
Discussiones Mathematicae
General Algebra and Applications 38 (2018) 189–196
doi:10.7151/dmgaa.1292

THE ARMENDARIZ GRAPH OF A RING
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Abstract

In this paper we initiate the study of Armendariz graph of a commutative
ring R and investigate the basic properties of this graph such as diameter,
girth, domination number, etc. The Armendariz graph of a ring R, denoted
by A(R), is an undirected graph with nonzero zero-divisors of R[x] (i.e.,
Z(R[x])∗) as the vertex set, and two distinct vertices f(x) =

∑n

i=0
aix

i and
g(x) =

∑m

j=0
bjx

j are adjacent if and only if aibj = 0, for all i, j. It is shown
that A(R), a subgraph of Γ(R[x]), the zero divisor graph of the polynomial
ring R[x], have many graph properties in common with Γ(R[x]).
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1. Introduction

The concept of zero-divisor graph of a commutative ring was first introduced by
Beck in [3], who let all the elements of the ring be vertices of the graph. However,
he was mainly interested in colorings. In [1], Anderson and Livingston introduced
and studied the the zero-divisor graph of a commutative ring R, denoted by Γ(R),
whose vertices are the nonzero zero-divisors of R, and two distinct vertices x and
y are adjacent if and only if xy = 0.

Let us recall some standard terminology and notations which will be used
in this paper. Throughout, unless specially stated, R will be a commutative
ring with identity, Z(R) and Z(R)∗ = Z(R)\{0} will denote the set of all zero-
divisors of R and the nonzero zero-divisors of R, respectively. A ring R is said to

be Armendariz whenever
(
∑n

i=0 aix
i
)

(

∑m
j=0 bjx

j
)

= 0 implies that aibj = 0 for

all i and j, as introduced by Rege and Chhawchharia in [9] and is called reduced

if there is no nonzero nilpotent element of R. As usual, the rings of integers
and integers modulo n will be denoted by Z and Zn, respectively. For undefined
notions about ring theory, please see the book [6].

Let Γ be an undirected graph. Two adjacent vertices a and b in Γ are denoted
as a ∼ b. Γ is said to be connected if there is a path between any two distinct
vertices and is called totally disconnected if no vertices of Γ are adjacent. A graph
is called complete if any of its two distinct vertices are adjacent, i.e., there is an
edge between any pair of vertices, and is called planar if it can be drawn on the
plane without edges crossing except at endpoints. Let a and b be two distinct
vertices in Γ. Then the distance between a and b, denoted by d(a, b), is the length
of a shortest path connecting a and b. If such a path does not exists, then we write
d(a, b) = ∞. It is clear that d(a, a) = 0. The diameter of Γ will be denoted by
diam(Γ) and defined as diam(Γ) = sup{d(a, b) : a and b are vertices of Γ}. The
girth of Γ, denoted by girth(Γ), is the length of the shortest cycle in Γ, provided Γ
contains a cycle. If there is no cycle in Γ, then girth(Γ) = ∞. A nonempty subset
D of the vertex set V (Γ) is called a dominating set if every vertex V (Γ\D) is
adjacent to at least one vertex of D. Furthermore, the domination number γ(Γ)
is the number of vertices in a smallest dominating set for Γ. We refer the reader
to [4] for general background on graph theory and for all undefined notions used
in the text.

The main goal of this paper is to introduce and study some of the basic
properties of the Armendariz graph A(R) of R (in short A-graph of R). The
A-graph of R is an undirected graph with vertices nonzero zero-divisors of R[x]
(i.e., Z(R[x])∗), and two distinct vertices f(x) =

∑n
i=0aix

i and g(x) =
∑m

j=0bjx
j

are adjacent if and only if aibj = 0, for all i, j.

In Section 2, we start with some examples of A(R) and discuss certain con-
ditions under which A(R) coincides with Γ(R[x]). Also a set of necessary and
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sufficient conditions (see Theorem 1) for A(R) to be complete in terms of com-
pleteness of some other zero-divisor graphs is established. Moreover, in Theorem
2, we show that A(R) has a universal vertex if and only if Z(R) is an annihilator
ideal of R.

In Section 3, we investigate the graph properties of A(R) such as diameter,
girth, domination number, planarity. In this section we compute diam(A(R))
under some certain conditions (see Theorem 4). On the other hand, we get some
relations between diameter of A(R) and Γ(R[x]) (see Theorems 5, 6 and 7). One
can see Theorems 8 and 9 for the observations on the girth and domination
number of A(R).

2. Basic properties of A(R)

We start this section with some examples. It is clear that A(R) is a subgraph of
Γ(R[x]).

Example 1. Let R be a ring and R[x] be polynomial ring over R with indeter-
minate x. We denote the zero-divisor graph of R[x] by Γ(R[x]) as in [2]. If R is an
Armendariz ring, then the Armendariz graph of R and the zero-divisor graph of
R[x] are coincide. In specially, for a reduced ring R, A(R) and Γ(R[x]) coincide.

Example 2. Let R = Z8 × Z8. Then R acquires a ring structure where the
product is defined by (a,m)(b, n) = (ab, an + bm). The ring R is the so-called
trivial extension of the ring Z8 by the regular module Z8; in the literature this
is often denoted by R = Z8 ∝ Z8. Note that R is not an Armendariz ring as
it is shown in [9]. Let f(x) = (4, 2) + (4, 1)x and g(x) = (4, 0) + (4, 1)x. Then
f(x)g(x) = 0, but (4, 1)(4, 0) = (0, 4) 6= (0, 0). It means that f(x) and g(x) are
adjacent in Γ(R[x]) while f(x) and g(x) are not adjacent in A(R). Thus these
two graphs are different.

We recall the following Lemma as it is useful.

Lemma 1 [8, Theorem 2]. Let R be a commutative ring with identity. If f(x) =
a0 + a1x+ · · ·+ anx

n is zero-divisor in R[x], then there exists a nonzero element

b of R such that ba0 = ba1 = · · · = ban = 0.

Let R = Z2 × Z2. Then it is clear that Γ(R) is complete, but A(R) is not
complete. Indeed, put f(x) = (0, 1) + (0, 1)x and g(x) = (0, 1) + (0, 1)x2. Hence
f(x) ∼ (1, 0) ∼ g(x) is a path in A(R), but f(x) and g(x) are not adjacent.
However, there is a relationship between the zero-divisor graph of R and A-graph
of R as it is seen by the following theorem.

Theorem 1. Let R be a commutative ring and R 6= Z2×Z2. Then the following

situations are equivalent:
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(1) Γ(R[x]) is complete.

(2) A(R) is complete.

(3) Γ(R) is complete.

Proof. Observe that Γ(R) is a subgraph of A(R), which is a subgraph of Γ(R[x]).
Thus (1) ⇒ (2) ⇒ (3) is clear. (3) ⇔ (1) follows from [2, Theorem 3].

In the next theorem, we propose a necessary and sufficient condition for A(R)
to have an universal vertex.

Theorem 2. Let R be a commutative ring. A(R) has a universal vertex, i.e., a

vertex adjacent to every other vertex, if and only if Z(R) is an annihilator ideal

of R.

Proof. Let f(x) = a0+a1x+· · ·+anx
n ∈ Z(R[x])∗ be a universal vertex in A(R).

Then, for all r ∈ Z(R) ⊂ Z(R[x]), rai = 0 for i = 1, 2, . . . , n. Therefore, ai’s
are universal vertices in Γ(R). Thus, by [1, Theorem 2.5], either R is isomorphic
to Z2 × A, where A is an integral domain or Z(R) is an annihilator ideal. If R
is isomorphic to Z2 × A, then the coefficients of f(x), i.e., ai’s are either (1, 0)
or (0, a) with a ∈ A. However, in any case, f(x) is not adjacent to either (1, 0)
or (0, a) in A(R). Thus, R is not isomorphic to Z2 × A and hence Z(R) is an
annihilator ideal.

Conversely, let Z(R) be an annihilator ideal in R and let Z(R) = Ann(a) for
some nonzero element a of R. Then a is adjacent to all other vertices in A(R)
and hence A(R) has a universal vertex.

Proposition 1. Let R be a commutative ring not necessarily with identity. If

f(x) =
∑

aix
i and g(x) =

∑

bjx
j are distinct nonconstant polynomials of R[x]

with aibj = 0 for all i, j, then there exist r, s ∈ R such that r ∼ f ∼ g ∼ s ∼ r is

a cycle in A(R) or s ∼ f ∼ g ∼ s is a cycle in A(R).

Proof. Since f and g are zero-divisor polynomials, there exist r, s ∈ R such that
rai = sbj = 0 for all i, j by Lemma 1. If r = s, then r ∼ f ∼ g ∼ r is a
cycle. If r 6= s, then we get r ∼ f ∼ g ∼ s a path in A(R). If rs = 0, then
r ∼ f ∼ g ∼ s ∼ r is a cycle. If rs 6= 0, but sai = 0 for all i, then s ∼ f ∼ g ∼ s

is a cycle. If sai = r 6= 0 for all i, then r ∼ f ∼ g ∼ r is a cycle. If both rs 6= 0
and sai 6= 0, sai 6= r and for some i, then we obtain a cycle r ∼ f ∼ g ∼ sai ∼ r

in A(R).

So we conclude the following result.

Corollary 1. Let R be a commutative ring and f a nonconstant polynomial of

R[x]. If f is a vertex of A(R), then there exist a cycle of length 3 or 4 in A(R)
including f as one vertex.
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In the next theorem, we provide a sufficient condition forA(R) to be bipartite.

Theorem 3. Let R1 and R2 be two integral domains and R = R1 × R2. Then

A(R) is bipartite.

Proof. Observe that vertices of A(R) are either of the form
∑

(ri1, 0R2
)xi or

of the form
∑

(0R1
, rj2)x

j , with ri1 ∈ R1, rj2 ∈ R2 and 0R1
and 0R2

are the
additive identities of R1 and R2, respectively. Let V1 be the collection of all
vertices of the form

∑

(ri1, 0R2
)xi and V2 be the collection of all vertices of the

form
∑

(0R1
, rj2)x

j. As R1 and R2 are integral domians, it follows that A(R) is
bipartite graph with V1 and V2 as the partite sets.

3. Diameter, girth and domination number of A(R)

In this section, we study the diameter, girth, domination number and planarity of
A(R). In particular, we show that A(R) is connected and its diameter is less than
or equal to 3. Also, certain conditions are established under which the diameter
is 2 and 3.

Theorem 4. Let R be a commutative ring. Then A(R) is connected and its

diameter is less than or equal to 3.

Proof. Let f(x), g(x) be two distinct polynomials in Z(R[x])∗. If they are ad-
jacent, we are done. Otherwise, there exist some nonzero elements r, s ∈ R such
that rf(x) = 0 = sg(x) by Lemma 1. Now, we have two possibilities: rs is zero
or nonzero. If rs is not equal to zero, then set h(x) = rs (constant polynomial).
Thus, f(x) and g(x) are both adjacent to h(x), i.e., we have the path f ∼ h ∼ g.
Hence the distance of f and g is 2.

If rs = 0, then set h(x) = r and k(x) = s (both constant polynomials). Then,
f(x) is adjacent to h(x), which is adjacent to k(x), which is adjacent to g(x), i.e.,
we have the path f ∼ h ∼ k ∼ g. If r = s, then f ∼ h ∼ g is a path. Hence the
distance of f(x) and g(x) is less than or equal to 3.

Now, we have diam(A(R)) = 1 if and only if diam(Γ(R[x])) = 1 by Theorem
1 except that the trivial case. We also have diam(A(R)) ≤ 3. On the other hand,
since Γ(R) is an induced subgraph of A(R), we have diam(Γ(R)) ≤ diam(A(R)).

Theorem 5. Let R be a commutative ring. Then diam(A(R)) = 2 if and only if

diam(Γ(R[x])) = 2.

Proof. Suppose that diam(A(R)) = 2. As A(R) is a subgraph of Γ(R[x]), it is
clear that diam(Γ(R[x])) ≤ 2. If diam(Γ(R[x])) = 1, then we have diam(A(R)) =
1 by Theorem 1 which is a contradiction. Thus we have diam(Γ(R[x])) = 2.



194 C. Abdİoğlu, E. Çelİkel and A. Das

Conversely suppose that diam(Γ(R[x])) = 2. By Theorem 3.4(3) in [7], diam
(Γ(R[x])) = 2 implies either R is a reduced ring with exactly two minimal primes,
or R is a McCoy ring and Z(R) is an ideal with Z(R)2 6= (0). If R is a reduced
ring, then R is an Armendariz ring and as a result Γ(R[x]) and A(R) are same by
Example 1 (3). On the other hand, let R be a McCoy ring such that Z(R) is an
ideal and f = a0+a1x+· · ·+anx

n, g = b0+b1x+· · ·+bmxm ∈ Z(R[x])∗. Consider
the finitely generated ideal A = (a0, a1, . . . , an, b0, b1, . . . , bm). Clearly A ⊆ Z(R).
As R is a McCoy ring, there exists a nonzero annihilator r ∈ Z(R) of A and
hence we have f(x) ∼ r ∼ g(x) in A(R) Thus, in any case, diam(A(R)) = 2.

Theorem 6. Let R be a commutative ring. Then diam(Γ(R[x])) = 3 if and only

if diam(A(R)) = 3.

Proof. Suppose that diam(Γ(R[x])) = 3. As A(R) is a subgraph of Γ(R[x]),
it is clear that diam(A(R)) ≥ 3. On the other hand, from Theorem 4, we have
diam(A(R)) ≤ 3. Thus we have the equality. Conversely assume that diam(A(R))
= 3 and diam(Γ(R[x])) < 3. Then diam(Γ(R[x])) = 1 or 2. However, if diam
(Γ(R[x])) = 1, i.e., Γ(R[x] is complete, then A(R) is complete by Theorem 1,
a contradiction. And if diam(Γ(R[x])) = 2, by Theorem 5, diam(A(R)) = 2, a
contradiction. Thus diam(Γ(R[x])) = 3; so we are done.

In the view of the above theorems, we have the following corollary.

Corollary 2. Let R be a commutative ring. Then diam(A(R)) = diam(Γ(R[x])).

Proof. The corollary follows from Theorem 1, Theorem 5 and Theorem 6.

Theorem 7. Let R be a commutative Noetherian ring with more than one non-

zero zero-divisors and R 6∼= Z2 × Z2. Then diam(A(R)) = diam(Γ(R[x])) =
diam(Γ(R)).

Proof. We note that as A(R) and Γ(R[x]) have same vertex set, diam(A(R)) ≥
diam(Γ(R[x])). As it is shown in [1], diam(Γ(R)) ∈ {1, 2, 3}. If diam(Γ(R)) = 1,
then diam(A(R)) = diam(Γ(R[x])) = diam(Γ(R)) = 1 by Theorem 1. If diam
(Γ(R)) = 2, then diam(Γ(R[x])) = 2 by [2, Theorem 3.11]. Hence diam(A(R)) =
2 by Theorem 5. Now suppose that diam(Γ(R)) = 3. Since 1 ≤ diam(Γ(R)) ≤
diam(Γ(R[x])) ≤ diam(A(R)) ≤ 3 from Theroem 4, we conclude diam(A(R)) =
diam(Γ(R[x])) = 3 as needed.

Theorem 8. Let R be a commutative ring. Then girth(A(R)) ≤ 4. If R is not

reduced, then girth(A(R)) = 3.

Proof. If there exists two distinct nonzero elements a, b ∈ R such that ab = 0,
then consider the cycle a ∼ b ∼ f(x) ∼ g(x) ∼ a in A(R) where f(x) = ax

and g(x) = bx. If a is a nonzero nilpotent element in R with n > 1 being the
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degree of nilpotency, then consider the cycle a ∼ α(x) ∼ β(x) ∼ a in A(R), where
α(x) = an−1x and β(x) = an−1x2. Thus the theorem follows.

Theorem 9. Let R be a commutative ring. Then the domination number γ(A(R))
satisfies the following relation γ(Γ(R)) ≤ γ(A(R)) ≤ |Z(R)∗|.

Proof. It is known that for all zero-divisor f(x) ∈ R[x], there exists a nonzero
zero-divisor r in R, i.e., r ∈ Z(R)∗, such that rf(x) = 0. Thus Z(R)∗ is a
dominating set in A(R) and hence γ(A(R)) ≤ |Z(R)∗|. On the other hand, Let S
be a γ(A(R))-set in A(R). Then for all r ∈ Z(R)∗ ⊂ Z(R[x])∗, there exists f ∈ S
such that rf(x) = 0. In particular, rf(0) = 0. Let T = {f(0) : f ∈ S}. Clearly
T is a dominating set for Γ(R) and |T | ≤ |S|. Thus γ(Γ(R)) ≤ γ(A(R)).

Remark 1. Since Γ(R) is a subgraph of A(R), observe that if A(R) is planar,
then Γ(R) is planar.

The following theorem shows that the converse of the remark need not to be
true in general.

Theorem 10. For any ring R with at least one zero-divisor, A(R) is not planar.

Proof. Let a be a nonzero zero-divisor of R. Then there exists b ∈ R such
that ab = 0. Consider the subgraph 〈S〉 induced by S = S1 ∪ S2 where S1 =
{a, ax, ax2} and S2 = {bx3, bx4, bx5}. Clearly 〈S〉 contains a complete bipartite
graph K3,3 with S1 and S2 being the two partite sets. Thus as A(R) contains
K3,3 as a subgraph, A(R) is not planar.

4. Conclusion

In this paper, we introduce the notion of Armendariz graph of a ring R and study
some of its basic graph properties. It was observed that though, in general, A(R)
is a proper subgraph of Γ(R[x]), they have many graph properties like diameter,
completeness etc. in common. This indicates the existence of a graph lying
strictly between Γ(R) and Γ(R[x]), with similar properties with respect to both
of them.

In fact, the definition of the Armendariz graph arises from a general construc-
tion in graph theory, which may or may not have been studied previously. Let
G be an undirected graph. Let G(0) be the graph obtained from G by adjoining
an additional vertex denoted by 0, i.e., V (G(0)) = V (G) ∪ {0}, and connect 0 to
every other vertex, i.e., E(G(0)) = E(G) ∪ {(0, v) : v ∈ V (G)}. Then define a
“direct sum graph” ⊕G by

V (⊕G) = {(v1, v2, v3, . . .) : vi ∈ G(0) for all i; 0 < |{i : vi 6= 0}| < ∞},

E(⊕G) = {((v1, v2, v3, . . .), (w1, w2, w3, . . .)) : (vi, wj) ∈ E
(

G(0)
)

for all i, j}.
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Note that A(R) = ⊕G where G = Γ(R). In this sense, one might regard A(R) as
a graph-theoretic intermediary for studying Γ(R[x]).

Some of the issues for future research in this direction may be to study
other graph properties like n-partiteness, bipartiteness in general, independence
number etc. from graph theoretic point of view. Another interesting aspect may
be to study the Armendariz graphs in non-commutative setting or under certain
restrictions like Noetherian, Artinian rings etc.
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