
Discussiones Mathematicae
General Algebra and Applications 38 (2018) 273–296
doi:10.7151/dmgaa.1293

AGGREGATING FUZZY BINARY RELATIONS

AND FUZZY FILTERS

Abdelaziz Amroune and Bouad Aissa

Laboratory of Pure and Applied Mathematics

Department of Mathematics

Mohamed Boudiaf University

Msila 28000, Algeria

e-mail: aamrounedz@yahoo.fr
aissa.bouad@yahoo.com

Abstract

The main goal of this paper is to investigate the aggregation of diverse
families of binary fuzzy relations, fuzzy filters, and fuzzy lattices. Some links
between these families and their images via an aggregation are explored.
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1. Introduction

Fuzzy sets and fuzzy relations have been introduced by Zadeh [14, 15]. Several
different approaches of fuzzy lattices and fuzzy filters and related concepts have
been investigated by many authors such as [3, 9, 10, 12]. Many notions of fuzzy
set theory can be expressed by aggregation functions. Union and intersection are
built by means of special aggregation functions. Aggregating several information
in one is an interesting operation in fields dealing with quantitative information.
In this paper, the aggregation of diverse families like fuzzy binary relations, fuzzy
lattices, and fuzzy filters was considered. Some links between these families and
their images via an aggregation function, and several characterizations for these
were provided. Given an aggregation function A : Un → U and a family of fuzzy
binary relations L =

{
Li : X2 → U, i ∈ {1, . . . , n}

}
on a domain X. A (L, A)

fuzzy binary relation on X denoted by LA is obtained as the composition given
by LA(x, y) = A(L1(x, y), . . . , Ln(x, y)). The special case Li is a Ti–Ei order,
where Ei is a Ti-equivalence relation will be studied. It was shown that the
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family of fuzzy preordering relations (Li), i = 1, 2, . . . , n can be aggregated and
its aggregated image is also a preorder. The notion of generalized associativity
law to prove that the image of a family of complete lattices via an aggregation
function is also a complete lattice was introduced. Moreover, the aggregation of a
family of left (resp. right) traces of a family of fuzzy relations was investigated and
the conditions under which these images are left (resp. right) traces were given.
This paper is organized as follows. The next section is devoted to some basic
notions and definitions of triangular norms, aggregation functions, fuzzy lattices
and fuzzy filters. In the third section, the main result, where some families of
fuzzy structures are aggregated and their images via an aggregation function are
presented.

2. Preliminaries

Throughout this paper, U denotes the close unite real interval [0, 1] and I denotes
the set of the n integers {1, 2, . . . , n}.

2.1. Triangular norms

Definition 2.1. A triangular norm (briefly t-norm) is a binary fuzzy operation
T on the unit interval U which is commutative, associative, monotone and has 1
as neutral element.

The following t-norms are the four basic t-norms, the minimum t-norm
TM (x, y) = min(x, y), the product t-norm Tp(x, y) = xy, the  Lukasiewicz t-norm
TL(x, y) = max(x + y − 1, 0), and the drastic product t-norm

TD(x, y) =

{
0 if (x, y) ∈ [0, 1[2 ,

min(x, y) otherwise.

Definition 2.2 [1]. If for two t-norms T1 and T2 we have T1(x, y) ≤ T2(x, y) for
all (x, y) ∈ U2, then we say that T2 is stronger than T1 and we write T1 ≤ T2.

Definition 2.3 [1]. Let T1 and T2 be two t-norms. We say that T1 dominates
T2 if and only if, for any x, y, z, t ∈ U , it holds that T1(T2(x, y), T2(z, t)) ≥
T2(T1(x, z), T1(y, t)).

Lemma 2.1 [5, 8].

(i) Any t-norm T dominates itself.

(ii) The minimum t-norm TM dominates any other t-norm.

(iii) If a t-norm T1 dominates another t-norm T2, then T1 is stronger than T2.
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Definition 2.4 [12]. For a family of t-norms (Ti)i∈I , we say that (Ti)i∈I verify
the generalized associativity law if and only if for all 1 ≤ i, j ≤ n and x, y, z ∈ U
Ti(Tj(x, y), z) = Ti(x, Tj(y, z)).

Remark 2.1. Between the four basic t-norms we have these strict inequalities:
TD < TL < Tp < TM .

2.2. Aggregation functions

Definition 2.5. An n-ary aggregation is an application A : Un → U fulfils, the
following conditions for all −→x = (x1, . . . , xn),−→y = (y1, . . . , yn) ∈ Un,

(a) A(
−→
1 ) = 1; A(

−→
0 ) = 0;

(b) if for all i ∈ I, xi ≤ yi, then A(−→x ) ≤ A(−→y ).

Furthermore,

1. An aggregation A is said to be strictly monotone if for all −→x ,−→y ∈ Un, with
x1 ≤ y1, . . . , xn ≤ yn and −→x 6= −→y , then A(−→x ) < A(−→y ).

2. An aggregation A is said to be jointly strictly monotone if for all −→x ,−→y ∈ Un

with x1 < y1, . . . , xn < yn, then A(−→x ) < A(−→y ).

3. An aggregation A is said to be idempotent, if for all x ∈ U, A(x, x, . . . , x) = x
(idempotency property).

4. An aggregation A is said to be without zero divisor other than 0, if A(x1, x2,
. . . , xn) = 0 ⇔ x1 = 0 or x2 = 0 or . . . or xn = 0.

5. An aggregation A is said to be (left-) rigth-continuous for the first component,
if, for any (non-decreasing) non-increasing sequence (xn)n∈N, it holds that
limnA(xn, y) = A(limn xn, y).

Remark 2.2.

(a) Let ∨, ∧ : U2 → U be two binary idempotent aggregation functions defined
as ∨(x, y) = max(x, y) and ∧(x, y) = min(x, y). So, when A is an idempotent
aggregation function, then ∧(x, y) ≤ A(x, y) ≤ ∨(x, y) for all x, y ∈ U.

(b) For all −→x ,−→y ∈ Un, we have

(1) A(−→x ∨−→y ) ≥ A(−→x ) ∨A(−→y ), where −→x ∨ −→y = (x1 ∨ y1, . . . , xn ∨ yn),

(2) A(−→x ∧−→y ) ≤ A(−→x ) ∧A(−→y ), where −→x ∧ −→y = (x1 ∧ y1, . . . , xn ∧ yn),

(3) (A(−→x .−→y ))2 ≤ A(−→x ).A(−→y ), where −→x .−→y = (x1.y1, . . . , xn.yn).

Definition 2.6. An aggregation A1 dominates another aggregation A2 if and only
if the following inequality holds A1(A2(x, y), A2(u, v)) ≥ A2(A1(x, u), A1(y, v)),
for all x, y, u, v ∈ U.
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Definition 2.7. An aggregation A1 bidominates another aggregation A2 if and
only if the following equality holds A1(A2(x, y), A2(u, v)) = A2(A1(x, u), A1(y, v)),
for all x, y, u, v ∈ U.

Definition 2.8 [12]. Let A be an aggregation, we said that the t-norms T satisfies
the distributive property if and only if for all x, y1, . . . , yn ∈ X, A(T (x, y1), . . . ,
T (x, yn)) = T (x,A(y1, . . . , yn)).

2.3. Fuzzy implications

Fuzzy implications extend the classical implications as seen in the following def-
initions [12].

Definition 2.9. A binary operation I : U2 → U is an implication operator if it
satisfies the boundary conditions I(1, 1) = I(0, 1) = I(0, 0) = 1 and I(1, 0) = 0.

Definition 2.10 [1]. For a left-continuous t-norm T , the residual implication
(residuum) I is defined as I(x, y) = sup {u ∈ [0, 1]/T (u, x) ≤ y} .

A fuzzy implication I fulfills the following properties for all x, y, z ∈ U

(I1) x ≤ z implies I(x, y) ≥ I(z, y);

(I2) y ≤ z implies I(x, y) ≤ I(x, z);

(I3) I(0, y) = 1 (see [1]).

The most used properties of implication operators are listed in the Table 1 (see
[12]).

Table 1.

Properties of implications

I5 I(x, 1) = 1,

I6 I(1, y) = y,

I7 x ≤ y implies I(x, y) = 1,

I8 I(x, y) ≤ y,

I9 I(x, x) = 1.

2.4. Fuzzy binary relations

Definition 2.11. Let X be a non-empty set and T a triangular norm on U . A
mapping R : X × X → [0, 1] is called a fuzzy binary relation on X. A fuzzy
binary relation R on X is said to be

1. Reflexive, if R(x, x) = 1, for all x ∈ X.

2. Antisymmetric, if R(x, y) ∧R(y, x) = 0 whenever x 6= y, for all x, y ∈ X.
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3. Symmetric, if R(x, y) = R(y, x), for all x, y ∈ X.

4. Transitive, if R(x, y) ∧R(y, z) ≤ R(x, z), for all x, y, z ∈ X.

5. T -Transitive, if T (R(x, y), R(y, z)) ≤ R(x, z), for all x, y, z ∈ X.

Definition 2.12. A reflexive, antisymmetric and transitive fuzzy relation is
called a fuzzy partial order relation. A fuzzy partial order relation R is a fuzzy
total order relation if and only if either R(x, y) > 0 or R(y, x) > 0, for all
x, y ∈ X. A set equipped with a fuzzy partial order relation is called a fuzzy
partially ordered set (fuzzy poset for short).

Definition 2.13 [1]. Let R be a fuzzy binary relation on a domain X, and T
a left-continuous t-norm, the left( right) trace relation of R, denoted by Rl, Rr,
respectively such that

Rl(x, y) = inf
z∈X

I(R(z, x), R(z, y)); Rr(x, y) = inf
z∈X

I(R(y, z), R(x, z)).

Proposition 2.1 [1].

1. For a binary fuzzy relation R on a domain X and some left-continuous t-

norm T , the following three statements are equivalent:

(i) R is reflexive,

(ii) Rl ⊆ R,

(iii) Rr ⊆ R.

2. For a binary fuzzy relation R on a domain X and some left-continuous t-

norm T , the following three statements are equivalent:

(i) R is T -transitive,

(ii) R ⊆ Rl,

(iii) R ⊆ Rr.

2.5. Fuzzy lattices

Next, we recall some definitions of lattice structures (as a relational structure)
[3, 9, 10].

Definition 2.14. Let (X,R) be a fuzzy poset and let A be a nonempty subset
of X. An element u ∈ X is said to be an upper bound of the subset A if and
only if R(a, u) > 0 for all a ∈ A. An upper bound u0 of A is the least upper
bound of A if and only if R(u0, u) > 0, for every upper bound u of A. An element
l ∈ X is said to be the lower bound of a subset A if and only if R(l, a) > 0, for
all a ∈ A. A lower bound l0 of A is the greatest lower bound of A if and only
if R(l, l0) > 0, for every lower bound l of A. The least upper bound and the
greatest lower bound of a set {x, y} are denoted by x ∨ y and x ∧ y respectively.
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Definition 2.15. Let (X,R) be a fuzzy poset. (X,R) is a fuzzy lattice if and
only if x ∨ y and x ∧ y exist for all x, y ∈ X.

Remark 2.3. Since R is antisymmetric, it follows that the least upper (greatest
lower) bound if it exists, is unique.

Definition 2.16 [10]. Let (X,R) be a fuzzy lattice. A non-constant fuzzy subset
F is said to be a fuzzy filter if the following hold for all x, y in X

1. F (x) > 0 and R(x, y) > 0, imply F (y) > 0,

2. F (x) > 0 and F (y) > 0, imply F (x ∧ y) > 0.

A fuzzy filter F is said to be a fuzzy prime filter if F (x ∨ y) ≤ F (x) ∨ F (y) for
all x, y ∈ X. A fuzzy filter F is said to be maximal, if for any filter G of X,
F (x) ≤ G(x) for all x ∈ X, implies F = G.

Definition 2.17. Let E : X2 → U be a binary relation and T : U2 −→ U
a t-norm, E is called fuzzy T -equivalence relation if and only if it is reflexive,
symmetric and T -transitive.

Definition 2.18 [1]. Consider a fuzzy binary relation L : X2 −→ U and a fuzzy
T -equivalence relation E : X2 −→ U , L is called fuzzy ordering with respect to a
t-norm T and a T -equivalence relation E, for brevity T -E-ordering, if and only
if it is T -transitive and fulfills the following two axioms

1. E-reflexivity, i.e., for all x, y ∈ X, E(x, y) ≤ L(x, y),

2. T -E-antisymmetry, i.e., for all x, y ∈ X, T (L(x, y), L(y, x)) ≤ E(x, y).

3. Aggregating fuzzy relations

In this section, we aggregate some finite families of fuzzy relations and fuzzy
complete lattices.

Definition 3.1 [12]. Let A : Un → U be an aggregation function and L ={
Li/X

k → U, i ∈ I
}

a family of fuzzy k-ary relations on a domain X. A (L, A)
k-ary relation on X denoted by LA is obtained as the composition given by

LA(x1, . . . , xk) = A(L1(x1, . . . , xk), . . . , Ln(x1, . . . , xk)).

Definition 3.2 [12]. Let A : Un → U be an aggregation function and F ={
Li : X2 → U, i ∈ I

}
a family of fuzzy binary relations on a domain X. A (L, A)

fuzzy binary relation on X denoted by LA is obtained as the composition given
by

LA(x, y) = A(L1(x, y), . . . , Ln(x, y)).
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Definition 3.3. Let (Xi, Ri)i∈I be a family of fuzzy lattices, (Fi)i∈I a family
of fuzzy subsets of Xi, A : Un → U an aggregation and ℜA, FA two operators
defined on (

∏n
i=1Xi)

2,
∏n

i=1 Xi respectively by ℜA((x1, . . . , xn), (y1, . . . , yn)) =
A(R1(x1, y1), . . . , Rn(xn, yn)) and FA(x1, . . . , xn) = A(F1(x1), . . . , Fn(xn)).

Lemma 3.1 . Let TM be the minimum t-norm and TM(α,β) the aggregation de-

fined by TM(α,β)(x, y) = xα∧yβ, where α, β ∈ R
∗
+ then each one of them dominates

the other.

Proof. Let x, y, u, v ∈ U ,

TM (TM(α,β)(x, y), TM(α,β)(u, v)) = (xα ∧ yβ) ∧ (uα ∧ vβ)

= (xα ∧ uα) ∧ (yβ ∧ vβ)

= (x ∧ u)α ∧ (y ∧ v)β

= TM(α,β)(TM (x, u), TM (y, v)).

Remark 3.1.

1. Contrary to the t-norms, there are aggregations which do not dominate them-
selves.

2. If an aggregation A1 dominates another aggregation A2, it is not necessary
that A1 be stronger than A2.

3. The minimum aggregation dominates all other aggregations.

Indeed,

1. take A(x, y) = x2+y2

2

A(A(x, y), A(u, v)) = A
(
x2+y2

2 , u
2+v2

2

)
=

(

x2+y2

2

)2

+
(

u2+v2

2

)2

2

= x4+2x2y2+y4+u4+2u2v2+v4

8 .
And

A(A(x, u), A(y, v)) = A
(
x2+u2

2 , y
2+v2

2

)
=

(

x2+u2

2

)2

+

(

y2+v2

2

)2

2

= x4+2x2u2+u4+y4+2y2v2+v4

8 .

It is easy to see that neither A(A(x, y), A(u, v)) ≤ A(A(x, u), A(y, v)) nor
A(A(x, u), A(y, v)) ≤ A(A(x, y), A(u, v)). Hence, A does not dominate itself.

2. We prove that TM(2,2) dominates Tp this means that for all x, y, u, v ∈ U the
inequality TM(2,2)(Tp(x, y), Tp(u, v)) ≥ Tp(TM(2,2)(x, u), TM(2,2)(y, v)) holds.
This is equivalent to (xy)2 ∧ (uv)2 ≥ (x2 ∧ u2)(y2 ∧ v2). To show this, we
have four possible cases as in Table 2.
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Table 2.

Cases (x ≤ u) (y ≤ v) ⇔

a 1 1 (x ≤ u) ∧ (y ≤ v)

b 1 0 (x ≤ u) ∧ (v < y)

c 0 1 (u < x) ∧ (y ≤ v)

d 0 0 (u < x) ∧ (v < y)

Case (a) If x ≤ u and y ≤ v, then x2 ≤ u2 and y2 ≤ v2, which gives
x2y2 ≤ u2v2, hence (xy)2 ∧ (uv)2 = (x2y2) ∧ (u2v2) = x2y2. Obviously that
(x2 ∧ u2)(y2 ∧ v2) = x2y2. Hence (xy)2 ∧ (uv)2 = (x2 ∧ u2)(y2 ∧ v2).

Case (b) If x ≤ u and v < y, then x2 ≤ u2 and v2 < y2, this implies that
(x2 ∧ u2)(y2 ∧ v2) = x2v2. And x2v2 ≤ u2v2 and v2x2 < y2x2, which implies that
x2v2 ≤ (u2v2) ∧ (y2x2). Consequently, (xy)2 ∧ (uv)2 ≥ (x2 ∧ u2)(y2 ∧ v2).

Case (c) If u < x and y ≤ v, then u2 < x2 and y2 ≤ v2, this implies
that (x2 ∧ u2)(y2 ∧ v2) = u2y2. And u2y2 < x2y2 and u2y2 ≤ v2u2, so u2y2 ≤
(x2y2) ∧ (v2u2). Hence (x2 ∧ u2)(y2 ∧ v2) ≤ (xy)2 ∧ (uv)2.

Case (d) If u < x and v < y give u2 < x2 and v2 < y2. Hence (x2 ∧ u2)(y2 ∧
v2) = u2v2. And u2v2 < x2y2 ⇔ (x2y2) ∧ (v2u2) = u2v2, then (xy)2 ∧ (uv)2 =
(x2 ∧ u2)(y2 ∧ v2).

It can be seen that assertions a, b, c and d give that for all x, y, u, v ∈ U ,
TM(2,2)(Tp(x, y), Tp(u, v)) ≥ Tp(TM(2,2)(x, u), TM(2,2)(y, v)). Hence TM(2,2) domi-
nates Tp. But TM(2,2)(x, y) ≤ Tp(x, y) for all x, y ∈ U. Indeed, if x ≤ y ⇒ x2 ≤ y2,
then TM(2,2)(x, y) = x2 ∧ y2 = x2 ≤ xy = Tp(x, y). For y < x, TM(2,2)(x, y) =
x2 ∧ y2 = y2 < Tp(x, y) hence TM(2,2) is not stronger than Tp.

Proposition 3.1. Let (Xi)i∈I be a family of non empty sets, (Ri)i∈I a family

of fuzzy binary relations on (Xi)i∈I , A : Un → U an aggregation and ℜA a fuzzy

set defined on (
∏n

i=1 Xi)
2 by ℜA((x1, . . . , xn), (y1, . . . , yn)) = A(R1(x1, y1), . . . ,

Rn(xn, yn)). It holds that

1. If Ri is reflexive for all i ∈ I, then ℜA is reflexive.

2. If Ri is symmetric for all i ∈ I, then ℜA is symmetric.

Proof. (1) Suppose that Ri is reflexive for all i ∈ I. Let (x1, . . . , xn) ∈
∏n

i=1 Xi,
ℜA((x1, . . . , xn), (x1, . . . , xn)) =A(R1(x1, x1), . . . , Rn(xn, xn)) = A(1, . . . , 1) = 1.
Then, ℜA is reflexive.

(2) Let (x1, . . . , xn), (y1, . . . , yn) ∈
∏n

i=1 Xi. Suppose that for all i ∈ I, Ri is
symmetric, then
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ℜA((x1, . . . , xn), (y1, . . . , yn)) = A(R1(x1, y1), . . . , Rn(xn, yn))

= A(R1(y1, x1), . . . , Rn(yn, xn))

= ℜA((y1, . . . , yn), (x1, . . . , xn)).
Hence, ℜA is symmetric.

Proposition 3.2. Let (Ri)i∈I be a finite family of antisymmetric (resp. transitive)
relations. If the aggregation A is defined by A(x1, . . . , xn) = xα1

1 ∧· · ·∧xαn
n where

α1, . . . , αn ∈ R
∗
+, then ℜA is an antisymmetric (resp. transitive) relation.

Proof. (1) Suppose that Ri is antisymmetric for all i ∈ I i.e., for all xi, yi ∈ Xi ,
Ri(xi, yi)∧Ri(yi, xi) > 0 implies xi = yi. Let (x1, . . . , xn), (y1, . . . , yn) ∈

∏n
i=1 Xi,

using Lemma 3.1

ℜA((x1, . . . , xn), (y1, . . . , yn)) ∧ ℜA((y1, . . . , yn), (x1, . . . , xn))

= A(R1(x1, y1), . . . , Rn(xn, yn)) ∧A(R1(y1, x1), . . . , Rn(yn, xn))

= A(R1(x1, y1) ∧R1(y1, x1), . . . , Rn(xn, yn) ∧Rn(yn, xn)) > 0,

this means Ri(xi, yi) ∧ Ri(yi, xi) > 0 for all i ∈ I, thus xi = yi for all i ∈ I,
consequently (x1, . . . , xn) = (y1, . . . , yn). Therefore, ℜA is antisymmetric.

(2) Suppose that Ri is transitive for all i ∈ I i.e., for all xi, yi, zi ∈ Xi we have
Ri(xi, yi) ∧ Ri(yi, zi) ≤ Ri(xi, zi). Let (x1, . . . , xn), (y1, . . . , yn), (z1, . . . , zn) ∈∏n

i=1 Xi,

ℜA((x1, . . . , xn), (y1, . . . , yn)) ∧ ℜA((y1, . . . , yn), (z1, . . . , zn))

= A(R1(x1, y1), . . . , Rn(xn, yn)) ∧A(R1(y1, z1), . . . , Rn(yn, zn))

= A(R1(x1, y1) ∧R1(y1, z1), . . . , Rn(xn, yn) ∧Rn(yn, zn))

≤ A(R1(x1, z1), . . . , Rn(xn, zn)) = ℜA((x1, . . . , xn), (z1, . . . , zn)),

hence, ℜA is transitive.

Corollary 3.1. Let (Xi, Ri)i∈I be a family of fuzzy posets, A : Un → U an aggre-

gation defined by A(x1, . . . , xn) = xα1

1 ∧ · · · ∧ xαn
n , where α1, . . . , αn ∈ R

∗
+, then

ℜA is a fuzzy order on
∏n

i=1 Xi.

Proposition 3.3. Let (Xi, Ri)i∈I be a family of fuzzy complete lattices, A an

aggregation function defined by A(x1, . . . , xn) = xα1

1 ∧ · · · ∧ xαn
n and Bi a subset

of Xi. If li (resp. ui) is the greatest lower (resp. the least upper) bound of Bi

for all i ∈ I, then (l1, . . . , ln) (resp. (u1, . . . , un)) is the greatest lower (the least

upper) bound of
∏n

i=1Bi. Moreover, (
∏n

i=1 Xi,ℜA) is a fuzzy complete lattice.

Proof. According to Corollary 3.1, (
∏n

i=1 Xi,ℜA) is a poset. Suppose that li
is the greatest lower bound of Bi for all i ∈ I. Prove that (l1, . . . , ln) is a lower
bound of

∏n
i=1Bi indeed, for all (x1, . . . , xn) ∈

∏n
i=1 Bi, since Ri(xi, li) > 0 for all



282 A. Amroune and A. Bouad

i ∈ I this gives ℜA((l1, . . . , ln), (x1, . . . , xn)) = A(R1(x1, l1), . . . , Rn(xn, ln)) > 0.
Hence, (l1, . . . , ln) is a lower bound of

∏n
i=1Bi. Suppose by way of contradic-

tion that there exists an other lower bound (l
′

1, . . . , l
′

n) of
∏n

i=1Bi greater than
(l1, . . . , ln). Then ℜA((l1, . . . , ln), (l

′

1, . . . , l
′

n)) > 0, which implies A(R1(l1, l
′

1), . . . ,
Rn(ln, l

′

n)) > 0. According to Definition 2.5(4), this equivalent to Ri(li, l
′

i) > 0
for all i ∈ I. But this contradicts the fact that li is the greatest lower bound of
Bi. Thus, (l1, . . . , ln) is the greatest lower bound of

∏n
i=1 Bi. In a similar way,

we can prove that (u1, . . . , un) is the least upper bound of
∏n

i=1Bi. Let B be
an arbitrary subset of

∏n
i=1Xi. Then there exists a family of subsets (Bi)i∈I of

(Xi)i∈I such that B =
∏n

i=1 Bi. Since (Xi, Ri) is a complete lattice for all i ∈ I,
then for all subset Bi of Xi, there exists a greatest lower (resp. least upper)
bound li (resp. ui) of Bi. So the subset B has a greatest lower bound (l1, . . . , ln)
and a least upper bound (u1, . . . , un). Consequently, (

∏n
i=1 Xi,ℜA) is a complete

fuzzy lattice.

Now, we introduce an aggregation function to aggregate T -preordering rela-
tions.

Proposition 3.4. Let (Li)i∈I be a family of T -preordering relations on a domain

X and let A : Un → U be an aggregation without zero divisors other than zero

which dominate T . Then the relation LA defined by

LA(x, y) = A(L1(x, y), . . . , Ln(x, y)),

is a T -EA-ordering, where

EA(x, y) = A(T (L1(x, y), L1(y, x)), . . . , T (Ln(x, y), Ln(y, x))).

Proof. Firstly, we prove that EA is a T -equivalence relation. Obviously, for all
x ∈ X, EA(x, x) = 1. Hence EA is reflexive. Clearly, EA(x, y) = EA(y, x) for all
x, y ∈ X. Then EA is symmetric. To prove the T -transitivity, let x, y, z ∈ X.

T (EA(x, y), EA(y, z))

= T (A(T (L1(x, y), L1(y, x)), . . . , T (Ln(x, y), Ln(y, x))),

A(T (L1(y, z), L1(z, y)), . . . , T (Ln(y, z), Ln(z, y))))

≤ A(T (T (L1(x, y), L1(y, x)), T (L1(y, z), L1(z, y))), . . . ,

T (T (Ln(x, y), Ln(y, x)), T (Ln(y, z), Ln(z, y))))

≤ A(T (T (L1(x, y), L1(y, z)), T (L1(y, x), L1(z, y))), . . . ,

T (T (Ln(x, y), Ln(y, z)), T (Ln(y, x), Ln(z, y))))

= A(T (T (L1(x, y), L1(y, z)), T (L1(z, y), L1(y, x))), . . . ,

T (T (Ln(x, y), Ln(y, z)), T (Ln(z, y), Ln(y, x))))

≤ A(T (L1(x, z), L1(z, x)), . . . , T (Ln(x, z), Ln(z, x))) = EA(x, z).
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According to the definition EA. Hence EA is T -transitive. Consequently EA is T -
equivalence relation. Secondly. To prove that LA is T -EA-order, let x, y ∈ X,

EA(x, y) = A(T (L1(x, y), L1(y, x)), . . . , T (Ln(x, y), Ln(y, x)))

≤ A(L1(x, y), . . . , Ln(x, y)), using T (x, y) ≤ x

= LA(x, y), by the definition of LA.

Hence, LA is EA-reflexive. Let x, y ∈ X.

T (LA(x, y),LA(y, x)) = T (A(L1(x, y), . . . , Ln(x, y)), A(L1(y, x), . . . , Ln(y, x)))

≤ A(T (L1(x, y), L1(y, x)), . . . , T (Ln(x, y), Ln(y, x)))

= EA(x, y).

So, LA is T -EA-antisymmetric. Finally, to prove that LA is T -transitive. Let
x, y, z ∈ X,

T (LA(x, y),LA(y, z)) = T (A(L1(x, y), . . . , Ln(x, y)), A(L1(y, z), . . . , Ln(y, z)))

≤ A(T (L1(x, y), L1(y, z)), . . . , T (Ln(x, y), Ln(y, z)))

≤ A(L1(x, z), . . . , Ln(x, z)) = LA(x, z).

Which complete the proof of LA is a T -EA-order.

Proposition 3.5. Let (Li)i∈I be a family of T -preordering relations, A : Un → U
an aggregation dominating T and Ã : U2 → U a binary aggregation dominating

T and satisfying T ≤ Ã ≤ TM . Then the relation LA defined by LA(x, y) =
A(L1(x, y), . . . , Ln(x, y)), is a T -Ẽ-ordering, where Ẽ(x, y) = Ã(LA(x, y),
LA(y, x)). Besides, T (LA(x, y),LA(y, x)) ≤ Ẽ(x, y) ≤ min(LA(x, y),LA(y, x))
for all x, y ∈ X, are T -equivalence relations.

Proof. To prove that Ẽ is a T -equivalence relation, let x ∈ X,

Ẽ(x, x) = Ã(LA(x, x),LA(x, x))

= Ã(A(L1(x, x), . . . , Ln(x, x)), A(L1(x, x), . . . , Ln(x, x)))

= Ã(1, 1) = 1.

Hence, Ẽ is reflexive. Clearly, Ẽ is symmetric. To show that Ẽ is transitive, let
x, y, z ∈ X.

T (Ẽ(x, y), Ẽ(y, z)) = T (Ã(LA(x, y),LA(y, x)), Ã(LA(y, z),LA(z, y)))

≤ Ã(T (LA(x, y),LA(y, z)), T (LA(y, x),LA(z, y)))

= Ã(T (LA(x, y),LA(y, z)), T (LA(z, y),LA(y, x)))

≤ Ã(LA(x, z),LA(z, x)) = Ẽ(x, z).
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This means that Ẽ is T -transitive, hence Ẽ is T -equivalence relation. To prove
that LA is Ẽ-reflexive, let x, y ∈ X

Ẽ(x, y) = Ã(LA(x, y),LA(y, x))

≤ TM (LA(x, y),LA(y, x))

≤ LA(x, y).

Hence LA is Ẽ-reflexive. Let x, y ∈ X,

T (LA(x, y),LA(y, x)) ≤ Ã(LA(x, y),LA(y, x)) = Ẽ(x, y).

Therefore, LA is T -Ẽ-antisymmetric. Let x, y, z ∈ X,

T (LA(x, y),LA(y, z)) = T (A(L1(x, y), . . . , Ln(x, y)), A(L1(y, z), . . . , Ln(y, z)))

≤ A(T (L1(x, y), L1(y, z)), . . . , T (Ln(x, y), Ln(y, z)))

≤ A(L1(x, z), . . . , Ln(x, z))

= LA(x, z) (by Proposition 3.4).

Hence LA is T -transitive which complet the proof of LA is T -Ẽ-order. Finally,
since T (x, y) ≤ Ã(x, y) ≤ TM (x, y), for all x, y ∈ X, then T (LA(x, y),LA(y, x)) ≤
Ẽ(x, y) ≤ TM (LA(x, y),LA(y, x)), and it is not difficult to show that the two
bounds are T -equivalence relations.

The next lemma is used to demonstrate Proposition 3.6.

Lemma 1. Let (Ti)i∈I be a family of t-norms and A a continuous aggregation

which dominates all Ti, then A dominates g =
∧

i∈I Ti.

Proof. Let x, y, u, v ∈ U, p ∈ I, and put gp = T1∧· · ·∧Tp. Hence, g = limp→n Tp

g(A(x, y), A(u, v)) = limp→n gp(A(x, y), A(u, v))

≤ lim
p→n

(A(gp(x, u), gp(y, v)))

= A( lim
p→n

gp(x, u), lim
p→n

gp(y, v))

= A(g(x, u), g(y, v)).

Hence, A dominate g.

Remark 3.2. Let (Ti)i∈I be a family of t-norms and T =
∧

i∈I Ti, T is not
necessary a t-norm. Indeed, let

T1(x, y) =

{
0 if (x, y) ∈

[
0, 12

]2
,

min(x, y) otherwise.
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and Tp be the product t-norm. Put T = T1∧ Tp, then the new t-norm T is given
by

T (x, y) =

{
0 if (x, y) ∈

[
0, 12

]2
,

x, y otherwise.

It is easy to see that T is not a t-norm. Indeed, take (x, y, z) = (0.5, 0.7, 0.7),
T (T (0.7, 0.7), 0.5) = T (0.49, 0.5) = 0 6= T (0.7, T (0.7, 0.5)) = T (0.7, 0.35) = 0.7 ×
0.35, hence T is not associative.

Proposition 3.6. Let (Ti)i∈I be a family of t-norms, (Li) a family of Ti-pre-

ordering relations on Xi and A : Un → U an aggregation such that for all i ∈ I,
A dominates Ti, then the fuzzy relation LA defined on

∏n
i=1Xi by LA((x1, . . . , xn),

(y1, . . . , yn)) = A(L1(x1, y1), . . . , Ln(xn, yn)). If gp = T1 ∧ · · · ∧ Tp is a t-norm,

then LA is a g-EA-ordering relation, where EA is a fuzzy binary relation on∏n
i=1 Xi defined by EA((x1, . . . , xn), (y1, . . . , yn)) = A(T1(L1(x1, y1), L1(y1, x1)),

. . . , Tn(Ln(xn, yn), Ln(yn, xn))).

Proof. It is not difficult to prove that EA is reflexive and symmetric. It re-
mains to prove that EA is g-transitive. Let (x1, . . . , xn), (y1, . . . , yn), (z1, . . . , zn) ∈∏n

i=1 Xi,

g(EA((x1, . . . , xn), (y1, . . . , yn)), EA((y1, . . . , yn), (z1, . . . , zn)))

= g[A(T1(L1(x1, y1), L1(y1, x1)), . . . , Tn(Ln(xn, yn), Ln(yn, xn))),

A(T1(L1(y1, z1), L1(z1, y1)), . . . , Tn(Ln(yn, zn), Ln(zn, yn)))]

≤ A[g(T1(L1(x1, y1), L1(y1, x1)), T1(L1(y1, z1), L1(z1, y1))), . . . ,

g(Tn(Ln(xn, yn), Ln(yn, xn)), Tn(Ln(yn, zn), Ln(zn, yn)))]

≤ A[T1(T1(L1(x1, y1), L1(y1, x1)), T1(L1(y1, z1), L1(z1, y1))), . . . ,

Tn(Tn(Ln(xn, yn), Ln(yn, xn)), Tn(Ln(yn, zn), Ln(zn, yn)))]

≤ A[T1(T1(L1(x1, y1), L1(y1, z1)), T1(L1(y1, x1), L1(z1, y1))), . . . ,

Tn(Tn(Ln(xn, yn), Ln(yn, zn)), Tn(Ln(yn, xn), Ln(zn, yn)))]

= A[T1(T1(L1(x1, y1), L1(y1, z1)), T1(L1(z1, y1), L1(y1, x1))), . . . ,

Tn(Tn(Ln(xn, yn), Ln(yn, zn)), Tn(Ln(zn, yn), Ln(yn, xn)))]

≤ A(T1(L1(x1, z1), L1(z1, x1)), . . . , Tn(Ln(xn, zn), Ln(zn, xn)))

= EA((x1, . . . , xn), (z1, . . . , zn)).

Hence EA is a g-equivalence relation. To prove that LA is a g-EA-order.
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Let (x1, . . . , xn), (y1, . . . , yn) ∈
∏n

i=1 Xi,

EA((x1, . . . , xn), (y1, . . . , yn)) = A(T1(L1(x1, y1), L1(y1, x1)), . . . ,

Tn(Ln(xn, yn), Ln(yn, xn)))

≤ A(L1(x1, y1), . . . , Ln(xn, yn))

= LA((x1, . . . , xn), (y1, . . . , yn)).

Hence, LA is a EA-reflexive. Let (x1, . . . , xn), (y1, . . . , yn) ∈
∏n

i=1Xi.

g(LA((x1, . . . , xn), (y1, . . . , yn)),LA((y1, . . . , yn), (x1, . . . , xn)))

= g(A(L1(x1, y1), . . . , Ln(xn, yn)), A(L1(y1, x1), . . . , Ln(yn, xn)))

≤ A(g(L1(x1, y1), L1(y1, x1)), . . . , g(Ln(xn, yn), Ln(yn, xn)))

≤ A(T1(L1(x1, y1), L1(y1, x1)), . . . , Tn(Ln(xn, yn), Ln(yn, xn)))

≤ A(E1(x1, y1), . . . , En(xn, yn))

= EA((x1, . . . , xn), (y1, . . . , yn)).

Then LA is g-EA-antisymmetric.

Let (x1, . . . , xn), (y1, . . . , yn), (z1, . . . , zn) ∈
∏n

i=1 Xi such that

g(LA((x1, . . . , xn), (y1, . . . , yn)),LA((y1, . . . , yn), (z1, . . . , zn)))

= g(A(L1(x1, y1), . . . , Ln(xn, yn)), A(L1(y1, z1), . . . , Ln(yn, zn)))

≤ A(g(L1(x1, y1), L1(y1, z1)), . . . , g(Ln(xn, yn), Ln(yn, zn)))

≤ A(T1(L1(x1, y1), L1(y1, z1)), . . . , Tn(Ln(xn, yn), Ln(yn, zn)))

≤ A(L1(x1, z1), . . . , Ln(xn, zn))

= LA((x1, . . . , xn), (z1, . . . , zn)).

Hence LA is g-transitive. Consequently, LA is g-EA-order.

Proposition 3.7. Let T be a t-norm on U , A an aggregation on U which dom-

inates T, and let (Li)i∈I , (Ei)i∈I be two families of fuzzy binary relations on a

domain X such that for each i ∈ I, Ei is a T -equivalence relation, where Li is

T -Ei-order, then the relation EA defined by EA(x, y) = A(E1(x, y), . . . , En(x, y)),
is a T -equivalence relation. And the relation LA defined by

LA(x, y) = A(L1(x, y), . . . , Ln(x, y)),

is T -EA-order.
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Proof. It is not difficult to show that EA is a T -equivalence relation. Let
us prove now that LA is a T -EA-order relation. For x, y ∈ X, LA(x, y) =
A(L1(x, y), . . . , Ln(x, y)). Since for each i ∈ I, Li(x, y) ≥ Ei(x, y). Hence LA(x, y)
≥ A(E1(x, y), . . . , En(x, y)) = EA(x, y). Consequently, LA is EA-reflexive.

For all x, y ∈ X, we have T (Li(x, y), Li(y, x)) ≤ Ei(x, y) and prove that LA

is T -EA-antisymmetric. Let x, y ∈ X,

T (LA(x, y),LA(y, x)) = T (A(L1(x, y), . . . , Ln(x, y)), A(L1(y, x), . . . , Ln(y, x)))

≤ A(T (L1(x, y), L1(y, x)), . . . , T (Ln(x, y), Ln(y, x))).

Or for all i ∈ I, T (Li(x, y), Li(y, x)) ≤ Ei(x, y), then T (LA(x, y),LA(y, x)) ≤
A(E1(x, y), . . . , En(x, y)) = EA(x, y), hence LA is a T -EA-antisymmetric relation
on X. Finally, it is easy to show that LA is T -transitive, hence LA is a T -EA-
order.

Proposition 3.8. Let A, Ã be two aggregations on U and T a left-continuous t-

norm dominated by both A and Ã. And let (Ej
i )i,j∈I be n families of T -equivalence

relations on a domain X, where (Rj
i ) be n-families of fuzzy binary relations such

that each (Rj
i ) is T -Ej

i -order, then the relation Ř defined by

Ř(x, y) = Ã(A(R1
1(x, y), . . . , Rn

1 (x, y)), . . . , A(R1
n(x, y), . . . Rn

n(x, y)))

for all x, y ∈ X is a T -Ẽ-order where

Ẽ(x, y) = Ã(A(E1
1 (x, y), . . . , En

1 (x, y)), . . . , A(E1
n(x, y), . . . , En

n(x, y))).

Proof. Firstly, we prove that Ẽ is a T -equivalence relation. Let x ∈ X,

Ẽ(x, x) = Ã(A(E1
1 (x, x), . . . , En

1 (x, x)) . . . , A(E1
n(x, x), . . . , En

n(x, x)))

= Ã(A(1, . . . , 1), . . . , A(1, . . . , 1))

= Ã(1, . . . , 1) = 1.

Hence, Ẽ is reflexive. It is not difficult to show that Ẽ is symmetric. Let us prove
now that Ẽ is T -transitive. For x, y, z ∈ X,

T (Ẽ(x, y), Ẽ(y, z))

= T [Ã(A(E1
1(x, y), . . . , En

1 (x, y)), . . . , A(E1
n(x, y), . . . , En

n(x, y))),

Ã(A(E1
1(y, z), . . . , En

1 (y, z)), . . . , A(E1
n(y, z), . . . , En

n(y, z)))]

≤ Ã[T (A
[
E1

1(x, y), . . . , En
1 (x, y)

]
, A

[
E1

1(y, z), . . . , En
1 (y, z)

]
), . . . ,

T (A
[
E1

n(x, y), . . . , En
n(x, y)

]
, A

[
E1

n(y, z), . . . , En
n(y, z)

]
)]
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≤ Ã[A(T (E1
1(x, y), E1

1 (y, z)), . . . , T (En
1 (x, y), En

1 (y, z))), . . . ,

A(T (E1
n(x, y), E1

n(y, z)), . . . , T (En
n(x, y), En

n (y, z)))]

≤ Ã(A(E1
1(x, z), . . . , En

1 (x, z)), . . . , A(E1
n(x, z), . . . , En

n(x, z)))

= Ẽ(x, z).

Hence Ẽ is T -equivalence relation. Secondly, we prove that Ř is T -Ẽ-order. Let
x, y ∈ X,

Ř(x, y) = Ã(A(R1
1(x, y), . . . , Rn

1 (x, y)), . . . , A(R1
n(x, y), . . . , Rn

n(x, y)))

≥ Ã
[
A(E1

1(x, y), . . . , En
1 (x, y)), . . . , A(E1

n(x, y), . . . , En
n(x, y))

]

= Ẽ(x, y).

Hence, Ř is Ẽ-reflexive. To prove the T -Ẽ-antisymmetry of Ř, let x, y ∈ X,

T (Ř(x, y), Ř(y, x))

= T [Ã(A(R1
1(x, y), . . . , Rn

1 (x, y)), . . . , A(R1
n(x, y), . . . , Rn

n(x, y))),

Ã(A(R1
1(y, x), . . . , Rn

1 (y, x)), . . . , A(R1
n(y, x), . . . , Rn

n(y, x)))]

≤ Ã[T (A(R1
1(x, y), . . . , Rn

1 (x, y)), A(R1
1(y, x), . . . , Rn

1 (y, x))), . . . ,

T (A(R1
n(x, y), . . . , Rn

n(x, y)), A(R1
n(y, x), . . . , Rn

n(y, x)))] (Ã dominates T ),

≤ Ã[A(T (R1
1(x, y), R1

1(y, x)), . . . , T (Rn
1 (x, y), Rn

1 (y, x))), . . . ,

A(T (R1
n(x, y), R1

n(y, x)), . . . , T (Rn
n(x, y), Rn

n(y, x)))]

≤ Ã(A(E1
1(x, y), . . . , En

1 (x, y)), . . . , A(E1
n(x, y), . . . , En

n(x, y))) (A dominates T ),

= Ẽ(x, y).

Thus, the T -Ẽ-antisymmetry of Ř is got. Now, let us verify that Ř is T -transitive.
Let x, y, z ∈ X,

T (Ř(x, y), Ř(y, z))

= T [Ã(A(R1
1(x, y), . . . , Rn

1 (x, y)), . . . , A(R1
n(x, y), . . . , Rn

n(x, y))),

Ã(A(R1
1(y, z), . . . , Rn

1 (y, z)), . . . , A(R1
n(y, z), . . . , Rn

n(y, z)))]

≤ Ã[T (A(R1
1(x, y), . . . , Rn

1 (x, y)), A(R1
1(y, z), . . . , Rn

1 (y, z))), . . . ,

T (A(R1
n(x, y), . . . , Rn

n(x, y))), A(R1
n(y, z), . . . , Rn

n(y, z)))]

≤ Ã[A(T (R1
1(x, y), R1

1(y, z)), . . . , T (Rn
1 (x, y)), Rn

1 (y, z))), . . . ,

A(T (R1
n(x, y), R1

n(y, z)), . . . , T (Rn
n(x, y), Rn

n(y, z)))]
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≤ Ã(A(R1
1(x, z), . . . , Rn

1 (x, z)), . . . , A(R1
n(x, z), . . . , Rn

n(x, z)))

= Ř(x, z).

Thus, Ř is T -equivalence. Which complete the proof of the proposition.

3.1. Aggregating traces of fuzzy binary relations

In what follows, we will define the aggregation of the traces of a finite family of
binary relations.

Definition 3.4. Let A : Un → U be an idempotent aggregation and {T1, . . . , Tn}
a family of t-norms. Define the aggregation TA of the family {T1, . . . , Tn} by
TA(x, y) = A(T1(x, y), . . . , Tn((x, y)).

Remark 3.3 [12]. For a family {T1, . . . , Tn} of left continuous t-norms which
satisfies the distributivity and generalized associativity, the aggregation TA is a
left continuous t-norm.

Definition 3.5. Let TA be a left continuous t-norm given in Definition 3.4 and
I the residual implication associated to TA, and R a fuzzy binary relation on a
domain X. The left (resp. right) trace of R denoted by Rl

A respectively (Rr
A) are

defined as follow:

Rl
A(x, y) = infz∈X I(R(z, x), R(z, y)),

Rr
A(x, y) = infz∈X I(R(y, z), R(x, z)).

Now, we characterize the aggregation of left and right trace relations of a
fuzzy binary relation R in term of an aggregation fuzzy implication.

Definition 3.6. Let A be an aggregation on U , R a fuzzy binary relation on
a domain X, {Ii/i ∈ I} a family of residual implications and Rl

Ii
, Rr

Ii
the cor-

responding left (resp. right) traces of R. We define the relations Ll
A, L

r
A as follows

Ll
A(x, y) = A(Rl

I1
(x, y), . . . , Rl

In
(x, y))

= A(infz1∈X I1(R(z1, x), R(z1, y)), . . . , infzn∈X In(R(zn, x), R(zn, y))).

Lr
A(x, y) = A(Rr

I1
(x, y), . . . , Rr

In
(x, y))

= A(infz1∈X I1(R(y, z1), R(x, z1)), . . . , infzn∈X In(R(y, zn), R(x, zn))).

The following proposition establishes the relationship between R, Ll
A, L

r
A for

a given relation R and an aggregation A.

Remark 3.4 [6]. For any relation R, Rl and Rr are always reflexive.
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Proposition 3.9. Let R be a fuzzy binary relation on a domain X, {Ii/i ∈ I} a

family of fuzzy implications and A an idempotent aggregation on U . The following

statements are equivalents:

1. R is reflexive;

2. Ll
A ⊂ R;

3. Lr
A ⊂ R.

Proof. (1) implies (2) Suppose that R is reflexive. By Proposition 2.1, we get
for all i ∈ I, Rl

i ⊂ R. Then, for all x, y ∈ X, A(Rl
1
(x, y), . . . , Rl

n
(x, y)) ≤

A(R(x, y), . . . , R(x, y)) = R(x, y). Hence Ll
A ⊂ R.

(1) implies (3) is obtained in the same manner.
(2) implies (1), for all x, y ∈ X, we have Ll

A(x, y) ≤ R(x, y), take x = y.
Thus R(x, x) ≥ Ll

A(x, x) = A(Rl
1
(x, x), . . . , Rl

n
(x, x)) = A(1, . . . , 1) = 1. Hence

R is reflexive.
For (3) implies (1) is obtained in the same manner as mentioned before.

Proposition 3.10. Let R be a fuzzy binary relation on a domain X, {Ti/i ∈ I}
a family of left continuous t-norms, {Ii/i ∈ I} a family of corresponding fuzzy

residual implications and A an idempotent aggregation on U , the following state-

ments holds:

1. If for all i ∈ I R is Ti-transitive, then R ⊂ Ll
A;

2. If for all i ∈ I R is Ti-transitive, then R ⊂ Lr
A.

Proof. For the first assertion, suppose that R is Ti-transitive then for all i ∈ I,
by Proposition 2.1, we get R ⊂ Rl

i
. Then, R(x, y) ≤ Rl

i
(x, y), hence R(x, y) =

A(R(x, y), . . . , R(x, y)) ≤ A(Rl
1(x, y), . . . , Rl

n(x, y)) = Ll
A(x, y) for all x, y ∈ X.

The first assertion is proved. The second assertion can be proved in a similar
way.

4. Aggregating fuzzy filters

4.1. Aggregating fuzzy filters

In this section, we introduce and study some proprieties of the operator (A,F)
defined on a nonempty set X, where A : Un → U is an aggregation on U and F
is a finite family of fuzzy subsets of X.

Definition 4.1 [12]. Let (X,R) be a fuzzy lattice, F = {Fi : X −→ U, i ∈ I} a
family of fuzzy subsets of X, and A : Un → U an aggregation on U . The (A,F)
operator defined on X by FA : X → U, is obtained as the composition given by
FA(x) = A(F1(x), . . . , Fn(x)).
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Remark 4.1. If (Fi)i∈I is a family of fuzzy filters, FA is not necessary a fuzzy
filter and the converse as well.

Example 4.1. Let (X,R) be a fuzzy lattice with X = {0, a, b, c, 1} and R given
by Table 3.

Table 3.

R 0 a b c d 1

0 1.0 0.3 0.4 0.6 0.7 0.8

a 0.0 1.0 0.0 0.5 0.0 0.7

b 0.0 0.0 1.0 0.0 0.9 0.9

c 0.0 0.0 0.0 1.0 0.0 0.3

d 0.0 0.0 0.0 0.0 1.0 0.4

1 0.0 0.0 0.0 0.0 0.0 1.0

Define three fuzzy filters F1, F2, and F3 as in Table 4.

Table 4.

x F1(x) F2(x) F3(x)

0 0.0 0.0 0.0

a 0.2 0.0 0.0

b 0.0 0.0 0.3

c 0.4 0.7 0.0

d 0.0 0.0 0.6

1 0.5 0.9 0.8

And A(x, y, z) = x+y+z
3 . Then FA as in Table 5.

Table 5.

x FA(x)

0 0.0

a 0.2
3

b 0.1

c 1.1
3

d 0.2

1 2.2
3
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It is easy to verify that FA is not a fuzzy filter. Indeed, FA(a) = 0.2
3 > 0

and FA(b) = 0.1 > 0, but FA(a ∧ b) = FA(0) = 0 (the second condition is not
satisfies). Conversely, we can define FA to be a fuzzy filter on X as is Table 6.

Table 6.

x FA(x)

0 0.0

a 0.4
3

b 0.0

c 0.2

d 0.0

1 0.7
3

And choose F1, F2, and F3, for example as in Table 7.

Table 7.

x F1(x) F2(x) F3(x)

0 0.0 0.0 0.0

a 0.2 0.1 0.1

b 0.0 0.0 0.0

c 0.4 0.2 0.0

d 0.0 0.0 0.0

1 0.5 0.0 0.2

Clearly, F2 and F3 are not fuzzy filters.

Now, we give a sufficient condition under which an aggregation of a family
of fuzzy filters is a fuzzy filter.

Proposition 4.1. Let (X,R) be a fuzzy lattice, A : Un → U an aggregation such

that A has no zero divisors other than 0 and let F = {Fi : X → U, i ∈ I} be a

family of fuzzy subsets of X. If F is a family of fuzzy filters of (X,R), then FA

is a fuzzy filter of (X,R).

Proof. (a) Suppose that F = {Fi : X → U, i ∈ I} is a family of fuzzy filters of
(X,R) and A an aggregation on U such that A has no zero divisors other than 0,
i.e., A(x1, . . . , xn) = 0 ⇔ x1 = 0 or . . . or xn = 0. Let x, y ∈ X such that FA(x) >
0 and R(x, y) > 0. This is equivalent to A(F1(x), . . . , Fn(x)) > 0 and R(x, y) > 0,
which implies Fi(x) > 0 and R(x, y) > 0 for all i ∈ I. Hence Fi(y) > 0 for all
i ∈ I and this implies that A(F1(y), . . . , Fn(y)) > 0. Consequently FA(y) > 0.

(b) Let x, y ∈ X such that FA(x) > 0 and FA(y) > 0, this means A(F1(x), . . . ,
Fn(x)) > 0 and A(F1(y), . . . , Fn(y)) > 0, hence Fi(x) > 0 and Fi(y) > 0 for any
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i ∈ I, then Fi(x∧y) > 0 for all i ∈ I which implies A(F1(x∧y), . . . , Fn(x∧y)) > 0.
Thus, FA(x ∧ y) > 0. Consequently, FA is a fuzzy filter of (X,R).

Remark 4.2. The converse of Proposition 4.1 is not true. Indeed, take R as in
Table 8.

Table 8.

R 0 a b c d 1

0 1.0 0.3 0.4 0.6 0.7 0.8

a 0.0 1.0 0.4 0.3 0.5 0.7

b 0.0 0.0 1.0 0.0 0.4 0.9

c 0.0 0.0 0.0 1.0 0.2 0.3

d 0.0 0.0 0.0 0.0 1.0 0.8

1 0.0 0.0 0.0 0.0 0.0 1.0

And A(x, y, z) = x ∧ y ∧ z. Take FA as in Table 9.

Table 9.

x FA(x)

0 0.0

a 0.0

b 0.0

c 0.0

d 0.3

1 0.5

And choose F1, F2, and F3, for example as in Table 10.

Table 10.

x F1(x) F2(x) F3(x)

0 0.0 0.0 0.0

a 0.0 0.0 0.0

b 0.2 0.0 0.3

c 0.2 0.3 0.0

d 0.3 0.4 0.3

1 0.5 0.6 0.7

It is easy to see that FA is a filter, but F1, F2, F3 a re not all filters (F1 is not
a filter).
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Remark 4.3. Let R be a fuzzy relation defined on the set X = {0, b, c, d, e, 1}
by the Table 11.

Table 11.

R 0 b c d 1

0 1.0 0.4 0.6 0.7 0.8

b 0.0 1.0 0.0 0.4 0.7

c 0.0 0.0 1.0 0.2 0.7

d 0.0 0.0 0.0 1.0 0.8

1 0.0 0.0 0.0 0.0 1.0

.

Also, let F1 and F2 two filters, and FA their aggregation as in Table 12.

Table 12.

x F1(x) F2(x) FA(x)

0 0.0 0.0 0.0

b 0.3 0.0 0.0

c 0.0 0.2 0.0

d 0.6 0.4 0.4

1 0.8 0.7 0.7

Put FA(x) = inf(F1(x), F2(x)). Table 12 shows that the aggregation of a finite
family of prime (resp. maximal) filters is not prime (resp. maximal) filter. Even
FA(x) = inf(F1(x), F2(x)).

Proposition 4.2. Let (Xi, Ri)i∈I
be a family of fuzzy lattices, (Fi)i∈I a family

of fuzzy subsets such that Fi : Xi → U and A : Un → U is an aggregation defined

by A(x1, . . . , xn) = xα1

1 ∧ · · · ∧ xαn
n , where α1, . . . , αn ∈ R

∗
+. Let ℜA and FA be

two fuzzy sets defined on (
∏n

i=1Xi)
2 and

∏n
i=1 Xi by

ℜA((x1, . . . , xn), (y1, . . . , yn)) = A(R1(x1, y1), . . . , Rn(xn, yn))

and

FA(x1, . . . , xn) = A(F1(x1), . . . , Fn(xn)),

respectively. If Fi is a fuzzy filters of (Xi, Ri) for all i ∈ I, then FA is a fuzzy

filter of (
∏n

i=1Xi,ℜA).

Proof. (a) Let (x1, . . . , xn), (y1, . . . , yn) ∈
∏n

i=1 Xi such that FA(x1, . . . , xn) >
0 and ℜA((x1, . . . , xn), (y1, . . . , yn)) > 0. This is equivalent to A(F1(x1), . . . ,
Fn(xn)) > 0 and A(R1(x1, y1), . . . , Rn(xn, yn)) > 0. Hence, Fi(xi) > 0 and
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Ri(xi, yi) > 0, for all i ∈ I, thus Fi(yi) > 0 for all i ∈ I. Consequently
A(F1(y1), . . . , Fn(yn)) > 0, i.e., FA(y1, . . . , yn) > 0.

(b) Let (x1, . . . , xn), (y1, . . . , yn) ∈
∏n

i=1Xi such that

FA(x1, . . . , xn) > 0 and FA(y1, . . . , yn) > 0.

This is equivalent to A(F1(x1), . . . , Fn(xn)) > 0 and A(F1(y1), . . . , Fn(yn)) > 0.
Hence, Fi(xi) > 0 and Fi(yi) > 0 for all i ∈ I, this imply that Fi(xi ∧ yi) > 0
for all i ∈ I and that A(F1(x1 ∧ y1), . . . , Fn(xn ∧ yn)) > 0, this means FA(x1 ∧
y1, . . . , xn ∧ yn) > 0. Hence, FA((x1, . . . , xn) ∧ (y1, . . . , yn)) > 0, which complete
the proof of this proposition.

Remark 4.4. By duality, similar results can be obtained for the aggregation of
a family of ideals.

5. Conclusion and open questions

In this work, we have studied the aggregation of some finite families of fuzzy
structures, (Fuzzy binary relations and fuzzy filters). We have also studied the
relation between those families and their aggregations. It has established that the
aggregation of a family of fuzzy ordering relations is a fuzzy ordering relation.
Furthermore, the aggregation of a family of a complete lattices is a complete
lattice. Also, the aggregation of a family of right (resp. left) traces is a right
(resp. left) trace. Finally, the aggregation of a family of a fuzzy filters is a fuzzy
filter. The area of further research is to find, whether or not, is it possible to
extend this study to any L-fuzzy structures, where L is any lattice?
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