LOCAL COHOMOLOGY MODULES AND RELATIVE COHEN-MACAULAYNESS

M. Mast Zohouri

Department of Mathematics Payame Noor University Tehran, 19395-3697, Iran

e-mail: m.mast.zohouri@gmail.com

Abstract

Let (R, \mathfrak{m}) denote a commutative Noetherian local ring and let M be a finite R-module. In this paper, we study relative Cohen-Macaulay rings with respect to a proper ideal \mathfrak{a} of R and give some results on such rings in relation with Artinianness, Non-Artinianness of local cohomology modules and Lyubeznik numbers. We also present some related examples to this issue

Keywords: local cohomology modules, Lyubeznik numbers, Non-Artinian modules, relative Cohen-Macaulayness.

2010 Mathematics Subject Classification: Primary 13D45; Secondary 13C14, 13E10.

1. Introduction

Throughout this paper, we assume that (R, \mathfrak{m}) is a commutative Noetherian local ring with maximal ideal \mathfrak{m} and \mathfrak{a} an ideal of R. For any non-zero R-module M, the ith local cohomology module of M is defined as

$$H^i_{\mathfrak{a}}(M) := \lim_{\substack{n \to \\ n \ge 1}} \operatorname{Ext}^i_R(R/\mathfrak{a}^n, M).$$

 $V(\mathfrak{a})$ denotes the set of all prime ideals of R containing \mathfrak{a} . For an R-module M, the cohomological dimension of M with respect to \mathfrak{a} is defined as $cd(\mathfrak{a}, M) := \sup\{i \in \mathbb{Z} \mid H^i_{\mathfrak{a}}(M) \neq 0\}$ which is known that for a local ring (R, \mathfrak{m}) and $\mathfrak{a} = \mathfrak{m}$, this is equal to dimension of M. In [14], an R-module M is called relative Cohen-Macaulay w.r.t \mathfrak{a} if there is precisely one non-vanishing local cohomology module

198 M. Mast Zohouri

of M w.r.t \mathfrak{a} , i.e., grade(\mathfrak{a} , M) = cd(\mathfrak{a} , M). Recently, in [10], we have studied such modules. In the present paper, we will use this concept and derive some new results about local cohomology modules. It is well known that $H_{\mathfrak{a}}^{\dim M}(M)$ is an Artinian module. Artinianness and Non-Artinianness of local cohomology modules has been studied by many authors such as [1, 3], and [6]. As the first main result we prove that if M is a finite relative Cohen-Macaulay local ring w.r.t \mathfrak{a} with height_R $\mathfrak{a} = h$, then dim Supp_R $H_{\mathfrak{a}}^h(M) = \dim M/\mathfrak{a}M$ (Proposition 2.1).

Proposition 2.1 opens the door for some interesting examples and corollaries. Consequently, if (R, \mathfrak{m}) is a relative Cohen-Macaulay local ring w.r.t \mathfrak{a} with height_R $\mathfrak{a} = h$ and dim $R/\mathfrak{a} > 0$, then the local cohomology module $H^h_{\mathfrak{a}}(R)$ is not Artinian (see Corollary 2.6). This gives us two interesting results. As the first one, by assumptions of Corollary 2.6, we show that the inequality $f - \operatorname{depth}(\mathfrak{a}, M) \leq \operatorname{height}_M \mathfrak{a}$ proved in [12, Proposition 3.5] becomes an equality for the "ring" case, where $f - \operatorname{depth}(\mathfrak{a}, M)$ is defined as the least integer i such that $H^i_{\mathfrak{a}}(M)$ is not Artinian. We show that if (R, \mathfrak{m}) is a relative Cohen-Macaulay local ring w.r.t \mathfrak{a} and dim $R/\mathfrak{a} > 0$, then $f - \operatorname{depth}(\mathfrak{a}, R) = \operatorname{height}_R \mathfrak{a}$ (see Corollary 2.8). As an another consequence of Corollary 2.6, we get the equality $f_{\mathfrak{a}}(R) = f - \operatorname{depth}(\mathfrak{a}, R)$ (see Corollary 2.10), where the notion finiteness dimension of M relative to \mathfrak{a} , $f_{\mathfrak{a}}(M)$, is defined by

$$f_{\mathfrak{a}}(M) := \inf \left\{ i \in \mathbb{N}_0 : H^i_{\mathfrak{a}}(M) \text{ is not finitely generated} \right\}.$$

By convention, the infimum of the empty set of integers is interpreted by ∞ .

Now, assume that R is a local ring which admits a surjection from an n-dimensional regular local ring S containing a field, \mathfrak{a} be the kernel of surjection and $k = S/\mathfrak{m}$. Lyubeznik numbers defined in [11] as the Bass numbers $\lambda_{i,j}(R) = \dim_k \operatorname{Ext}_S^i(k, H_{\mathfrak{a}}^{n-j}(S))$ depend only on R, i and j but neither on S nor on the surjection $S \to R$. Lyubeznik numbers carry some topological and geometrical information and all are finite. For more applications of such invariants we refer the reader to [11]. We present the following result on Lyubeznik numbers.

If (R, \mathfrak{m}, k) is a regular local ring containing a field which is relative Cohen-Macaulay w.r.t \mathfrak{a} , then the Lyubeznik table of R/\mathfrak{a} is trivial as follows:

$$\Lambda(R/\mathfrak{a}) = \left(\begin{array}{ccc} 0 & \dots & 0 \\ & \ddots & \vdots \\ & & 1 \end{array}\right)$$

that is, $\lambda_{i,j}(R/\mathfrak{a}) = 1$ whenever $i = j = \dim R/\mathfrak{a}$ and otherwise $\lambda_{i,j}(R/\mathfrak{a}) = 0$ (Proposition 2.11).

In the process, in Proposition 2.15 we show that $H_{\mathfrak{a}}^{\operatorname{cd}(\mathfrak{a},R)}(R)$ is indecomposable, where (R,\mathfrak{m}) is relative Cohen-Macaulay local ring w.r.t \mathfrak{a} and $\operatorname{Supp}_R(R/\mathfrak{a}) \subseteq V(\mathfrak{m})$.

The notion of generalized local cohomology of two R-modules on a local ring (R, \mathfrak{m}) introduced by Herzog in [8]. For each $i \in \mathbb{N}_0$, the ith generalized local cohomology module $H^i_{\mathfrak{a}}(M, N)$ of two R-modules M and N with respect to an ideal \mathfrak{a} is defined by

$$H^i_{\mathfrak{a}}(M,N) = \lim_{\substack{n \\ n>1}} \operatorname{Ext}^i_R(M/\mathfrak{a}^n M, N).$$

Clearly, $H^i_{\mathfrak{a}}(R,N)$ corresponds to the ordinary local cohomology module $H^i_{\mathfrak{a}}(N)$ of N with respect to \mathfrak{a} . By applying this notion and relative Cohen-Macaulay property, we prove the Artinianness of local cohomology modules as follows.

Let M be a finite module of finite projective dimension n over a local ring (R, \mathfrak{m}) and N be a non-zero relative Cohen-Macaulay R-module w.r.t \mathfrak{a} with height $\mathfrak{n} = h$ such that Supp $N/\mathfrak{a}N \subseteq V(\mathfrak{m})$. Then $H^{n+h}_{\mathfrak{a}}(M,N)$ is Artinian. In particular, $H^{n+h}_{\mathfrak{a}}(N)$ is Artinian (Theorem 2.16).

Throughout, (R, \mathfrak{m}) denotes a commutative Noetherian local ring. For unexplained notation and terminology about local cohomology modules, we refer the reader to [1].

2. ARTINIAN AND NON-ARTINIAN LOCAL COHOMOLOGY MODULES

Recall that for a prime ideal $\mathfrak{p} \in \operatorname{Supp}_R(M)$, the M-height of \mathfrak{p} is defined by $\operatorname{height}_M \mathfrak{p} = \dim M_{\mathfrak{p}}$. If \mathfrak{a} is an ideal of R, the M-height of \mathfrak{a} is defined to be $\operatorname{height}_M \mathfrak{a} = \inf\{\operatorname{height}_M \mathfrak{p} \mid \mathfrak{p} \in \operatorname{Supp}_R(M) \cap \operatorname{V}(\mathfrak{a})\}$. Notice that $\operatorname{height}_M \mathfrak{a} \geq 0$ whenever $M \neq \mathfrak{a}M$. In [14], an R-module M is called relative Cohen-Macaulay w.r.t \mathfrak{a} if $H^i_{\mathfrak{a}}(M) = 0$ for all $i \neq \operatorname{height}_M \mathfrak{a}$. In other words, this is the case if and only if $\operatorname{grade}(\mathfrak{a}, M) = \operatorname{cd}(\mathfrak{a}, M)$. We begin this section with the following result.

Proposition 2.1. Let M be a finite relative Cohen-Macaulay local ring w.r.t \mathfrak{g} with height_R $\mathfrak{g} = h$. Then

$$\dim\operatorname{Supp}_R H_{\mathfrak{a}}^h(M) = \dim M/\mathfrak{a}M$$

Proof. As $\operatorname{Supp}_R H^h_{\mathfrak{a}}(M) \subseteq \operatorname{V}(\mathfrak{a}) \cap \operatorname{Supp}_R M$, we get $\dim \operatorname{Supp}_R H^h_{\mathfrak{a}}(M) \leq \dim_R M/\mathfrak{a}M$. Where as, since M is relative Cohen-Macaulay R-module w.r.t \mathfrak{a} , $M_{\mathfrak{p}}$ is Cohen-Macaulay for all $\mathfrak{p} \in \operatorname{V}(\mathfrak{a})$ with $\operatorname{height}_R \mathfrak{p} = h$. In fact, in view of [1, Theorem 4.3.2 and Theorem 6.1.4], we have

$$(H^h_{\mathfrak{a}}(M))_{\mathfrak{p}} \cong H^h_{\mathfrak{a}R_{\mathfrak{p}}}(M_{\mathfrak{p}}) \cong H^h_{\mathfrak{p}R_{\mathfrak{p}}}(M_{\mathfrak{p}}) \neq 0.$$

Hence $\mathfrak{p} \in \operatorname{Supp}_R H^h_{\mathfrak{a}}(M)$. Therefore,

$$\dim \operatorname{Supp}_R H_{\mathfrak{a}}^h(M) \geq \dim M/\mathfrak{a}M,$$

which completes the proof.

Corollary 2.2. Let (R, \mathfrak{m}) be a relative Cohen-Macaulay local ring w.r.t \mathfrak{a} with height_R $\mathfrak{a} = h$. Then

$$\dim \operatorname{Supp}_R H_{\mathfrak{a}}^h(R) = \dim R - h.$$

Proof. It follows easily by Proposition 2.1 and [6, Corollary 3.3].

Example 2.3. Let (R, \mathfrak{m}) be a local ring and $\mathfrak{a} \subseteq R$ an ideal such that $\mathfrak{a} = (x_1, \ldots, x_i)$, where x_1, \ldots, x_i is regular. Then $\dim \operatorname{Supp}_R H^i_{(x_1, \ldots, x_i)}(R) = \dim R - i$.

Remark 2.4 (cf. [5, Corollary 4.3]). Let $R = k[x_1, \ldots, x_n]$ be a polynomial ring in n variables x_1, \ldots, x_n over a field k and \mathfrak{a} be a squarefree monomial ideal of R. Then, the following are equivalent:

- (i) $H^i_{\mathfrak{a}}(R) = 0$ for all $i \neq \operatorname{height}_R \mathfrak{a}$, i.e., \mathfrak{a} is cohomologically a complete intersection ideal.
- (ii) R/\mathfrak{a} is a Cohen-Macaulay ring.

The above remark help us to bring the following example which has been calculated using CoCoA to provide an example to Corollary 2.2.

Example 2.5. Let $R = k[x_1, \dots, x_6]$ be a polynomial ring over a field k and

$$\mathfrak{a} = (x_1 x_2 x_3, x_1 x_2 x_4, x_1 x_3 x_5, x_1 x_4 x_6, x_1 x_5 x_6, x_2 x_3 x_6, x_2 x_4 x_5, x_2 x_5 x_6, x_3 x_4 x_5, x_3 x_4 x_6)$$

an ideal of R. By using CoCoA [2], depth $R/\mathfrak{a} = 3 = \dim R/\mathfrak{a}$, i.e., R/\mathfrak{a} is a Cohen-Macaulay ring. By virtue of Remark 2.4, $H^i_{\mathfrak{a}}(R) = 0$ for all $i \neq 3$. Therefore dim $H^3_{\mathfrak{a}}(R) = 3$ by Corollary 2.2.

As a consequence of Corollary 2.2, we give the following result.

Corollary 2.6. Let (R, \mathfrak{m}) be a relative Cohen-Macaulay local ring w.r.t \mathfrak{a} with height_R $\mathfrak{a} = h$ and dim $R/\mathfrak{a} > 0$. Then $H^h_{\mathfrak{a}}(R)$ is not Artinian.

Proof. In view of Corollary 2.2, we have

$$\dim H^h_{\mathfrak{a}}(R) = \dim \operatorname{Supp}_R H^h_{\mathfrak{a}}(R) > 0.$$

Thus $H^h_{\mathfrak{a}}(R)$ is not Artinian.

Now, we recall the notion *filter-depth* and some results about it in order to turn out Corollary 2.8.

Definition 2.7 (see [9]). Let (R, \mathfrak{m}) be a local ring, $\mathfrak{a} \subseteq R$ an ideal and M a finite R-module such that $\operatorname{Supp}_R M/\mathfrak{a}M \not\subset \{\mathfrak{m}\}$, then the filter-depth of M with respect to \mathfrak{a} is as

$$f-\operatorname{depth}(\mathfrak{a},M)=\min\big\{\operatorname{depth}_{\mathfrak{a}R_{\mathfrak{p}}}M_{\mathfrak{p}}\mid \mathfrak{p}\in\operatorname{Supp}_{R}M/\mathfrak{a}M\setminus\{\mathfrak{m}\}\big\}.$$

In view of [9, Theorem 3.1], we have if (R, \mathfrak{m}) is a local ring, $\mathfrak{a} \subseteq R$ an ideal and M a finite R-module such that $\operatorname{Supp}_R M/\mathfrak{a}M \not\subset \{\mathfrak{m}\}$, then

$$f - \operatorname{depth}(\mathfrak{a}, M) = \min \{ s \mid H^s_{\mathfrak{a}}(M) \text{ is not Artinian} \}.$$

Consequently, it follows from [12, Proposition 3.5] that if $\dim(M/\mathfrak{a}M) > 0$, then

$$\operatorname{depth}(\mathfrak{a}, M) \leq f - \operatorname{depth}(\mathfrak{a}, M) \leq \operatorname{height}_{M} \mathfrak{a}.$$

We are now able to state our next result which is a consequence of Corollary 2.6 and it shows that the inequality $f - \operatorname{depth}(\mathfrak{a}, M) \leq \operatorname{height}_M \mathfrak{a}$ from [12, Proposition 3.5] will becomes an equality for the "ring" case.

Corollary 2.8. Let (R, \mathfrak{m}) be a relative Cohen-Macaulay local ring w.r.t \mathfrak{a} and $\dim R/\mathfrak{a} > 0$. Then

$$f - \operatorname{depth}(\mathfrak{a}, R) = \operatorname{height}_R \mathfrak{a}.$$

Proof. Apply Corollary 2.6.

Example 2.9. Let $R = k[x_1, ..., x_4]$ be a polynomial ring over a field k and $S := kx_1, ..., x_4$ be the local ring and $\mathfrak{a} = (x_1x_3, x_2x_4)$ be an ideal of S. By using CoCoA [2], we get S/\mathfrak{a} is Cohen-Macaulay ring and clearly height $\mathfrak{g} = 2$. Then by Remark 2.4 and Corollary 2.8, we get $f - \operatorname{depth}(\mathfrak{a}, S) = 2$.

Recall the notion $f_{\mathfrak{a}}(M)$, the finiteness dimension of M relative \mathfrak{a} , is defined to be the least integer i such that $H^i_{\mathfrak{a}}(M)$ is not finite, if there exist such i's and ∞ otherwise. Notice that if M is a relative Cohen-Macaulay R-module w.r.t \mathfrak{a} , then obviously $f_{\mathfrak{a}}(M) = \operatorname{height}_M \mathfrak{a}$. Hence, in conjunction with Corollary 2.8, we get the following result.

Corollary 2.10. Let (R, \mathfrak{m}) be a relative Cohen-Macaulay local ring w.r.t \mathfrak{a} and $\dim R/\mathfrak{a} > 0$. Then

$$f_{\mathfrak{a}}(R) = f - \operatorname{depth}(\mathfrak{a}, R).$$

Now recall the concept of Lyubeznik numbers due to [11]. Let R be a local ring which admits a surjection from an n-dimensional regular local ring S containing a field, \mathfrak{a} be the kernel of surjection and $k = S/\mathfrak{m}$. The Bass numbers $\lambda_{i,j}(R) = \dim_k \operatorname{Ext}_S^i(k, H_{\mathfrak{a}}^{n-j}(S))$ known as Lyubeznik numbers of R which depend only on R, i and j but neither on S nor on the surjection $S \to R$. Let $d = \dim(R)$. Lyubeznik numbers satisfy the following properties:

- (a) $\lambda_{i,j}(R) = 0$ for j > d or i > j.
- (b) $\lambda_{d,d}(R) \neq 0$.

Therefore, we collect them in the so-called Lyubeznik table:

$$\Lambda(R) = \begin{pmatrix} \lambda_{0,0} & \dots & \lambda_{0,d} \\ & \ddots & \vdots \\ & & \lambda_{d,d} \end{pmatrix}$$

and the Lyubeznik table is *trivial* if $\lambda_{d,d} = 1$ and the rest of these invariants vanish, where $d = \dim(R)$ (see [11]).

We now state the following result.

Proposition 2.11. Let (R, \mathfrak{m}, k) be a local regular ring containing a field which is relative Cohen-Macaulay w.r.t \mathfrak{a} . Then $\lambda_{i,j}(R/\mathfrak{a}) = 1$ whenever $i = j = \dim R/\mathfrak{a}$ and otherwise $\lambda_{i,j}(R/\mathfrak{a}) = 0$.

Proof. As

$$H^i_{\mathfrak{m}}(H^{d-j}_{\mathfrak{a}}(R)) \Longrightarrow H^{i+d-j}_{\mathfrak{m}}(R)$$

from Corollary 2.2, if $i = j = \dim R/\mathfrak{a}$, then

$$H_{\mathfrak{m}}^{\dim R/\mathfrak{a}}(H_{\mathfrak{a}}^{d-\dim R/\mathfrak{a}}(R/\mathfrak{a})) \Longrightarrow H_{\mathfrak{m}}^{d}(R) \neq 0.$$

For $i = j = \dim R/\mathfrak{a}$, we have

$$\lambda_{i,j}(R/\mathfrak{a}) = \dim_k \operatorname{Hom}_R(k, H^i_{\mathfrak{a}}(H^{d-j}_{\mathfrak{a}}(R))) = \dim_k \operatorname{Hom}_R(k, E) = 1,$$

where E is the injective hull of k. Otherwise $\lambda_{i,j}(R/\mathfrak{a}) = 0$.

In order to prove Proposition 2.15, we recall the following definitions.

Definition 2.12 (see [13] and [15]). For a commutative local ring R, let \sum_R be the direct sum $\bigoplus_{\mathfrak{m}\in \operatorname{Max}\operatorname{Spec}(R)}R/\mathfrak{m}$ of all simple R-modules, E_R be the injective hull of \sum_R , and $D_R(-)$ be the functor $\operatorname{Hom}_R(-, E_R)$. (Note that $D_R(-)$ is a natural generalization of Matlis duality functor to non-local rings.)

Definition 2.13 (see [7]). An R-module M is called \mathfrak{a} -cofinite if $\operatorname{Supp}_R(M) \subseteq V(\mathfrak{a})$ and $\operatorname{Ext}_R^j(R/\mathfrak{a},M)$ is finite for all $j \geq 0$.

Remark 2.14 (see [4, Theorem 2.1]). For a finite R-module M and a non-negative integer c if $H^i_{\mathfrak{a}}(M)$ is \mathfrak{a} -cofinite for all i < c then $\operatorname{Hom}_R(R/\mathfrak{a}, H^c_{\mathfrak{a}}(M))$ is finite.

We now bring the following result.

Proposition 2.15. Let (R, \mathfrak{m}) be a relative Cohen-Macaulay local ring w.r.t \mathfrak{a} with height_R $\mathfrak{a} = h$ and $\operatorname{Supp}_R(R/\mathfrak{a}) \subseteq V(\mathfrak{m})$. Then $H^h_{\mathfrak{a}}(R)$ is indecomposable.

Proof. By assumption, $H^i_{\mathfrak{a}}(R)=0$ for all i< h and so $H^i_{\mathfrak{a}}(R)$ is \mathfrak{a} -cofinite for all i< h. Hence, $\operatorname{Hom}_R(R/\mathfrak{a},H^h_{\mathfrak{a}}(R))$ is finite from Remark 2.14. Since $\operatorname{Supp}_R(R/\mathfrak{a})\subseteq V(\mathfrak{m})$, it deduces $\operatorname{Hom}_R(R/\mathfrak{a},H^h_{\mathfrak{a}}(R))$ is Artinian. Thus, in view of [1, Theorem 7.1.2], $H^h_{\mathfrak{a}}(R)$ is Artinian over R. Without loss of generality, we may assume that R is a complete ring too. We suppose that $H^h_{\mathfrak{a}}(R)$ is not indecomposable and we look for a contradiction. Let $H^h_{\mathfrak{a}}(R)=U\oplus V$, where U and V are non-zero Artinian R-modules. Hence, $D_R(H^h_{\mathfrak{a}}(R))=D_R(U)\oplus D_R(V)$. Since $D_R(H^h_{\mathfrak{a}}(R))$ is indecomposable by [14, Corollary 4.9], it follows that D(U)=0 or D(V)=0. Therefore, U=0 or V=0 which is a contradiction.

Recall that for each $i \in \mathbb{N}_0$, the ith generalized local cohomology module $H^i_{\mathfrak{g}}(M,N)$ of two R-modules M and N with respect to an ideal \mathfrak{a} is defined by

$$H^i_{\mathfrak{a}}(M,N) = \lim_{\substack{n \to 1 \\ n > 1}} \operatorname{Ext}^i_R(M/\mathfrak{a}^n M, N).$$

It is clear that $H^i_{\mathfrak{a}}(R,N)$ is just the ordinary local cohomology module $H^i_{\mathfrak{a}}(N)$ of N with respect to \mathfrak{a} .

The following theorem deals with the Artinianness of local cohomology modules.

Theorem 2.16. Let M be a finite module of finite projective dimension n over a local ring (R, \mathfrak{m}) and N be a non-zero relative Cohen-Macaulay R-module w.r.t \mathfrak{a} with height $\mathfrak{g} = h$ such that $\operatorname{Supp} N/\mathfrak{a}N \subseteq V(\mathfrak{m})$. Then $H^{n+h}_{\mathfrak{a}}(M,N)$ is Artinian. In particular, if M = R, then $H^{n+h}_{\mathfrak{a}}(N)$ is Artinian.

Proof. We use induction on pd(M). If pd(M) = 0, then $M \oplus M' \cong R^t$ for some R-module M' and some integer t. Thus

$$H^h_{\mathfrak{a}}(M,N) \oplus H^h_{\mathfrak{a}}(M',N) \cong H^h_{\mathfrak{a}}(R^t,N) \cong H^h_{\mathfrak{a}}(N)^t$$

Since Supp $N/\mathfrak{a}N \subseteq V(\mathfrak{m}),\ H^h_{\mathfrak{a}}(N)$ is Artinian as we have seen in the proof of Proposition 2.15. Thus the assertion holds. Now, suppose that $\mathrm{pd}(M)>0$ and the assertion is true for any finite R-module K with $\mathrm{pd}(K)<\mathrm{pd}(M)$. Consider the exact sequence $0\to K\to F\to M\to 0$, where F is free R-module of finite rank and K is a finite R-module. Therefore, we get the following long exact sequence.

$$\ldots \to H_{\mathfrak{a}}^{n+h-1}(K,N) \to H_{\mathfrak{a}}^{n+h}(M,N) \to H_{\mathfrak{a}}^{n+h}(F,N) \to \ldots$$

But $H_{\mathfrak{a}}^{n+h-1}(K,N)$ is Artinian by induction hypothesis and $H_{\mathfrak{a}}^{n+h}(F,N)$ is Artinian by [16, 3.1]. Hence $H_{\mathfrak{a}}^{n+h}(M,N)$ is Artinian.

204 M. Mast Zohouri

Acknowledgements

The author is grateful to the reviewer for his/her careful reading of the paper and suggesting valuable comments and improvements kindly.

References

- [1] M.P. Brodmann and R.Y. Sharp, Local Cohomology: an Algebraic Introduction with Geometric Applications (Cambridge University Press, Cambridge, 2013).
- [2] CoCoATeam, CoCoA: A system for doing computation in Commutative Algebra, cocoa.dima.unige.it.
- [3] M.T. Dibaei and A. Vahidi, Artinian and non-Artinian local cohomology modules, Canad. Math. Bull. 54 (2011) 619–629.
 doi:10.4153/CMB-2011-042-5
- [4] M.T. Dibaei and S. Yassemi, Associated primes and cofiniteness of local cohomology modules, Manuscripta Math. 117 (2005) 199–205. doi:10.1007/s00229-005-0538-5
- [5] M. Eghbali, On set theoretically and cohomologically complete intersection ideals, Canad. Math. Bull. **57** (2014) 477–484.
- [6] V. Erdogdu and T. Yildirim, On the cohomological dimension of local cohomology modules, arXiv:1504.01148v2 [math.AC].
- [7] R. Hartshorne, Affine duality and cofiniteness, Invent. Math. 9 (1970) 145–164. doi:10.1007/BF01404554
- [8] J. Herzog, Komplex Auflosungen and Dualitat in der Lockalen Algebra, Habilitationss chrift (Universitat Regensburg, 1970).
- [9] L. Melkersson, Some applications of a criterion for artinianness of a module, J. Pure Appl. Algebra 101 (1995) 291–303. doi:10.1016/0022-4049(94)00059-R
- [10] M. Mast Zohouri, KH. Ahmadi Amoli, and S.O. Faramarzi, Relative Cohen-Macaulay filtered modules with a view toward relative Cohen-Macaulay modules, Math. Reports 20 (70), 3 (2018).
- [11] G. Lyubeznik, Finiteness properties of local cohomological modules (an application of D-modules to Commutative Algebra), Invent. Math. 113 (1993) 41–55. doi:10.1007/BF01244301
- [12] R. Lü and Z. Tang, The f-depth of an ideal on a module, Proc. Amer. Math. Soc. ${\bf 130}~(2001)~1905$ -1912. doi:10.1090/S0002-9939-01-06269-4
- [13] A. Ooishi, Matlis duality and the width of a module, Hiroshima Math. J. 6 (1976) 573–587. projecteuclid.org/euclid.hmj/1206136213.
- [14] M. Rahro Zargar, Some duality and equivalence results, arXiv:1308.3071v2 [math.AC].

- [15] A.S. Richardson, Co-localization, co-support and local cohomology, Rocky Mountain J. Math. 36 (2006) 1679–1703. doi:10.1216/rmjm/1181069391
- [16] N. Suzuki, On the generalized local cohomology and its duality, J. Math. Kyoto Univ. $\bf 18~(1978)~71–85.$ doi:10.1215/kjm/1250522630

Received 21 March 2018 Revised 5 July 2018 Accepted 12 July 2018