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Abstract

We prove that a p.q.-Baer ∗-ring forms a pseudo lattice with Conrad’s
partial order and also characterize p.q.-Baer ∗-rings which are lattices. The
initial segments of a p.q.-Baer ∗-ring with the Conrad’s partial order are
shown to be an orthomodular posets.
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1. Introduction

A ∗-ring R is a ring equipped with an involution x → x∗, that is an additive anti-
automorphism of a period at most two. An element e of a ∗-ring R is a projection
if e = e2 (idempotent) and e = e∗ (self-adjoint). For a nonempty subset B of
R, we write rR(B) = {x ∈ R | bx = 0, for every b ∈ B}, and call the right
annihilator of B in R. Similarly, we define the left annihilator of B in R (denoted
by lR(B)). A ring is said to be abelian if its every idempotent is central. A ring
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without nonzero nilpotent elements is called a reduced ring. Let P be a poset and
a, b ∈ P , then the join of a and b, denoted by a∨ b is defined as a∨ b = sup{a, b}
and the meet of a and b, denoted by a∧ b is defined as a∧ b = inf{a, b}. A poset
P is said to be a pseudo lattice, if for a, b ∈ P , whenever a, b have a common
upper bound, then a ∧ b and a ∨ b both exist.

Kaplansky [16] introduced Baer rings and Baer ∗-rings to abstract various
properties of AW ∗ algebras, von Neumann algebras and complete ∗-regular rings.
The subject of Baer ∗-rings is essentially pure algebra, with historic roots in
operator algebras and lattice theory.

The set of projections in a Rickart ∗-ring forms an orthomodular lattice under
the partial order ‘e ≤p f if and only if e = fe = ef ’. This lattice is extensively
studied in [3, 16, 24]. In [2, 9, 10, 12, 25] the authors studied partial orders
on complex matrices or B(H) (the algebra of all bounded linear operators on
an infinite-dimensional Hilbert space H). In [11, 15, 22] the authors studied
partial orders on Rickart ∗-rings. In [26], authors introduced multiplicatively
finite elements in a ring. By restricting multiplicatively finite elements, Khairnar
and Waphare [18] introduced generalized projections, a partial order on them
and studied this poset in a Rickart ∗-ring. In [19], authors studied Generalized
Projections in Zn. Hartwig [12] defined the plus partial order on the set of regular
elements in a semigroup. For m×nmatrices over a division ringD (that is Dm×n)
Hartwig [12] use the concept of rank ρ(.) and obtained the following result, which
characterize the plus order for the ring Dm×n.

Theorem 1.1 (Theorem 2, [12]). Let A,B ∈ Dm×n. Then A ≤ B if and only if
ρ(B − A) = ρ(B) − ρ(A). In particular, rank-subtractivity is a partial-ordering
relation on Dm×n.

Also in the same paper [12], Hartwig posed the following open problems for
regular rings.

Problem 1. Can one induce a partial ordering on a ring R, by a subtractive
rank-like function ρ : R → G, where G is a well-ordered abelian group and
ρ(b− a) = ρ(b)− ρ(a)?

Problem 2. Does a ≤ c, b ≤ c, aR ∩ bR = {0} = Ra∩Rb ⇒ a+ b ≤ c? (here ≤
denote the plus partial order on regular elements of a ring R).

Conrad [8] extended the work of Abian [1] by showing that a ring R is par-
tially ordered by the relation a ≤c b if and only if arb = ara for all r ∈ R (this
is called Conrad’s relation) precisely when it is semiprime. Burgess and Raphael
[6] proved that this relation, when defined on a semigroup S, is a partial order
whenever S is weakly separative.

Birkenmeier et al. [5] introduced principally quasi-Baer (p.q.-Baer) ∗-rings.
A ∗-ring R is said to be a p.q.-Baer ∗-ring if, for every principal right ideal aR
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of R, rR(aR) = eR, where e is a projection in R. From the above definition, it
follows that lR(aR) = Rf for a suitable projection f . In [20], authors studied a
sheaf representation of p.q.-Baer ∗-Rings. There is an abelian p.q.-Baer ∗-ring
which is not a Rickart ∗-ring. Also, reduced Rickart ∗-rings are p.q.-Baer ∗-rings.
In [5], Birkenmeier et al. have given examples of p.q.-Baer ∗-rings those are
neither Rickart ∗-rings nor quasi-Baer ∗-rings.

Example 1.2 [5, Exercise 10.2.24.4]. Let A be a domain, An = A for all n =
1, 2, . . . , and B be the ring of (an)

∞
n=1

∈
∏

∞

n=1
An such that an is eventually

constant, which is a subring of
∏

∞

n=1
An. Take R = Mn(B), where n is an integer

such that n > 1. Let ∗ be the transpose involution of R. Then R is a p.q.-Baer
∗-ring which is not quasi-Baer (hence not a quasi-Baer ∗-ring). Also, if A is
commutative which is not Prüfer, then R is not a Rickart ∗-ring.

Example 1.3 [5, Exercise 10.2.24.5]. Let R be a ∗-ring. If R is a right (or left)
p.q.-Baer ring and ∗ is semiproper, then R is a p.q.-Baer ∗-ring. Hence, if R is
biregular and ∗ is semiproper, then R is a p.q.-Baer ∗-ring.

Example 1.4 [20, Example 2.3]. Let T be a commutative regular ring with
unity such that |T | > 1, and S =

∏

λ∈Λ Tλ, where Tλ = T and Λ is an infinite
indexing set. If R is a subring of S generated by

⊕

λ∈Λ Tλ and either 1 ∈ S or
{f : Λ → T | f is a constant function}, then by [4, Example 1.5], R is a p.q.-Baer
ring that is not quasi-Baer. Since R is commutative, R is a ∗-ring with an identity
involution. Therefore R is a p.q.-Baer ∗-ring but not a quasi-Baer ∗-ring.

Example 1.5 [20, Example 2.6]. Let

R =

{[

a b

c d

]

∈ M2(Z) | a ≡ d, b ≡ 0, and c ≡ 0 (mod 2)

}

.

Consider involution ∗ on R as the transpose of the matrix. In [14, Example
2(1)], it is shown that R is neither right p.p. nor left p.p. (hence not a Rickart
∗-ring) but rR(uR) = {0} = 0R for any nonzero element u ∈ R. Therefore R is
a p.q.-Baer ∗-ring.

Recall the following remark from [20].

Remark 1.6 [20, Remark 2.2]. Let R be a p.q.-Baer ∗-ring. Then,

(1) R is semiprime.

(2) R is reflexive (see [21, Proposition 4]).

(3) Involution ∗ is semiproper.

(4) For any central projection e ∈ R, C(e) = e. Moreover, for any x ∈ R and
any central projection e ∈ R, C(ex) = eC(x).
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(5) Let a ∈ R, then C(a∗) = C(a).

(6) For any central projection e ∈ R, eR is a p.q.-Baer ∗-ring.

As p.q.-Baer ∗-rings are semiprime, therefore Conrad’s relation is a partial
order on a p.q.-Baer ∗-ring. Analogous to Problem 1 and Problem 2, we raise the
following problems for a p.q.-Baer ∗-ring.

Problem 3. Can one induce a partial ordering on a ring R, by a subtractive
rank-like function ρ : R → G, where G is a partially-ordered abelian group and
ρ(b− a) = ρ(b)− ρ(a)?

Problem 4. Does a ≤c d, b ≤c d, aR ∩ bR = {0} = Ra ∩Rb ⇒ a+ b ≤c d?
Let R be a ∗-ring and x ∈ R, we say that x possesses a central cover if there

exists a smallest central projection h such that hx = x. If such a projection h

exists, then it is unique and is called the central cover of x, denoted by h = C(x)
(see [3]). In [17] the authors proved the existence of central cover of every element
of a p.q.-Baer ∗-ring. In the second section of this paper, we characterize Conrad’s
partial order on p.q.-Baer ∗-rings in terms of central covers. This essentially gives
a solution of Problem 3. In the third section, we answer Problem 4 positively.

Janowitz [15] proved that the initial segments of an arbitrary Rickart ∗-ring
with the ∗-order are orthomodular posets. The same result is proved by Krēmere
[22] for the left-star order. In the last section, we prove that the initial segments
of a p.q.-Baer ∗-ring with Conrad’s partial order are orthomodular posets.

2. Conrad’s relation on p.q.-Baer ∗-rings

Hence fourth, ≤ denotes Conrad’s partial order relation. In the following remark
we list some basic observations.

Remark 2.1. Let R be a ∗-ring and P (Z(R)) denotes the set of central projec-
tions of R.

(1) For e, f ∈ P (Z(R)), e ≤ f if and only if e = ef .

(2) For any e ∈ P (Z(R)) the central cover of e, C(e) exists and C(e) = e.
Moreover, whenever C(x) exists for some x ∈ R, then for any e ∈ P (Z(R)),
C(ex) exists and C(ex) = eC(x).

(3) Let a ∈ R. If C(a) exists in R, then C(a∗) exists in R and C(a∗) = C(a)
(see [17]).

Lemma 2.2. Let R be a ∗-ring and x ∈ R. Let e ∈ R be a central projection in
R such that (1) xe = x and (2) xRy = 0 implies ey = 0. Then e = C(x).

Proof. To prove that e = C(x), it is sufficient to prove that e is the smallest
central projection with xe = x. Let e′ ∈ R be a central projection such that
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xe′ = x. Then x(1− e′) = 0. Since 1− e′ is central, xR(1− e′) = 0. By condition
(2), we have e(1−e′) = 0 and hence e = ee′. Therefore e ≤ e′. Thus e = C(x).

The existence of a central cover of every element in a p.q.-Baer ∗-ring is
guaranteed by the following theorem.

Theorem 2.3 (Theorem 2.3, [17]). Let R be a p.q.-Baer ∗-ring and x ∈ R. Then
x has a central cover e ∈ R. Further, xRy = 0 if and only if yRx = 0 if and only
if ey = 0. That is rR(xR) = rR(eR) = lR(Rx) = lR(Re) = (1− e)R = R(1− e).

In the following lemma, we characterize Conrad’s relation in terms of central
cover.

Theorem 2.4. Let R be a p.q.-Baer ∗-ring and a, b ∈ R. Then the following
statements are equivalent.

(1) a∗rb = a∗ra for all r ∈ R.

(2) a = C(a)b.

(3) arb = ara for all r ∈ R (that is a ≤ b).

Proof. (1) ⇒ (2): Suppose a∗rb = a∗ra for all r ∈ R. Hence a∗r(b− a) = 0 for
all r ∈ R. This gives a∗R(b− a) = 0. By Theorem 2.3, we get C(a∗)(b− a) = 0.
By Remark 2.1, we have C(a)(b− a) = 0. Thus a = C(a)b.

(2) ⇒ (3): Suppose a = C(a)b. For r ∈ R, we have ara = arC(a)b =
C(a)arb = arb. Therefore arb = ara for all r ∈ R.

(3) ⇒ (1): By the similar arguments as in the proof of (1) ⇒ (2), we get
a = C(a)b. Further, for r ∈ R, a∗ra = a∗rC(a)b = C(a)a∗rb = C(a∗)a∗rb = a∗rb.
Thus a∗rb = a∗ra for all r ∈ R.

The above theorem essentially says that, in a p.q.-Baer ∗-ring R, for a, b ∈ R,
a ≤ b if and only if a = C(a)b. Therefore, we use the relation a = C(a)b as
Conrad’s relation (partial order) on a p.q.-Baer ∗-ring. The following lemma
leads to the result which constructs a subtractive function on a p.q.-Baer ∗-ring.

Lemma 2.5. Let R be a p.q.-Baer ∗-ring and a, b ∈ R be such that a ≤ b. Then,

(1) C(a) ≤ C(b) and a = aC(b) = bC(a)

(2) C(b− a) = C(b)− C(a).

Proof. (1) Since a ≤ b, we have a = C(a)b. By Remark 2.1, C(a) = C(C(a)b) =
C(a)C(b). This yields C(a) ≤ C(b). Also, aC(a) = aC(a)C(b) implies that
a = aC(b). Therefore a = aC(b) = bC(a).

(2) Since C(a) ≤ C(b), C(b)−C(a) is a central projection. Also by part (1),
we have (b−a)(C(b)−C(a)) = bC(b)−bC(a)−aC(b)+aC(a) = b−a−a+a = b−a.
Further, for y ∈ R, (b−a)Ry = 0 if and only if bry = ary for all r ∈ R if and only
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if bC(b)ry = bC(a)ry for all r ∈ R if and only if bR(C(b)−C(a))y = 0 if and only
if C(b)(C(b) − C(a))y = 0 (by Theorem 2.3) if and only if (C(b) − C(a))y = 0.
Thus, by Lemma 2.2, we get C(b− a) = C(b)− C(a), as required.

In the above lemma we have proved that in a p.q.-Bear ∗-ring R, for a, b ∈ R,
if a ≤ b then C(b − a) = C(b) − C(a). The following lemma gives a sufficient
condition so that the converse of this statement is true.

Lemma 2.6. Let R be a p.q.-Baer ∗-ring in which 2 is invertible. Let a, b ∈ R

be such that C(b− a) = C(b)−C(a). Then a ≤ b.

Proof. Let a, b ∈ R be such that C(b−a) = C(b)−C(a). Then (C(b)−C(a))2 =
C(b) − C(a), which yields 2C(b)C(a) = 2C(a). Since 2 is invertible element in
R, we have C(b)C(a) = C(a). Further, C(b− a)C(a) = (C(b) − C(a))C(a) = 0.
By Theorem 2.3, (b − a)RC(a) = 0. Consequently, (b − a)C(a) = 0 and hence
bC(a) = a. Therefore a ≤ b.

The following theorem characterizes Conrad’s partial order in terms of central
covers, which gives a result similar to Theorem 1.1.

Theorem 2.7. Let R be a p.q.-Baer ∗-ring in which 2 is invertible and let a, b ∈
R. Then a ≤ b if and only if C(b− a) = C(b)− C(a).

Proof. The proof follows from Lemmas 2.5 and 2.6.

In the following corollary, we give a solution of Problem 3. Let B(R) denote
the algebra of central projections in a ∗-ring R. Note that B(R) is a partial
ordered abelian group.

Corollary 2.8. Let R be a p.q.-Baer ∗-ring in which 2 is invertible. Then there
exists a function ρ : R → B(R) such that ρ(b − a) = ρ(b) − ρ(a) and ρ induces
the Conrad’s partial order on R.

Proof. Let ρ : R → B(R) defined as ρ(x) = C(x). Then the proof follows from
Theorem 2.7.

A ∗-regular ring is a regular ring with proper involution (i.e., for any element
a, a∗a = 0 implies that a = 0). Note that the ∗-regular rings whose lattice of
principal right ideals is complete are Baer ∗-rings and hence are p.q.-Baer ∗ -rings
(see [3]). In connection to Problem 1 we have the following corollary.

Corollary 2.9. Let R be a ∗-regular and p.q.-Baer ∗-ring in which 2 is invertible.
Then there exists a subtractive rank like function ρ : R → B(R) such that ρ(b −
a) = ρ(b)− ρ(a) and ρ induces Conrad’s partial order on R.

An abelian group admits an order if and only if it is torsion free (see [23]).
Since B(R) is a Boolean algebra, it is well-ordered with respect to Conrad’s
partial order if and only if the cardinality of B(R) is two.
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3. When does a p.q.-Baer ∗-ring become a lattice?

Hartwig [13] showed that a ∗-regular ring R forms a pseudo upper semilattice
under the ∗-orthogonal partial ordering. That is, a, b ∈ R have a common upper
bound if and only if a∨b exists in R. In this section, we prove that a p.q.-Baer ∗-
ring R forms a pseudo lattice under Conrad’s partial order. Also, we characterize
p.q.-Bear ∗-rings those form lattices. As a consequence, we answer Problem 4
positively.

In [8], a concept of orthogonality is introduced as follows.

Definition 3.1. Let R be a semiprime ring and a, b ∈ R. Then a is said be
orthogonal to b if aRb = 0. In a p.q.-Baer ∗-ring this condition is equivalent to
C(a)C(b) = 0 (see [17]). We write a ⊥ b, whenever a is orthogonal to b.

Recall the following definition and theorem from [6].

Definition 3.2. Let R be a semiprime ring. For an ideal I of R, Ann I = {r ∈
R | rI = 0}. If for each ideal I, Ann I contains a nonzero central idempotent
then R is called weakly i-dense. R is orthogonally complete if every orthogonal
set has a supremum.

Theorem 3.3 (Theorem 9, [6]). An orthogonally complete semiprime ring which
is weakly i-dense is complete.

We give an example of a commutative, reduced, weakly i-dense p.q.-Baer
∗-ring which is not orthogonally complete.

Example 3.4. Let R = {x ∈
∏

∞

i=1
Q | for almost all i, xi ∈ Z}. Then R is a

commutative ∗-ring with an identity involution. For a = (a1, a2, . . . ) ∈ R, rR(a)
= bR where b = (b1, b2, . . . ) with bi = 1 if ai = 0; and bi = 0 if ai 6= 0. Note that
b2 = b = b∗. Therefore R is a Rickart ∗-ring. Since an abelian Rickart ∗-ring is
a reduced p.q.-Baer ∗-ring, R becomes a commutative reduced p.q.-Baer ∗-ring.
Since every ideal of R is a principal ideal and R is a p.q.-Baer ∗-ring, therefore by
Theorem 2.3, R is weakly i-dense. Let c1 = (1

2
, 0, 0, . . . ), c2 = (0, 1

2
, 0, 0, . . . ), . . . ,

and S = {cn | n ∈ N}. Then S is an orthogonal subset of R which does not have
the supremum in R. Thus R is not orthogonally complete.

In the following theorem, we prove that a p.q.-Baer ∗-ring forms a pseudo
lattice with respect to Conrad’s partial order.

Theorem 3.5. Let R be a p.q.-Baer ∗-ring and a, b ∈ R have a common upper
bound. Then,

(1) aC(b) = bC(a);

(2) a∗rb = C(a)b∗rb = C(b)a∗ra for all r ∈ R. Hence, a∗b is self adjoint;
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(3) arb∗ = C(a)brb∗ = C(b)ara∗ for all r ∈ R. Hence, ab∗ is self adjoint;

(4) a ∧ b = aC(b) = bC(a); and

(5) a ∨ b = a+ b− a ∧ b.

Proof. Let a, b, c ∈ R and c be a common upper bound of a and b. Then
a = C(a)c and b = C(b)c. By Theorem 2.4, a∗ra = a∗rc, b∗rb = b∗rc for all
r ∈ R. Also, b∗rb = c∗rb for all r ∈ R.

(1) Since a = C(a)c and b = C(b)c, we have aC(b) = C(a)cC(b) = bC(a).

(2) Let r ∈ R. Then a∗rb = a∗rC(b)c = C(b)a∗rc = C(b)a∗ra. Also, a∗rb =
(C(a)c)∗rb = C(a)c∗rb = C(a)b∗rb. Consequently, a∗rb = C(a)b∗rb = C(b)a∗ra
for all r ∈ R. In particular for r = 1, we have a∗b = C(b)a∗a. Therefore
(a∗b)∗ = C(b)a∗a = a∗b. Thus a∗b is self adjoint.

(3) The proof is similar to the proof of part (2).

(4) To prove a ∧ b = aC(b), first we prove that aC(b) is a common lower
bound of a and b. By Remark 2.1, C(aC(b))a = C(a)C(b)a = aC(b). This
implies that aC(b) ≤ a. Similarly, bC(a) ≤ b. By part (1), we get aC(b) ≤ b.
Let d ∈ R be such that d ≤ a and d ≤ b. Then d = C(d)a = C(d)b and hence
dC(b) = C(d)b. Further, C(d)aC(b) = dC(b) = C(d)b = d. Therefore d ≤ aC(b).
Thus a ∧ b = aC(b) = bC(a).

(5) By parts (1) and (4), C(a)(a + b − a ∧ b) = C(a)(a + b − aC(b)) =
aC(a) + bC(a) − aC(a)C(b) = a + bC(a) − aC(b) = a. This yields a ≤ (a +
b − a ∧ b). Similarly, b ≤ (a + b − a ∧ b). Let d ∈ R be such that a ≤ d

and b ≤ d. Then a = C(a)d and b = C(b)d. Let r ∈ R. By part (2), we
have (a + b − a ∧ b)∗r(a + b − a ∧ b) = (a∗ + b∗ − a∗C(b))r(a + b − aC(b)) =
a∗ra+a∗rb−a∗raC(b)+b∗ra+b∗rb−b∗raC(b)−a∗raC(b)−a∗rbC(b)+a∗raC(b) =
a∗ra + a∗rb − a∗rb + b∗ra + b∗rb − C(b)b∗ra − a∗rb − a∗raC(b) + a∗raC(b) =
a∗ra + b∗ra + b∗rb − b∗ra − a∗rb = a∗rdC(a) + b∗rdC(b) − a∗rdC(b) = a∗rd +
b∗rd−a∗rdC(b) = (a∗+ b∗−a∗C(b))rd = (a+ b−aC(b))∗rd = (a+ b−a∧ b)∗rd.
By Theorem 2.4, we get (a+ b− a ∧ b) ≤ d. Therefore a ∨ b = a+ b− a ∧ b.

As an immediate consequence of above theorem we have the following corol-
laries.

Corollary 3.6. Let R be a p.q.-Baer ∗-ring. Then R is a pseudo lattice with
respect to Conrad’s partial order.

Corollary 3.7. Let R be a p.q.-Baer ∗-ring and a, b ∈ R. If a ∨ b exists in R

then a ∨ b = a+ b(1− C(a)) = b+ a(1− C(b)).

By Theorem 3.5(1), in a p.q.-Baer ∗-ring R, if a, b ∈ R have a common upper
bound then aC(b) = bC(a). In the following lemma, we prove that the converse
of this statement is also true.
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Lemma 3.8. Let R be a p.q.-Baer ∗-ring and a, b ∈ R. If aC(b) = bC(a) then
a, b have a common upper bound.

Proof. Let a, b ∈ R be such that aC(b) = bC(a). We prove that a+ b− aC(b) is
a common upper bound of a and b. Clearly C(a)(a + b− aC(b)) = a+ C(a)b −
aC(b) = a. Also, C(b)(a + b − aC(b)) = aC(b) + b − aC(b) = b. Therefore
a ≤ a+ b− aC(b) and b ≤ a+ b− aC(b), as required.

The following theorem, characterizes p.q.-Baer ∗-rings which form lattices
with Conrad’s partial order.

Theorem 3.9. Let R be a p.q.-Baer ∗-ring. Then R is a lattice with respect to
Conrad’s partial order if and only if aC(b) = bC(a) for all a, b ∈ R.

Proof. The proof follows from Theorem 3.5 and Lemma 3.8.

We conclude this section with a positive answer to Problem 4.

Theorem 3.10. Let R be a p.q.-Baer ∗-ring and a, b, c ∈ R. If a ≤ c, b ≤ c,

aR ∩ bR = {0} then a+ b ≤ c.

Proof. Let a, b, c ∈ R, a ≤ c, b ≤ c and aR ∩ bR = {0}. Then, by Theorem 3.5,
aC(b) = bC(a). This implies that aC(b) ∈ aR∩ bR and hence aC(b) = 0. Again,
by using Theorem 3.5, we have a ∨ b = a+ b. Thus a+ b ≤ c.

4. Orthogonality relation on p.q.-Baer ∗-rings

In this section, we prove that the initial segments of an arbitrary p.q.-Baer ∗-ring
with Conrad’s partial order are orthomodular posets.

We recall the following definitions from [7].

A binary relation ⊥ on a poset (P,≤, 0), where 0 is the least element of the
poset, is called an orthogonality relation (for the order ≤) if for all x, y, z ∈ P ,

(1) if x ⊥ y, then y ⊥ x;

(2) if x ≤ y and y ⊥ z, then x ⊥ z; and

(3) 0 ⊥ x.
A poset with orthogonality (P,≤,⊥, 0) is called quasi-orthomodular if for all
x, y ∈ P ,

(4) if x ⊥ y, then x ∨ y exists;

(5) if x ≤ y, then y = x ∨ z for some z ∈ P with x ⊥ z;

(6) if x ⊥ y, x ⊥ z and y ≤ x ∨ z, then y ≤ z.
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A poset (P,≤, 0, 1) (where 0 is the least and 1 is the greatest element) is
called an orthocomplemented poset if there is an operation ⊥ : P → P such that
for all a, b ∈ P ,

(1) a ∧ a⊥ and a ∨ a⊥ exist, and a ∧ a⊥ = 0 and a ∨ a⊥ = 1;

(2) (a⊥)⊥ = a;

(3) if a ≤ b, then b⊥ ≤ a⊥.

The operation ⊥ is called an orthocomplementation. In an orthocomple-
mented poset, we define the relation ⊥ by a ⊥ b if and only if a ≤ b⊥. This is
an orthogonality relation. An orthocomplemented poset (P,≤, ⊥, 0, 1) is called
orthomodular if for all a, b ∈ P ,

(1) if a ⊥ b, then a ∨ b exist;

(2) if a ≤ b, then there exists an element c ∈ P such that c ≤ a⊥ and b = a ∨ c.

Between orthomodularity and quasi-orthomodularity, the following connec-
tion holds.

Theorem 4.1 [7]. In a quasi-orthomodular poset (P,≤,⊥ ), all initial segments
[0, p] = {a ∈ P | a ≤ p} are orthomodular for some orthogonality ⊥p on ([0, p],≤).
Furthermore, if ⊥p is the orthogonality of the initial segment [0, p], then for all
a, b ∈ [0, p], a ⊥p b if and only if a ⊥ b. Moreover, if x ⊥p y and x, y ≤ q, then
x ⊥q y.

By using above theorem, we prove that the initial segments of p.q.-Baer ∗-
rings with Conrad’s partial order are orthomodular posets, for that we prove the
following sequence of theorems and lemmas.

Lemma 4.2. The relation ⊥ is an orthogonality relation on a p.q.-Baer ∗-ring.

Proof. Let R be a p.q.-Baer ∗-ring. By definition of orthogonal elements, it is
clear that for any x, y ∈ R, if x ⊥ y then y ⊥ x. Suppose a ≤ b and b ⊥ c. Then
a = C(a)b and C(b)C(c) = 0. By Lemma 2.5, C(a)C(c) = C(a)C(b)C(c) = 0
and hence a ⊥ c. Further, C(0) = 0, therefore C(0)C(x) = 0 for any x ∈ R.
Consequently, 0 ⊥ x for any x ∈ R. Thus the relation ⊥ is an orthogonality
relation.

Lemma 4.3. Let R be a p.q.-Baer ∗-ring and a, b ∈ R be orthogonal elements.
Then a ∧ b = 0 and a ∨ b = a+ b.

Proof. Let a, b ∈ R be such that a ⊥ b. Then C(a)C(b) = 0. This implies
aC(b) = C(a)b = 0. Therefore by Lemma 3.8, a and b have a common upper
bound. By Theorem 3.5, we have a ∧ b = 0 and a ∨ b = a+ b.

The following lemma leads to the orthomodularity condition in a poset.
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Theorem 4.4. A p.q.-Baer ∗-ring R with the order ≤ and the orthogonality ⊥
is a quasi-orthomodular poset.

Proof. By Lemma 4.2, the relation ⊥ is an orthogonality relation on R. Let
a, b ∈ R and a ≤ b. Then a = C(a)b and hence C(a) = C(a)C(b). Let c = b− a.
By Lemma 2.5, C(a)C(c) = C(a)C(b − a) = C(a)(C(b) − C(a)) = C(a)C(b) −
C(a) = 0. Therefore a ⊥ c. Let e, f, d ∈ R be such that e ⊥ f , e ⊥ d and
f ≤ e ∨ d. Then C(e)C(f) = C(e)C(d) = 0 and f = C(b)(e ∨ d). By Lemma
4.3, f = C(f)(e + d) = C(f)e + C(f)d = C(f)d. Hence f ≤ d. Thus R is a
quasi-orthomodular poset.

Theorem 4.5. In a p.q.-Baer ∗-ring R, the initial segments [0,m] = {a ∈ R | a ≤
m} are orthomodular posets. Furthermore, if ⊥m is the local orthogonality of the
initial segment [0,m], then for all a, b ∈ [0,m], a ⊥m b if and only if a ⊥ b.
Moreover, if a ⊥m b and a, b ≤ n, then a ⊥n b.

Proof. The proof follows from Theorems 4.1 and 4.4.
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doi:10.1007/978-3-0346-0286-0\ 4

http://dx.doi.org/10.2307/2037396
http://dx.doi.org/10.1016/0024-3795\(91\)90326-R
http://dx.doi.org/10.1007/978-3-642-15071-5
http://dx.doi.org/10.1007/978-3-0346-0286-0protect unhbox voidb@x kern .06emvbox {hrule width.3em}4


218 A. Khairnar and B.N. Waphare

[5] G.F. Birkenmeier, J.K. Park and S.R. Tariq, Extensions of Rings and Modules (New
York, Birkhäuser, 2013).
doi:10.1007/978-0-387-92716-9

[6] W.D. Burgess and R. Raphael, On Conrad’s partial order relation on semiprime
rings and on semigroups, Semigroup Forum 16 (1978) 133–140.
http://eudml.org/doc/134282

[7] J. Cı̄rulis, Quasi-orthomodular posets and weak BCK-algebras, Order 31 (2014)
403–419.
doi:10.1007/s11083-013-9309-1

[8] P.F. Conrad, The hulls of semiprime rings, Austral. Math. Soc. 12 (1975) 311–314.
doi:10.1017/S0004972700023911

[9] G. Dolinar and J. Marovt, Star partial order on B(H), Linear Algebra Appl. 434
(2011) 319–326.
doi:10.1016/j.laa.2010.08.023

[10] G. Dolinar, B. Kuzma and J. Marovt, A note on partial orders of Hartwig, Mitsch,
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