \in L$, if $x \rightharpoonup y \in I$ and $y \in I$, then $x \in I$.

Lemma 4 [11]. Let I be an ideal of BL-algebra L. Then the following hold: for any $x, y, z \in L$
(i) $x \rightharpoonup y \in I$ if and only if $y^{-} \rightharpoonup x^{-} \in I$.
(ii) $x \rightharpoonup y \in I$ if and only if $x^{--} \rightharpoonup y \in I$.
(iii) $\left(y \rightharpoonup x^{-}\right) \rightharpoonup z \in I$ if and only if $\left(z^{-} \rightharpoonup y^{-}\right) \rightharpoonup x^{-} \in I$.
(iv) $x \in I$ if and only if $x^{--} \in I$.

Theorem 5 [11]. Let P be a proper ideal of $B L$-algebra L. Then P is a prime ideal if and only if $x \rightharpoonup y \in P$ or $y \rightharpoonup x \in P$, for all $x, y \in L$.

Definition [6]. Let L be a $B L$-algebra and X any subset of L. Then the set of complement elements (with respect to X) is denoted by $N(X)$ and is defined by

$$
N(X)=\left\{x \in L \mid x^{-} \in X\right\}
$$

Theorem 6 [6]. Let I be an ideal of BL-algebra L. Then the binary relation \equiv_{I} on L which is defined by

$$
x \equiv_{I} y \quad \text { if and only if } x^{-} \odot y \in I \quad \text { and } y^{-} \odot x \in I
$$

is a congruence relation on L. Define $\cdot, \rightharpoonup, \sqcup, \sqcap$ on $\frac{L}{I}$, the set of all congruence classes of L, as follows:

$$
\begin{aligned}
& {[x] \cdot[y]=[x \odot y], \quad[x] \rightharpoonup[y]=[x \rightarrow y]} \\
& {[x] \sqcup[y]=[x \vee y], \quad[x] \sqcap[y]=[x \wedge y] .}
\end{aligned}
$$

Then $\left(\frac{L}{I}, \cdot, \rightharpoonup, \sqcup, \sqcap,[0],[1]\right)$ is a BL-algebra which is called quotient $B L$ algebra with respect to I. In addition, it is clear $[x]^{--}=[x]$, for all $x \in L$. Consequently, the quotient BL-algebra via any ideal is always an MV-algebra.

Theorem 7 [9]. Let I be an ideal of L. Then the following conditions are equivalent:
(i) I is an n-fold integral ideal of L,
(ii) I is a maximal and n-fold Boolean ideal of L,
(iii) I is a prime and n-fold Boolean ideal of L,
(iv) I is a proper ideal and for all $x \in L, x^{n} \in I$ or $\left(x^{n}\right)^{-} \in I$.

Theorem 8 [9]. Let I be an ideal of L. Then I is an n-fold integral ideal if and only if $N(I)$ is an n-fold obstinate filter of L.

Theorem 9 [9]. Let F be a proper filter of L. Then F is an n-fold integral filter if and only if $N(F)$ is an n-fold integral ideal of L.

Theorem 10 [9]. In any BL-algebra L, the following conditions are equivalent:
(i) $\{0\}$ is an n-fold integral ideal of L,
(ii) any ideal of L is an n-fold integral ideal,
(iii) L is an n-fold integral $B L$-algebra.

Theorem 11 [9]. Let I be an ideal of L. Then I is an n-fold integral ideal of L if and only if $\frac{L}{I}$ is an n-fold obstinate BL-algebra.

Theorem 12 [9]. Let L be a Boolean algebra or a Gödel algebra. Then every ideal of L is implicative.

From now on, in this paper $(L, \wedge, \vee, \odot, \rightarrow, 0,1)$ (or simply) L is a $B L$-algebra, unless otherwise stated.

3. N-FOLD IMPLICATIVE IDEALS IN BL-ALGEBRAS

In this section we introduce two new class of ideals in $B L$-algebras that called n-fold implicative ideals and we give some related results.

Definition. A nonempty subset I of L is called an n-fold implicative ideal if it satisfies:
(i) $0 \in I$,
(ii) $(x \rightharpoonup y) \rightharpoonup z_{\oslash}^{n} \in I$ and $y \rightharpoonup z_{\oslash}^{n} \in I$ imply $x \rightharpoonup z_{\oslash}^{n} \in I$, for all $x, y, z \in L$.

An 1-fold implicative ideal is called an implicative ideal of L.
Example 13 [6]. Let $L=\{0, a, b, c, d, e, f, 1\}$ be such that $0<a<b<c<1$, $0<d<e<f<1, a<e$ and $b<f$. Define \odot and \rightarrow as follows:

Table 1

\odot	0	a	b	c	d	e	f	1
0	0	0	0	0	0	0	0	0
a	0	a	a	a	0	a	a	a
b	0	a	a	b	0	a	a	b
c	0	a	b	c	0	a	b	c
d	0	0	0	0	d	d	d	d
e	0	a	a	a	d	e	e	e
f	0	a	a	b	d	e	e	f
1	0	a	b	c	d	e	f	1

Table 2

\rightarrow	0	a	b	c	d	e	f	1
0	1	1	1	1	1	1	1	1
a	d	1	1	1	d	1	1	1
b	d	f	1	1	d	f	1	1
c	d	e	f	1	d	e	f	1
d	c	c	c	c	1	1	1	1
e	0	c	c	c	d	1	1	1
f	0	b	c	c	d	f	1	1
1	0	a	b	c	d	e	f	1

Then $(L, \wedge, \vee, \odot, \rightarrow, 0,1)$ is a $B L$-algebra. Let $I=\{0, d\}$. Then I is a 2 -fold implicative ideal of L.

Proposition 14. Let I be an n-fold implicative ideal of L. Then I is an ideal of L.

Proof. Suppose that I is an n-fold implicative ideal of L and $x, y \in L$. If $x \rightharpoonup y \in I$ and $y \in I$, then $(x \rightharpoonup y) \rightharpoonup 0_{\ominus}^{n}=x \rightharpoonup y \in I$ and $y \rightharpoonup 0_{\varnothing}^{n}=y \in I$. By hypothesis $x=x \rightharpoonup 0_{\oslash}^{n} \in I$, hence I is an ideal of L.

The following example shows that the converse of Proposition 14, does not hold in general.

Example 15 [6]. Let $L=\{0, a, b, 1\}$, where $0<a<b<1$. Let $x \wedge y=\min \{x, y\}$, $x \vee y=\max \{x, y\}$ and operations \odot and \rightarrow are defined as the following tables:

Table 3

\odot	0	a	b	1
0	0	0	0	0
a	0	0	0	a
b	0	0	a	b
1	0	a	b	1

Table 4

\rightarrow	0	a	b	1
0	1	1	1	1
a	b	1	1	1
b	a	b	1	1
1	0	a	b	1

Then $(L, \vee, \wedge, \odot, \rightarrow, 0,1)$ is a $B L$-algebra. Now, let $I=\{0\}$. Then I is an ideal of L and since $(1 \rightharpoonup b) \rightharpoonup b=b^{-} \odot b^{-}=a \odot a=0 \in I, b \rightharpoonup b=b \odot b^{-}=$ $b \odot a=0 \in I$ and $1 \rightharpoonup b=1 \odot b^{-}=a \notin I$, then I is not a 1-fold implicative ideal of L.

Theorem 16. Let I be an ideal of L. Then the following conditions are equivalent:
(i) I is an n-fold implicative ideal of L,
(ii) for any $a \in L$, the set $I_{a_{\varnothing}^{n}}:=\left\{x \in L \mid x \rightharpoonup a_{\oslash}^{n} \in I\right\}$ is an ideal of L.

Proof. (i) \Rightarrow (ii) Suppose that I is an n-fold implicative ideal of L and $a \in L$. For any $x, y \in L$, if $x \rightharpoonup y \in I_{a_{\varnothing}^{n}}$ and $y \in I_{a_{\varnothing}^{n}}$, then $(x \rightharpoonup y) \rightharpoonup a_{\varnothing}^{n} \in I$ and $y \rightharpoonup a_{\varnothing}^{n} \in I$, hence $x \rightharpoonup a_{\varnothing}^{n} \in I$, and so $x \in I_{a_{\varnothing}^{n}}$. Moreover, since $0 \rightharpoonup a_{\varnothing}^{n}=$ $0 \odot\left(a_{\varnothing}^{n}\right)^{-}=0 \in I$, we obtain $0 \in I_{a_{\varnothing}^{n}}$. Therefore, $I_{a_{\varnothing}^{n}}$ is an ideal of L.
(ii) \Rightarrow (i) Suppose that $I_{a_{\ominus}^{n}}$ is an ideal of L, for any $a \in L$. For any $x, y, z \in L$, if $(x \rightharpoonup y) \rightharpoonup z_{\varnothing}^{n} \in I$ and $y \rightharpoonup, z_{\varnothing}^{n} \in I$, then $x \rightharpoonup y \in I_{z_{\varnothing}^{n}}$ and $y \in I_{z_{\varnothing}^{n}}$. Now, sinc e $I_{z_{0}^{n}}$ is an ideal of L, we have $x \in I_{z_{\varnothing}^{n}}$, and so $x \rightharpoonup z_{\varnothing}^{n} \in I$. Therefore, I is an n-fold implicative ideal of L.

Theorem 17. Let I be an n-fold implicative ideal of L. Then for any $a \in L, I_{a_{\varnothing}^{n}}$ is the least ideal of L containing I and a.

Proof. Let I be an n-fold implicative ideal of L and $a \in L$. Then by Theorem $16, I_{a_{\varnothing}^{n}}$ is an ideal of L and by ($B L 7$), for any $x \in I, x \rightharpoonup a_{\ominus}^{n}=x \odot\left(a_{\varnothing}^{n}\right)^{-} \leq x$, we get $x \rightharpoonup a_{\varnothing}^{n} \in I$, and so $x \in I_{a_{\varnothing}^{n}}$. Hence $I \subseteq I_{a_{\varnothing}^{n}}$. Moreover, by (BL7), (BL12), (BL14) and (BL15),

$$
\begin{aligned}
a \rightharpoonup a_{\oslash}^{n} & =a \rightharpoonup\left(a_{\oslash}^{n-1} \oslash a\right)=a \odot\left(a_{\oslash}^{n-1} \oslash a\right)^{-} \\
& =a \odot\left(\left(a_{\odot}^{n-1}\right)^{-} \rightarrow a\right)^{-} \leq a \odot a^{-}=0 .
\end{aligned}
$$

Hence, $a \rightharpoonup a_{\varnothing}^{n}=0 \in I$, and so $a \in I_{a_{\varnothing}^{n}}$. Now, if J is an ideal of L containing I and a, then for any $x \in I_{a_{\varnothing}^{n}}$, we get that $x \rightharpoonup a_{\oslash}^{n} \in I \subseteq J$. Since J is an ideal of L and $a \in J$, we have $a_{\varnothing}^{n}=\overbrace{a \oslash \cdots \oslash a}^{n-\text { times }} \in J$ and so $x \in J$. Therefore, $I_{a_{\varnothing}^{n}} \subseteq J$ and so $I_{a_{\odot}^{n}}$ is the least ideal of L containing I and a.
Theorem 18. Let I be a nonempty subset of L. Then the following conditions are equivalent:
(i) I is an n-fold implicative ideal of L,
(ii) I is an ideal of L and for any $x, y \in L, x \rightharpoonup y_{\varnothing}^{n+1} \in I$ implies $x \rightharpoonup y_{\varnothing}^{n} \in I$,
(iii) I is an ideal of L and for any $x, y, z \in L,(x \rightharpoonup y) \rightharpoonup z_{\varnothing}^{n} \in I$ implies $\left(x \rightharpoonup z_{\varnothing}^{n}\right) \rightharpoonup\left(y \rightharpoonup z_{\varnothing}^{n}\right) \in I$,
(iv) $0 \in I$, and if $\left(x \rightharpoonup y_{\oslash}^{n+n}\right) \rightharpoonup z \in I$ and $z \in I$, then $x \rightharpoonup y_{\ominus}^{n} \in I$, for any $x, y, z \in L$.
(v) $0 \in I$, and if $\left(x \rightharpoonup y_{\oslash}^{n+1}\right) \rightharpoonup z \in I$ and $z \in I$, then $x \rightharpoonup y_{\oslash}^{n} \in I$, for any $x, y, z \in L$.
Proof. (i) \Rightarrow (ii) Let I be an n-fold implicative ideal of L. Then by Proposition $14, I$ is an ideal of L. Now, if $x \rightharpoonup y_{\ominus}^{n+1} \in I$, for $x, y \in L$, then by Lemma

2(ii), $(x \rightharpoonup y) \rightharpoonup y_{\varnothing}^{n}=x \rightharpoonup y_{\varnothing}^{n+1} \in I$ and since by Lemma 2(ii) and (iii), $y \rightharpoonup y_{\oslash}^{n}=y \rightharpoonup y \oslash y_{\oslash}^{n-1}=(y \rightharpoonup y) \rightharpoonup y_{\oslash}^{n-1}=0 \rightharpoonup y_{\oslash}^{n-1}=0 \in I$, we get $x \rightharpoonup y_{\oslash}^{n} \in I$.
(ii) \Rightarrow (iii) Assume that (ii) holds. Let $x, y, z \in L$ and $(x \rightharpoonup y) \rightharpoonup z_{\oslash}^{n} \in I$. By Lemma 2(i), (ii) and (iv),
$\left(\left(x \rightharpoonup\left(y \rightharpoonup z_{\oslash}^{n}\right)\right) \rightharpoonup z_{\oslash}^{n}\right) \rightharpoonup z_{\oslash}^{n}=\left(\left(x \rightharpoonup z_{\oslash}^{n}\right) \rightharpoonup\left(y \rightharpoonup z_{\oslash}^{n}\right)\right) \rightharpoonup z_{\oslash}^{n} \leq(x \rightharpoonup y) \rightharpoonup z_{\oslash}^{n}$. Then $\left(\left(x \rightharpoonup\left(y \rightharpoonup z_{\oslash}^{n}\right)\right) \rightharpoonup z_{\oslash}^{n}\right) \rightharpoonup z_{\oslash}^{n} \in I$, and so $\left(x \rightharpoonup\left(y \rightharpoonup z_{\oslash}^{n}\right)\right) \rightharpoonup z_{\varnothing}^{(n+n-1)+1} \in$ I and by hypothesis $\left(x \rightharpoonup\left(y \rightharpoonup z_{\emptyset}^{n}\right)\right) \rightharpoonup z_{\oslash}^{(n+n-1)} \in I$. By continuing this process we get that $\left(x \rightharpoonup\left(y \rightharpoonup z_{\varnothing}^{n}\right)\right) \rightharpoonup z_{\varnothing}^{(n+1)} \in I$. Hence, $\left(x \rightharpoonup\left(y \rightharpoonup z_{\oslash}^{n}\right)\right) \rightharpoonup z_{\emptyset}^{n} \in I$. Therefore, $\left(x \rightharpoonup z_{\varnothing}^{n}\right) \rightharpoonup\left(y \rightharpoonup z_{\varnothing}^{n}\right) \in I$.
(iii) \Rightarrow (iv) Assume that (iii) holds. Obviously, $0 \in I$. Let $\left(x \rightharpoonup y_{\oslash}^{n+n}\right) \rightharpoonup z \in$ I and $z \in I$, for $x, y, z \in L$. Since I is an ideal of L, we have $x \rightharpoonup y_{\oslash}^{n+n} \in I$. Now, since by Lemma 2(ii), $\left(x \rightharpoonup y_{\oslash}^{n}\right) \rightharpoonup y_{\oslash}^{n}=x \rightharpoonup y_{\oslash}^{n+n} \in I$, then by (iii), $\left(x \rightharpoonup y_{\oslash}^{n}\right) \rightharpoonup\left(y_{\oslash}^{n} \rightharpoonup y_{\oslash}^{n}\right) \in I$ and since $y_{\oslash}^{n} \rightharpoonup y_{\oslash}^{n}=0$, then $x \rightharpoonup y_{\oslash}^{n} \in I$.
(iv) \Rightarrow (i) Suppose that (iv) is valid. Firstly, we show that I is an ideal of L. For any $x, y \in L$, if $x \rightharpoonup y \in L$ and $y \in I$, then

$$
\begin{aligned}
\left.\left(x \rightharpoonup 0_{\ominus}^{n+n}\right)\right) \rightharpoonup y & =(\cdots(x \rightharpoonup \overbrace{0) \rightharpoonup 0) \cdots \rightharpoonup 0}^{(n+n)-\text { times }}) \cdots) \rightharpoonup y \\
& =(\cdots(x \rightharpoonup \overbrace{0) \rightharpoonup 0) \cdots \rightharpoonup 0}^{(2 n-1)-\text { times }}) \cdots) \rightharpoonup y \\
& \vdots \\
& =x \rightharpoonup y \in I
\end{aligned}
$$

And since $y \in I$, it follows that by (iv), $x=x \rightharpoonup 0_{\oslash}^{n} \in I$. Hence, I is an ideal of L. Now, let $(x \rightharpoonup y) \rightharpoonup z_{\oslash}^{n} \in I$ and $y \rightharpoonup z_{\oslash}^{n} \in I$, for $x, y, z \in L$. Then by Lemma 2(ii) and (iv),

$$
\left(\left(x \rightharpoonup z_{\varnothing}^{n}\right) \rightharpoonup z_{\varnothing}^{n}\right) \rightharpoonup\left(y \rightharpoonup z_{\varnothing}^{n}\right) \leq\left(\left(x \rightharpoonup z_{\emptyset}^{n}\right) \rightharpoonup y=(x \rightharpoonup y) \rightharpoonup z_{\emptyset}^{n}\right.
$$

And since $(x \rightharpoonup y) \rightharpoonup z_{\emptyset}^{n} \in I$, we obtain $\left(\left(x \rightharpoonup z_{\emptyset}^{n}\right) \rightharpoonup z_{\emptyset}^{n}\right) \rightharpoonup\left(y \rightharpoonup z_{\emptyset}^{n}\right) \in I$, hence $\left(x \rightharpoonup z_{\oslash}^{n+n}\right) \rightharpoonup\left(y \rightharpoonup z_{\oslash}^{n}\right) \in I$. Now, since $y \rightharpoonup z_{\oslash}^{n} \in I$, so by (iv), $x \rightharpoonup z_{\oslash}^{n} \in I$. Therefore, I is an n-fold implicative ideal of L.
(iv) $\Rightarrow(\mathrm{v})$ Let $\left(x \rightharpoonup y_{\varnothing}^{n+1}\right) \rightharpoonup z \in I$ and $z \in I$, for $x, y, z \in L$. Then by the similarly proof $((\mathrm{iv}) \Rightarrow(\mathrm{i})), I$ is an ideal of L. Moreover, since $y_{\oslash}^{n+1} \leq y_{\oslash}^{n+n}$, we conclude that by Lemma 2(i), $x \rightharpoonup y_{\ominus}^{n+n} \leq x \rightharpoonup y_{\varnothing}^{n+1}$. Hence, $\left(x \rightharpoonup y_{\ominus}^{n+n}\right) \rightharpoonup z \leq$ $x \rightharpoonup\left(y_{\oslash}^{n+1}\right) \rightharpoonup z$ and since $\left(x \rightharpoonup y_{\oslash}^{n+1}\right) \rightharpoonup z \in I$, we get $\left(x \rightharpoonup y_{\oslash}^{n+n}\right) \rightharpoonup z \in I$. Now, since $z \in I$, we have by (iv), $x \rightharpoonup y_{\oslash}^{n} \in I$.
$(\mathrm{v}) \Rightarrow(\mathrm{ii})$ By the similarly proof $((\mathrm{iv}) \Rightarrow(\mathrm{i})), I$ is an ideal of L. Now, if $x \rightharpoonup y_{\oslash}^{n+1} \in I$, then $\left(x \rightharpoonup y_{\oslash}^{n+1}\right) \rightharpoonup 0 \in I$ and so by $(\mathrm{v}), x \rightharpoonup y_{\oslash}^{n} \in I$.

Theorem 19. Let $I \subseteq J$, where I and J be two ideals of L and I be an n-fold implicative ideal of L. Then J is an n-fold implicative ideal, too.

Proof. Let I be an n-fold implicative ideal of $L, I \subseteq J$ and $(x \rightharpoonup y) \rightharpoonup z_{\varnothing}^{n} \in J$, for $x, y, z \in L$. Denote $u=(x \rightharpoonup y) \rightharpoonup z_{\ominus}^{n}$. Then by Lemma 2(i) and (iii), $\left.((x \rightharpoonup u) \rightharpoonup y) \rightharpoonup z_{\varnothing}^{n}\right)=\left((x \rightharpoonup y) \rightharpoonup z_{\varnothing}^{n}\right) \rightharpoonup u=u \rightharpoonup u=0 \in I$. Since I is an n-fold implicative ideal of L, it follows by by Theorem 18 ,

$$
\left((x \rightharpoonup u) \rightharpoonup z_{\oslash}^{n}\right) \rightharpoonup\left(y \rightharpoonup z_{\oslash}^{n}\right) \in I \subseteq J
$$

Hence, by Lemma 2(ii), $\left(\left(x \rightharpoonup z_{\oslash}^{n}\right) \rightharpoonup\left(y \rightharpoonup z_{\oslash}^{n}\right)\right) \rightharpoonup u \in J$ and since J is an ideal of L and $u \in J$, we have $\left(x \rightharpoonup z_{\oslash}^{n}\right) \rightharpoonup\left(y \rightharpoonup z_{\oslash}^{n}\right) \in J$. Therefore, by Theorem 18, J is an n-fold implicative ideal of L.

Lemma 20. For any $B L$-algebra L and $x, y \in L$,
(i) $\left(x_{\oslash}^{n}\right)^{-}=\left(x^{-}\right)^{n}$.
(ii) $\left(x^{n}\right)^{-}=\left(x^{-}\right)_{\varnothing}^{n}$.
(iii) $(x \oslash y)^{--}=x^{--} \oslash y^{--}$.
(iv) $(x \oslash y)^{-}=x^{-} \rightharpoonup y^{--}$.

Proof. (i) For any $x \in L$, by $(B L 9),(B L 11)$ and $(B L 12)$,

$$
\left(x^{-} \rightarrow x\right)^{--}=x^{---} \rightarrow x^{--}=x^{-} \rightarrow x^{--}=\left(x^{-} \odot x^{-}\right)^{-}
$$

Then $\left(x^{-} \rightarrow x\right)^{-}=\left(x^{-} \rightarrow x\right)^{---}=\left(x^{-} \odot x^{-}\right)^{--}=x^{---} \odot x^{---}=x^{-} \odot x^{-}$. Hence,

$$
(x \oslash x)^{-}=\left(x^{-} \rightarrow x\right)^{-}=x^{-} \odot x^{-}
$$

Now, since the operation \oslash is associative, we get

$$
\begin{aligned}
\left(x_{\oslash}^{n}\right)^{-} & =(\overbrace{x \oslash \cdots \oslash x}^{n-\text { times }})^{-} \\
& =(\overbrace{x \oslash \cdots \oslash x}^{(n-1) \text {-times }} \oslash x)^{-} \\
& =(\overbrace{x \oslash \cdots \oslash x}^{(n-1)-\text { times }})^{-} \odot x^{-} \\
& \vdots \\
& =(x \oslash x)^{-} \odot \overbrace{x^{-} \odot \cdots \odot x^{-}}^{(n-2)-\text { times }}) \\
& =\overbrace{x^{-} \odot \cdots \odot x^{-}}^{n-\text { times }} \\
& =\left(x^{-}\right)^{n} .
\end{aligned}
$$

(ii) For any $x \in L$, by $(B L 9),(B L 11)$ and ($B L 12$),

$$
\begin{aligned}
(x \odot x)^{-} & =\left((x \odot x)^{-}\right)^{--} \\
& =\left(x \rightarrow x^{-}\right)^{--} \\
& =x^{--} \rightarrow x^{---} \\
& =x^{--} \rightarrow x^{-} \\
& =x^{-} \oslash x^{-}
\end{aligned}
$$

Now,

$$
\begin{aligned}
\left(x^{n}\right)^{-} & =(\overbrace{x \odot \cdots \odot x}^{n-\text { times }})^{-} \\
& =(\overbrace{(x \odot \cdots \odot x)}^{(n-1)-\text { times }}) \odot x)^{-} \\
& =(\overbrace{x \odot \cdots \odot x}^{(n-1)-\text { times }})^{-} \oslash x^{-} \\
& \vdots \\
& =(x \odot x)^{-} \oslash(\overbrace{x^{-} \oslash \cdots \oslash x^{-}}^{(n-2)-\text { times }}) \\
& =\overbrace{x^{-} \oslash \cdots \oslash x^{-}}^{n-\text { times }} \\
& =\left(x^{-}\right)_{\oslash \cdot}^{n}
\end{aligned}
$$

(iii) Let $x, y \in L$. Then by the definition \oslash and $(B L 9),(x \oslash y)^{--}=\left(x^{-} \rightarrow y\right)^{--}$ $=x^{---} \rightarrow y^{--}=x^{--} \oslash y^{--}$.
(iv) Let $x, y \in L$. Then by the definition $\oslash,(x \oslash y)^{-}=\left(x^{-} \rightarrow y\right)^{-}$. Now, by (BL9), (BL11) and (BL12),

$$
\begin{aligned}
\left(\left(x^{-} \rightarrow y\right)^{-}\right)^{-} & =\left(x^{-} \rightarrow y\right)^{--} \\
& =x^{---} \rightarrow y^{--} \\
& =x^{-} \rightarrow y^{--} \\
& =\left(x^{-} \odot y^{-}\right)^{-} .
\end{aligned}
$$

And by (BL10) and (BL12),

$$
\begin{aligned}
\left(x^{-} \longrightarrow y\right)^{-} & =\left(\left(x^{-} \longrightarrow y\right)^{-}\right)^{--} \\
& =\left(\left(x^{-} \odot y^{-}\right)^{-}\right)^{-} \\
& =x^{-} \odot y^{-} \\
& =x^{-} \odot y^{---} \\
& =x^{-} \rightharpoonup y^{--} .
\end{aligned}
$$

Therefore, $(x \oslash y)^{-}=x^{-} \rightharpoonup y^{--}$.

Theorem 21. Let I be an ideal of L. Then I is an n-fold implicative ideal of L if and only if it satisfies the condition
(n-PI): $\left(y \rightharpoonup\left(x^{n}\right)^{-}\right) \rightharpoonup z \in I$ and $x^{n} \rightharpoonup y \in I$ imply $x^{n} \rightharpoonup z \in I$, for any $x, y, z \in L$.

Proof. Let I be an n-fold implicative ideal of L. For any $x, y, z \in L$, let $(y \rightharpoonup$ $\left.\left(x^{n}\right)^{-}\right) \rightharpoonup z \in I$ and $x^{n} \rightharpoonup y \in I$. Then by Lemma 4(i) and (iii), $\left(z^{-} \rightharpoonup y^{-}\right) \rightharpoonup$ $\left(x^{n}\right)^{-} \in I$ and $y^{-} \rightharpoonup\left(x^{n}\right)^{-} \in I$. Now, by Lemma 20(ii), $\left(z^{-} \rightharpoonup y^{-}\right) \rightharpoonup\left(x^{-}\right)_{\varnothing}^{n} \in I$ and $y^{-} \rightharpoonup\left(x^{-}\right)_{\varnothing}^{n} \in I$ and since I is an n-fold implicative ideal of L, we have $z^{-} \rightharpoonup\left(x^{-}\right)_{\varnothing}^{n} \in I$. Now, by Lemma 4(i), $\left(\left(x^{-}\right)_{\varnothing}^{n}\right)^{-} \rightharpoonup z^{--} \in I$ and so by Lemma 20(i), $\left(x^{--}\right)^{n} \rightharpoonup z^{--} \in I$. Moreover, since by (BL12) and (BL15), $x^{n} \leq\left(x^{--}\right)^{n}$, it follows that by Lemma 2(i), $x^{n} \rightharpoonup z^{--} \leq\left(x^{--}\right)^{n} \rightharpoonup z^{--}$and so $x^{n} \rightharpoonup z^{--} \in I$. Hence, $x^{n} \odot\left(z^{--}\right)^{-} \in I$ and so $x^{n} \odot z^{-} \in I$. Therefore, $x^{n} \rightharpoonup z \in I$.

Conversely, let I satisfy the condition (n-PI) and $(x \rightharpoonup y) \rightharpoonup z_{\varnothing}^{n} \in I$, $y \rightharpoonup z_{\varnothing}^{n} \in I$, for $x, y, z \in L$. Then by Lemma 2(ii), $x \rightharpoonup y \oslash z_{\varnothing}^{n} \in I$ and so by Lemma 4(i), $\left(y \oslash z_{\varnothing}^{n}\right)^{-} \rightharpoonup x^{-} \in I$ and $\left(z_{\varnothing}^{n}\right)^{-} \rightharpoonup y^{-} \in I$. Now, by Lemma 20(iv), $\left(y^{-} \rightharpoonup\left(\left(z_{\varnothing}^{n}\right)^{-}\right)^{-}\right) \rightharpoonup x^{-} \in I$ and so Lemma 20(i), $\left(y^{-} \rightharpoonup\left(\left(z^{-}\right)^{n}\right)^{-}\right) \rightharpoonup x^{-} \in I$ and since $\left(z^{-}\right)^{n} \rightharpoonup y^{-} \in I$, we get by condition ($\mathbf{n - P I}$), $\left(z^{-}\right)^{n} \rightharpoonup x^{-} \in I$. Hence, by Lemma $20(\mathrm{ii}),\left(z_{\varnothing}^{n}\right)^{-} \rightharpoonup x^{-}$, and so by Lemma $4(\mathrm{i}), x \rightharpoonup z_{\varnothing}^{n} \in I$. Therefore, I is an n-fold implicative ideal of L.

Theorem 22. Let I be an n-fold implicative ideal of L. Then I is an $(n+1)$-fold implicative ideal of L.

Proof. Let I be an n-fold implicative ideal of L and $x \rightharpoonup y_{\varnothing}^{n+2}$, for $x, y \in L$. Then by Lemma 2(ii),

$$
(x \rightharpoonup y) \rightharpoonup y_{\varnothing}^{n+1}=x \rightharpoonup y \oslash y_{\varnothing}^{n+1}=x \rightharpoonup y_{\varnothing}^{n+2} \in I .
$$

Now, by Theorem 18, $(x \rightharpoonup y) \rightharpoonup y_{\varnothing}^{n} \in I$ and so $x \rightharpoonup y_{\ominus}^{n+1}=(x \rightharpoonup y) \rightharpoonup y_{\varnothing}^{n} \in I$. Hence, by Theorem 18, I is an $(n+1)$-fold implicative ideal of L.

Theorem 23. Let I be an ideal of L. Then I is an n-fold implicative ideal of L if and only if $x_{\ominus}^{2 n} \rightharpoonup x_{\oslash}^{n} \in I$, for any $x \in L$.

Proof. Let I be an n-fold implicative ideal of L and $x \in L$. Since by Lemma 2(ii), $\left(x_{\ominus}^{2 n} \rightharpoonup x_{\ominus}^{n}\right) \rightharpoonup x_{\ominus}^{n}=x_{\ominus}^{2 n} \rightharpoonup x_{\ominus}^{n} \oslash x_{\ominus}^{n}=x_{\ominus}^{2 n} \rightharpoonup x_{\ominus}^{2 n}=0 \in I$, and $x_{\ominus}^{n} \rightharpoonup x_{\ominus}^{n}=0 \in I$, we get $x_{\varnothing}^{2 n} \rightharpoonup x_{\varnothing}^{n} \in I$.

Conversely, suppose that for any $x \in L, x_{\varnothing}^{2 n} \rightharpoonup x_{\varnothing}^{n} \in I$, and $(x \rightharpoonup y) \rightharpoonup z_{\varnothing}^{n} \in$ $I, y \rightharpoonup z_{\varnothing}^{n} \in I$, for $x, y, z \in L$. Then by Lemma 2(ii) and (iv), $\left(\left(x \rightharpoonup z_{\varnothing}^{n}\right) \rightharpoonup\right.$ $\left.z_{\varnothing}^{n}\right) \rightharpoonup\left(y \rightharpoonup z_{\varnothing}^{n}\right) \leq\left(x \rightharpoonup z_{\varnothing}^{n}\right) \rightharpoonup y=(x \rightharpoonup y) \rightharpoonup z_{\varnothing}^{n}$. Since $(x \rightharpoonup y) \rightharpoonup z_{\varnothing}^{n} \in I$ and I is an ideal of L, we have

$$
\left(\left(x \rightharpoonup z_{\varnothing}^{n}\right) \rightharpoonup z_{\varnothing}^{n}\right) \rightharpoonup\left(y \rightharpoonup z_{\varnothing}^{n}\right) \in I .
$$

And since $y \rightharpoonup z_{\oslash}^{n} \in I$, by Lemma 3,

$$
\left(x \rightharpoonup z_{\varnothing}^{n}\right) \rightharpoonup z_{\varnothing}^{n} \in I .
$$

Moreover, by Lemma 2(v),

$$
x \rightharpoonup z_{\oslash}^{n} \leq\left(z_{\varnothing}^{n} \oslash z_{\varnothing}^{n} \rightharpoonup z_{\varnothing}^{n}\right) \oslash\left(x \rightharpoonup z_{\oslash}^{n} \oslash z_{\varnothing}^{n}\right) .
$$

And since $x \rightharpoonup z_{\varnothing}^{n} \oslash z_{\varnothing}^{n}=\left(x \rightharpoonup z_{\varnothing}^{n}\right) \rightharpoonup z_{\varnothing}^{n} \in I$ and by hypothesis $z_{\varnothing}^{n} \oslash z_{\varnothing}^{n} \rightharpoonup z_{\varnothing}^{n}=$ $z_{\varnothing}^{2 n} \rightharpoonup z_{\varnothing}^{n} \in I$, we have $\left(z_{\varnothing}^{n} \oslash z_{\varnothing}^{n} \rightharpoonup z_{\varnothing}^{n}\right) \oslash\left(x \rightharpoonup z_{\varnothing}^{n} \oslash z_{\varnothing}^{n}\right) \in I$. Hence $x \rightharpoonup z_{\varnothing}^{n} \in I$. Therefore, I is an n-fold implicative ideal of L.

Theorem 24. Let I be an ideal of L. Then I is an n-fold implicative ideal of L if and only if I is an n-fold Boolean ideal of L.

Proof. Let I be an n-fold implicative ideal of L. Then by Theorem 22, $x_{\ominus}^{2 n} \rightharpoonup$ $x_{\oslash}^{n} \in I$, for any $x \in L$. By Lemma 2(ii),

$$
\begin{aligned}
x_{\varnothing}^{2 n} \rightharpoonup x_{\varnothing}^{n} & =x_{\varnothing}^{n} \oslash x_{\varnothing}^{n} \rightharpoonup x_{\varnothing}^{n} \\
& =\left(\left(x_{\varnothing}^{n}\right)^{-} \rightarrow x_{\varnothing}^{n}\right) \rightharpoonup x_{\varnothing}^{n} \\
& =\left(\left(x_{\varnothing}^{n}\right)^{-} \rightarrow x_{\varnothing}^{n}\right) \odot\left(x_{\varnothing}^{n}\right)^{-} \\
& =\left(x_{\varnothing}^{n}\right)^{-} \odot\left(\left(x_{\varnothing}^{n}\right)^{-} \rightarrow x_{\varnothing}^{n}\right) \\
& =\left(x_{\varnothing}^{n}\right)^{-} \wedge x_{\varnothing}^{n} \\
& =x_{\varnothing}^{n} \wedge\left(x_{\varnothing}^{n}\right)^{-} .
\end{aligned}
$$

Hence, for any $x \in L, x_{\varnothing}^{n} \wedge\left(x_{\varnothing}^{n}\right)^{-} \in I$ and since $\left(x^{-}\right)_{\varnothing}^{2 n} \rightharpoonup\left(x^{-}\right)_{\varnothing}^{n} \in I$, by similar way $\left(x^{-}\right)_{\ominus}^{n} \wedge\left(\left(x^{-}\right)_{\ominus}^{n}\right)^{-} \in I$. Now, since by Lemma 20(i), $\left(\left(x^{-}\right)_{\ominus}^{n}\right)^{-}=\left(x^{--}\right)^{n}$, then $\left(x^{-}\right)_{\oslash}^{n} \wedge\left(x^{--}\right)^{n} \in I$ and since by $(B L 12),\left(x^{-}\right)_{\oslash}^{n} \wedge x^{n} \leq\left(x^{-}\right)_{\varnothing}^{n} \wedge\left(x^{--}\right)^{n}$, we get $\left(x^{-}\right)_{\varnothing}^{n} \wedge x^{n} \in I$. Moreover, by Lemma 4(iv), $\left(\left(x^{-}\right)_{\varnothing}^{n} \wedge x^{n}\right)^{--} \in I$. Hence, applying (BL16), we have $\left(\left(x^{-}\right)_{\oslash}^{n}\right)^{--} \wedge\left(x^{n}\right)^{--} \in I$. Now, by Lemma 20(i), $\left(\left(x^{-}\right)_{\varnothing}^{n}\right)^{--}=\left(\left(\left(x^{-}\right)_{\varnothing}^{n}\right)^{-}\right)^{-}=\left(\left(x^{--}\right)^{n}\right)^{-}=\left(\left(x^{n}\right)^{--}\right)^{-}=\left(x^{n}\right)^{-}$. Hence,

$$
\left(x^{n}\right)^{-} \wedge\left(x^{n}\right)^{--}=\left(\left(x^{-}\right)_{\varnothing}^{n}\right)^{--} \wedge\left(x^{n}\right)^{--} \in I .
$$

By ($B L 12$), $x^{n} \leq\left(x^{n}\right)^{--}$and so $\left(x^{n}\right)^{-} \wedge x^{n} \leq\left(x^{n}\right)^{-} \wedge\left(x^{n}\right)^{--}$and since I is an ideal of L, we have $\left(x^{n}\right)^{-} \wedge x^{n} \in I$, for any $x \in L$. Therefore, I is an n-fold Boolean ideal of L.

Conversely, Let I be an n-fold Boolean ideal of L. Then for any $x \in L$, $\left(\left(x^{-}\right)^{n}\right)^{-} \wedge\left(x^{-}\right)^{n} \in I$. By Lemma 20(i),

$$
\left(\left(x_{\varnothing}^{n}\right)^{-}\right)^{-} \wedge\left(x_{\varnothing}^{n}\right)^{-}=\left(\left(x^{-}\right)^{n}\right)^{-} \wedge\left(x^{-}\right)^{n} \in I .
$$

Since I is an ideal of L and by (BL12),

$$
x_{\varnothing}^{n} \wedge\left(x_{\varnothing}^{n}\right)^{-} \leq\left(x_{\varnothing}^{n}\right)^{--} \wedge\left(x_{\varnothing}^{n}\right)^{-}=\left(\left(x_{\varnothing}^{n}\right)^{-}\right)^{-} \wedge\left(x_{\varnothing}^{n}\right)^{-},
$$

we obtain $x_{\odot}^{n} \wedge\left(x_{\varnothing}^{n}\right)^{-} \in I$, and so $x_{\ominus}^{2 n} \rightharpoonup x_{\ominus}^{n} \in I$. Therefore, by Theorem 23, I is an n-fold implicative ideal of L.

Theorem 25. In a $B L$-algebra L, the following conditions are equivalent:
(i) any ideal I of L is an n-fold implicative,
(ii) $\{0\}$ is an n-fold implicative ideal of L,
(iii) for any $a \in L$, the set $L(a)=\left\{x \in L \mid x \rightharpoonup a_{\ominus}^{n}=0\right\}$ is an ideal of L.

Proof. (i) \Leftrightarrow (ii) It follows from Theorem 19.
(ii) \Leftrightarrow (iii) For any $a, x, y \in L$, if $x \rightharpoonup y \in L(a)$ and $y \in L(a)$, then $(x \rightharpoonup y) \rightharpoonup$ $a_{\varnothing}^{n}=0 \in\{0\}, y \rightharpoonup a_{\oslash}^{n}=0 \in\{0\}$ and since $\{0\}$ is an n-fold implicative ideal of L, we have $x \rightharpoonup a_{\oslash}^{n} \in\{0\}$. Hence, $x \rightharpoonup a_{\oslash}^{n}=0$ and so $x \in L(a)$. Therefore, $L(a)$ is an ideal of L.
(iii) \Leftrightarrow (ii) Let $(x \rightharpoonup y) \rightharpoonup z_{\varnothing}^{n} \in\{0\}$ and $y \rightharpoonup z_{\varnothing}^{n} \in\{0\}$, for $x, y, z \in L$. Then $(x \rightharpoonup y) \in L\left(z_{\varnothing}^{n}\right)$ and $y \in L\left(z_{\varnothing}^{n}\right)$ and since $L\left(z_{\varnothing}^{n}\right)$ is an ideal of L, we get $x \in L\left(z_{\varnothing}^{n}\right)$, and so $x \rightharpoonup z_{\varnothing}^{n}=0$. Hence, $\{0\}$ is an n-fold implicative ideal of L.

Proposition 26. Let L be Boolean algebra or Gödel algebra. Then any ideal of L is an n-fold implicative ideal of L for any natural number n.

Proof. It follows from Theorems 12 and 22.
Theorem 27. Let I be a proper ideal of a L. Then the following conditions are equivalent:
(i) I is a maximal and n-fold implicative ideal of L,
(ii) $x, y \notin I$ imply $x \rightharpoonup y_{\oslash}^{n} \in I$ and $y \rightharpoonup x_{\oslash}^{n} \in I$, for all $x, y \in L$,
(iii) if $x \notin I$, then there exists natural number m such that $\left(\left(x_{\oslash}^{n}\right)^{-}\right)_{\oslash}^{m} \in I$,
(iv) $\left(x^{-}\right)_{\ominus}^{n} \in I$ or $\left(\left(x^{-}\right)_{\varnothing}^{n}\right)^{-} \in I$, for all $x \in L$,
(v) I is a prime and n-fold implicative ideal of L,
(vi) I is a prime and n-fold Boolean ideal of L.

Proof. (i) \Leftrightarrow (ii) Let I be a maximal and n-fold implicative ideal of L and $x, y \notin$ I. Then by Theorem $17, I_{y_{\varnothing}^{n}}=\left\{z \in L \mid z \rightharpoonup y_{\oslash}^{n} \in I\right\}$ is the least ideal of L containing I and y and since I is maximal ideal of L and $y \notin I$, we have $I_{y_{\varnothing}^{n}}=L$, and so $x \in I_{y_{\varnothing}^{n}}$. Therefore, $x \rightharpoonup y_{\varnothing}^{n} \in I$. By similar way $y \rightharpoonup x_{\varnothing}^{n} \in I$.
(ii) \Leftrightarrow (iii) Suppose that $x \notin I$. Since I is a proper ideal, we have $1 \notin I$ and so by hypothesis $1 \rightharpoonup x_{\oslash}^{n}=\left(x_{\oslash}^{n}\right)^{-} \in I$. Hence, for some natural number m, $\left(\left(x_{\varnothing}^{n}\right)^{-}\right)_{\varnothing}^{m} \in I$.
(iii) \Leftrightarrow (iv) For any $x \in L$, if $x^{-} \in I$, then $\left(x^{-}\right)_{\ominus}^{n} \in I$. Assume that $x^{-} \notin I$, then there exists natural number m such that $\left(\left(\left(x^{-}\right)_{\varnothing}^{n}\right)^{-}\right)_{\varnothing}^{m} \in I$ and since by Lemma 2(vi), $\left(\left(x^{-}\right)_{\oslash}^{n}\right)^{-} \leq\left(\left(\left(x^{-}\right)_{\oslash}^{n}\right)^{-}\right)_{\oslash}^{m}$ and I is an ideal of L, we get that $\left(\left(x^{-}\right)_{\oslash}^{n}\right)^{-} \in I$. Thus, (iv) is valid.
(iv) \Leftrightarrow (v) Let $\left(x^{-}\right)_{\varnothing}^{n} \in I$ or $\left(\left(x^{-}\right)_{\varnothing}^{n}\right)^{-} \in I$, for all $x \in L$. Then by Lemma 20(ii), $\left(x^{n}\right)^{-} \in I$ or $\left(x^{n}\right)^{--} \in I$, for all $x \in L$, and since I is an ideal of L, we obtain $\left(x^{n}\right)^{-} \in I$ or x^{n} implicationalgebran I, for all $x \in L$. Now, by Theorem 7 , I is a prime and n-fold Boolean ideal of L and so by Theorem 24, I is a prime and n-fold implicative ideal of L.
$(\mathrm{v}) \Leftrightarrow(\mathrm{vi})$ It follows from Theorem 24.
(vi) \Leftrightarrow (i) Let I be a prime and n-fold Boolean ideal of L. Then by Theorem $7, I$ is a maximal and n-fold Boolean ideal of L. Hence, by Theorem 24, I is a maximal and n-fold implicative ideal of L.

4. N-FOLD OBSTINATE IDEALS IN BL-ALGEBRAS

In this section we introduce a new class of ideals in $B L$-algebras that called n-fold obstinate ideals and we give some results.

Definition. Let I be an ideal of $L . I$ is called an n-fold obstinate ideal if it satisfies:

$$
x, y \notin I \text { imply } x \rightharpoonup y_{\oslash}^{n} \in I \text { and } y \rightharpoonup x_{\oslash}^{n} \in I, \text { for all } x, y \in L
$$

Example 28. [6] Let $L=\{0, a, b, 1\}$, where $0<a<b<1$. Let $x \wedge y=\min \{x, y\}$, $x \vee y=\max \{x, y\}$ and operations \odot and \rightarrow are defined as the following tables:

Table 3

\odot	0	a	b	1
0	0	0	0	0
a	0	0	a	a
b	0	a	b	b
1	0	a	b	1

Table 4

\rightarrow	0	a	b	1
0	1	1	1	1
a	a	1	1	1
b	0	a	1	1
1	0	a	b	1

Then $(L, \vee, \wedge, \odot, \rightarrow, 0,1)$ is a $B L$-algebra. Now, let $I=\{0\}$. Then I is a 2-fold obstinate ideal of L, but it is not a 1-fold obstinate ideal. Indeed, $a, b \notin\{0\}$ and $b \rightharpoonup a=b \odot a^{-}=b \odot a=a \notin\{0\}$.

Theorem 29. Let I be an ideal of L. Then I is an n-fold obstinate ideal of L if and only if I is an n-fold integral ideal of L.

Proof. It follows from Theorems 7 and 27.

Theorem 30. Let I be a proper ideal and F be a proper filter of L. Then
(i) I is an n-fold obstinate ideal if and only if $N(I)$ is an n-fold obstinate filter of L.
(ii) F is an n-fold integral filter if and only if $N(F)$ is an n-fold obstinate ideal of L.

Proof. It follows from Theorems 8, 9 and 29.
The following theorem describes the relationship between n-fold obstinate ideals and n-fold integral $B L$-algebras.

Theorem 31. In any BL-algebra L, the following conditions are equivalent:
(i) $\{0\}$ is an n-fold obstinate ideal of L,
(ii) any ideal of L is an n-fold obstinate ideal,
(iii) L is an n-fold integral BL-algebra.

Proof. It follows from Theorems 10 and 29.
Theorem 32. Let I be an ideal of L. Then I is an n-fold obstinate ideal of L if and only if $\frac{L}{I}$ is an n-fold obstinate $B L$-algebra.

Proof. It follows from Theorems 11 and 29.
Example 33. Let L be $B L$-algebra given in Example 28 and $I=\{0\}$, which is a 2-fold obstinate ideal of L. We have $\frac{L}{I}=\{[0],[a],[1]\}$, where $[0]=\{0\},[a]=\{a\}$ and $[1]=\{b, 1\}$. Note that $\frac{L}{I}$ is an $M V$-algebra and $[a]^{2}=\left[a^{2}\right]=[0]$. Hence, $\frac{L}{I}$ is a 2 -fold obstinate $B L$-algebra.

5. CONCLUSION

The results of this paper are devoted to study two new classes of ideals that is called n-fold implicative ideals and n-fold obstinate ideals. We presented a characterization and several important properties of n-fold implicative ideals and n-fol d obstinate ideals. In particular, we proved that an ideal is n-fold implicative ideal if and only if is an n-fold Boolean ideal. Also, we proved that a $B L$-algebra is an n-fold integral $B L$-algebra if and only if trivial ideal $\{0\}$ is an n-fold obstinate ideal. Moreover, we studied the relation between n-fold obstinate ideals and n fold (integral) obstinate filters in $B L$-algebras by using the set of complement elements.

References

[1] C.C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc. 88 (1958) 467-490.
doi:10.1090/S0002-9947-1958-0094302-9
[2] A. Di Nola, G. Georgescu and A. Iorgulescu, Pseduo BL-algebras Part I, Mult. Val. Logic, 8 (2002) 673-714.
[3] A. Di Nola and L. Leustean, Compact representations of BL-algebras, Department of Computer Science, University Aarhus. BRICS Report Series, (2002).
[4] M. Haveshki and E. Eslami, n-Fold filters in BL-algebras, Math. Log. Quart. 54 (2008) 178-186.
[5] S. Motamed and A.B. Saeid, n-Fold obstinate filters in BL-algebras, Neural. Comput. Applic. 20 (2011) 461-472.
[6] C. Lele and J.B. Nganou, MV-algebras derived from ideals in BL-algebras, Fuzzy Sets and Systems 218 (2013) 103-113.
[7] P. Hájek, Metamathematics of Fuzzy Logic, Trends in Logic 4 (Kluwer Academic Publishers, 1998), ISBN:9781402003707.
[8] A. Paad, Integral ideals and maximal ideals in BL-algebras, An.Univ. Craiova Ser. Mat. Inform. 43 (2016) 231-242.
[9] A. Paad, n-Fold integral ideals and n-fold Boolean ideals in BL-algebras, Afr. Mat. 28 (2017) 971-984.
[10] A. Paad and R.A. Borzooei, Generalization of integral filters in BL-algebras and n-fold integral BL-algebras, Afr. Mat. 26 (2015) 1299-1311.
[11] Y. Yang and X. Xin, On characterization of BL-algebras via implicative ideals, Italian J. Pure and Appl. Math. 37 (2017) 493-506.
[12] E. Turunen, Boolean deductive systems of BL-algebras, Arch. Math. Logic. 40 (2001) 467-473.

