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Abstract

In the paper, we introduce the notion of a nondistributive ring N as
a generalization of the notion of an associative ring with unit, in which
the addition needs not be abelian and the distributive law is replaced by
n0 = On = 0 for every element n of N. For a nondistributive ring N, we
introduce the notion of a nondistributive ring of left quotients S™'N with
respect to a multiplicatively closed set S C N, and determine necessary and
sufficient conditions for the existence of S~1NV.
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1. INTRODUCTION

Since the publication of [4] by Dickson in 1905, there exists the notion of a left
nearfield defined as a generalization of the notion of a division ring, in which
the right distributive law is missing. Since the publication of [20] by Vandiver
in 1934, there exists the notion of a semiring R defined as a generalization of
the notion of an associative ring with unit, namely the lack of the requirement
that every element in R has an additive inverse is compensated in part by the
requirement that the multiplication by zero annihilates R, see [6] and the ref-
erences given there. A study of ring-like structures which are generalizations of
Boolean rings was initiated by Dorninger, Langer and Maczynski in the series
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of papers published in the years 1997-2001, see for instance [5] for the complete
list of mentioned papers. The present paper is intended to initiate a discussion
on nondistributive rings. We suggest defining a nondistributive ring N to be a
generalization of an associative ring with unit, in which the addition needs not
be abelian and the distributive law is replaced by n0 = On = 0 where n € N. In
Section 2 we present a few examples of nondistributive rings. Further examples
of nondistributive rings are submitted by interval arithmetic. For a deeper dis-
cussion on the arithmetic of approximate numbers we refer the readers to [11] of
Markov and the references given there. In ring theory, the notions of a semisim-
ple artinian ring, the Jacobson radical, a Jacobson semisimple ring, a Jacobson
radical ring are fundamental. Every Jacobson radical ring R is a group both with
respect to the addition and with respect to the circle operation ros =r+s+rs
where r, s € R. Both operations mentioned above have the same neutral element.
Substituting the multiplication in R for the circle operation we lose the distribu-
tivity. The above example motivates to take an interest in nondistributive rings
N, in which the postulate n0 = On = 0 where n € N needs not hold. In a private
conversation, Stefan Veldsman suggested a further generalization of an associative
ring not necessarily with unit, which he called a symmetric generalized nearring
N, and in which the addition needs not be abelian and the distributive law is
replaced by 0k(m+n) = 0km+0kn, k(0m+n) = Om~+kn, k(m+0n) = km+0n,
(k+m)n0 = kn0 4+ mn0, (k0 +m)n = k0 +mn and (k+ m0)n = kn +m0 where
k,m,n € N.

In ring theory, the Ore localizations provide one of the most powerful tools
for proving theorems. The theory of noncommutative localizations started in
the early 1930’s when Oystein Ore investigated the possibility to embed domains
into division rings. He did not assume the existence of a unit in the considered
domains. In his famous paper [14] published in 1931, Ore found the necessary and
sufficient condition for constructing the (total) classical right ring of quotients of
a given domain. For the general procedure of localizing any noncommutative ring
R with unit with respect to any multiplicatively closed set S C R, we refer the
readers to [10]. A generalization of the Ore construction of the classical right ring
of quotients for semirings is due to Vandiver [21].

By a (zerosymmetric right) nearring (with unit) we mean a nondistributive
ring satisfying the right distributive law. A nearring of right quotients of a given
nearring was defined by Graves and Malone in [7] as a natural generalization of
a right ring of quotients of a ring. Their construction was analogous to the Ore
construction of the classical right ring of quotients of a domain. The attempt
of analogous construction of a nearring of left quotients of a nearring was un-
successful. In Section 3, we define a nondistributive ring of left quotients of a
nondistributive ring N with respect to a multiplicatively closed set S C N to
be a nondistributive ring S~'N, together with a nondistributive ring homomor-
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phism 7: N — S™IN, for which: (1) n(s) is both invertible and left distributive
in STIN for every s € S, (2) every element of S™!N is of the form n(s)~'n(n)
where n € N and s € S, (3) kern = {n € N | r(s +n) = rs for some r,s € S}.
The left distributivity of elements 7(s) in S~!N makes the construction of a
nearring of left quotients of a nearring possible. In Section 4 we construct for a
nearring N an example of a nearring of left quotients S~'N with the noninjective
homomorphism n: N — S™IN.

The author wishes to express her thanks to the reviewer for constructive
criticisms and valuable comments, which were of great help in revising the paper.

2. NONDISTRIBUTIVE RINGS

Referring to a graduate course in ring theory, by a ring we mean a set R of no
fewer than two elements, together with two binary operations called the addition
and multiplication, in which: (1) R is an abelian group with respect to the
addition, (2) R is a semigroup with unit with respect to the multiplication, (3)
(r+s)t =rt+ st and r(s+t) = rs+rt for all r,s,t € R. A nearring N is a
generalization of a ring, namely the addition needs not be abelian and only the
right distributive law is required, additionally the left distributive law is replaced
by n0 = 0 for every n € N. The last postulate means that we require a nearring
to be zerosymmetric with unit. For a deeper discussion of nearrings we refer
the readers to [2,3,13,16]. The paper is intended as an attempt to initiate a
discussion on sets N satisfying the nearring axioms except the right distributive
law, which we replace by On = 0 for every n € N.

Definition 2.1. By a nondistributive ring we mean a set IN of no fewer than two
elements together with two binary operations called the addition and multiplica-
tion, in which

(1) N is a (not necessarily abelian) group with respect to the addition, with the
neutral element denoted by 0.

(2) N is a semigroup with unit with respect to the multiplication, with the
neutral element denoted by 1.

(3) n0 = 0n =0 for every n € N. This condition is called zerosymmetric.

We say that a nondistributive ring is abelian (respectively, commutative) if the
additive group mentioned above is abelian (respectively, the multiplicative semi-
group mentioned above is commutative). By a nondistributive division ring we
mean a nondistributive ring N, in which N \ {0} is a group with respect to the
multiplication.
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Definition 2.2. By a nondistributive ring homomorphism we mean a map 7n:
M — N where M, N are nondistributive rings, and such that

(1) n is a group homomorphism for the additive structure on M, N.

(2) n is a monoid homomorphism for the multiplicative structure on M, N.

The kernel of a nondistributive ring homomorphism n is defined to be the kernel
of n viewed as an additive group homomorphism.

Example 2.3. Let L be a partially ordered set, in which every two element
subset {x,y} C L has the infimum inf{z, y}, and which additionally has the least
element 0 and the greatest element 1. Then the operation z Ay = inf{x,y}, as
we know, makes L into a commutative semigroup with zero and unit. Assume
that elements of the set L are indexed by elements of an additive group G, with
the least element 0 = xg. To simplify notation, we use the same symbol 0 for the
neutral element of the group G. We can make the above assumption, since every
nonempty set admits a group structure (the statement is equivalent to the Axiom
of Choice, see [8]). With the addition defined by x4 + xp = 44 for all a,b € G,
the set L forms an additive group with the neutral element xo = 0. All of this
means that the set L together with both binary operations + and A mentioned
above is a commutative nondistributive ring.

As an example of a partially ordered set we consider the family P(X) of
subsets of a given set X = {x1,x9,...,x,}, partially ordered by inclusion. The
set P(X) becomes a commutative semigroup with zero and unit, with respect to
AANB = ANB for all A, B € P(X). Elements of the set P(X) can be indexed by
elements of G = Z /27 x /27 x - - - x /27, the direct product of n-copies of the
additive group Z/2Z. For all i = 1,2,...,n and e1,¢9,...,&, € Z/2Z we write
Ti € A, en,..en) if and only if &; = 1. It is evident that the addition defined
as follows A, o cn) T Amimornn) = Aer+n1,e24m2,en4nn) COINCides with the
symmetric difference A\ o, o) A Agmormn) = (Alereo,en) \A(n177727---777n)) U
(A(m,nzv---,nn) \A(€1,€27___7En)). Thereby the set P(X) together with both binary
operations + and N mentioned above turns out to be a commutative ring.

Let P(X) be the same commutative semigroup with zero and unit as pre-
viously. Assume that this time elements of the set P(X) can be indexed by
elements of the group G = Dg x Z/2Z x Z/27 X ... X ZL/2Z, where Dg =
{00 = (1),01 = (1,2,3,4),00 = (1,3)(2,4),03 = (1,4,3,2),71 = (2,4), 72 =
(1,2)(3,4),m73 = (1,3),7a = (1,4)(2,3)} is the dihedral group of order eight,
provided that () = A(60,0,0,..,0- With the addition defined as previously, the
semigroup P(X) forms a commutative nondistributive ring. If the distibutive-
ness held in P(X), writing Ay, instead of A, o,..0) for every i =0,1,2,3, we
would obtain A, N Ay, = Agy, N (Agy + Asy) = Apy + Agy = A,, and thus
Ay, = (A6, + A5)) N A, = Apy + Apy, = Agy, a contradiction.
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Example 2.4. In the construction of a nondistributive ring from Example 2.3,
we can consider any semigroup with zero and unit instead of the commutative
semigroup L with zero and unit. Let QsU{0} be the noncommutative semigroup
with zero and unit, obtained from the quaternion group Qg = {£1, +i,+j, +k}
of order eight by adjoining the zero element. Assume that elements of the set
Qs U{0} are indexed by elements of the group Z/3Z x Z/3Z as follows (g gy = 0,
r1,0 = 1, o) = -1, 1) = =% T2 =i 1) = —J, T2 =J L1 = —k
and x(1 ) = k. With the addition defined by z(qp) + T(c.a) = T(aqcpra) for all
a,b,c,d € Z./3Z, the semigroup Qs U {0} forms an abelian and noncommutative
nearfield. The left distributivity does not hold since i(1 + i) = ik = —j but
i+i?=i—1=j.

The problem of characterizing semigroups with zero and unit admitting a ring
structure seems to be far from being solved. Examples 2.3 and 2.4 demonstrate
that the problem becomes trivial if we ask about semigroups with zero and unit
admitting a nondistributive ring structure.

Example 2.5. For aring R, we denote by IV one of the following semigroups with
zero and unit, with respect to the map composition: the semigroup End(R) U
{Og} of ring endomorphisms of R together with the zero map, the semigroup
Mono(R) U {0gr} of ring monomorphisms from R into itself together with the
zero map, the semigroup Epi(R) U {0r} of ring epimorphisms from R onto itself
together with the zero map, the semigroup Aut(R)U{Og} of ring automorphisms
of R together with the zero map. Assume that elements of the set N are indexed
by elements of an additive group G, with the zero map Or = fo where 0 denotes
the neutral element of the group G. With the addition defined by f, + f, = fa+s
for all a,b € GG, the semigroup N forms a nondistributive ring.

Let T be the splitting field of a polynomial f(z) = x* + bx? + ¢ € Q|x] irre-
ducible in the ring Q[z]. If ¢(b? — 4c) is a square in Q then, according to the Ka-
plansky Theorem, the Galois group Gal(F/Q) = {01 = (1),02 = (1,2,3,4),03 =
(1,4,3,2),04 = (1,3)(2,4)} is a cyclic group of order four. Let Gal(F/Q) U {Of }
be a commutative semigroup with zero and unit, obtained from Gal(F/Q) by
adjoining the zero map o¢ = Op. With the addition defined by o; + 0; = 04 for
all 4,7 € Z/5Z, the semigroup Gal(F/Q)U{0r} forms a field isomorphic to Z/5Z.

Let F be still the splitting field of a polynomial f(z) = z* 4 bz? + ¢ € Q[z]
irreducible in the ring Q[z]. Assume that this time ¢ is a square in Q. Then,
according to the Kaplansky Theorem, the Galois group Gal(F/Q) = {01 = (1),
o9 = (1,2)(3,4),03 = (1,3)(2,4),04 = (1,4)(2,3)} is the Klein four-group. Let
Gal(F/Q) U {0r} be still a commutative semigroup with zero and unit, obtained
from Gal(F/Q) by adjoining the zero map oy = Op. With the addition defined
as previously, the semigroup Gal(F/Q)U{Or} forms an abelian and commutative
nondistributive division ring. If the distributivity held in Gal(F/Q) U {Or}, we
would obtain o1 = g9 0 09 = (01 + 01) 0 09 = 09 + 09 = 04, a contradiction.
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Example 2.6. For a nonempty set X with a fixed element 0, we denote by N
one of the following semigroups with zero and unit, with respect to the map
composition: the semigroup Mapy(X) = {f: X — X | f(0) = 0} of maps from
X into itself preserving 0, the semigroup Inj,(X)U{0x } of injections from X into
itself preserving 0 together with the zero map, the semigroup Surg(X) U {0x}
of surjections from X onto itself preserving 0 together with the zero map, the
semigroup Big(X) U {0x} of bijections from X onto itself preserving 0 together
with the zero map. In the same manner as previously the semigroup N becomes
a nondistributive ring.

For a nondistributive ring N, we denote by N* the additive group of N.
A well known result in ring theory asserts that every ring R embeds into the
ring End(R™) of group endomorphisms of R™. An analogously result in nearring
theory asserts that every nearring N embeds into the nearring Mo(N ™) of maps
from N7V into itself preserving 0, with the addition defined pointwisely and the
map composition.

Example 2.7. For a nondistributive ring N, we denote by r. Hom (V) the semi-
group with zero and unit {f: N — N | f(zn) = f(z)n for all n,z € N} of right
homogeneous maps from N into itself, with respect to the map composition. For
every n € N, we define the map \,: N — N via A\,(z) = nz where x € N.
Since A, € r.Hom(N) for every n € N, A\g = On, A1 = idy and Ay = A Ay, for
all m,n € N, it follows that the map A\: N — r. Hom(NN) defined by A(n) = A,
for every n € N is a semigroup homomorphism. It is also evident that for all
m,n € N if Ay, = Ay, then m = A\, (1) = A\, (1) = n, and that f = Agq) for every
f € r.Hom(N). All of this means that A is a semigroup isomorphism, and, in
consequence, elements of the set r. Hom(/N) are indexed by elements of the addi-
tive group N . With the addition defined by A\, + X, = iy for all m,n € NT,
the semigroup r. Hom(NV) forms a nondistributive ring isomorphic to N.

Theorem 2.8. Every nondistributive ring N embeds into the nondistributive ring
Mapy(N) of maps from N, viewed as a set, into itself preserving 0.

Proof. According to Example 2.7, the map A\: N — r.Hom(N) defined by
A(n) = Ay, for every n € N is a monoid isomorphism. Since A, (0) = 0 for every
n € N, it follows that r. Hom(N) C Map, (V) also as monoids. This enables us
to embed N into Mapy(/N) only as monoids.

In the case when Map (V) is a finite set, we denote by G any additive group of
order |G| = [N*|INI=2, Then Nt x G is a group of order [Nt x G| = |[N*+|INI-1 =
| Mapy(N)|. In the case when Mapy(/N) is an infinite set, we denote by G the
additive group F(Mapy(NN))" of finite subsets of Mapy(N). Then N* x G is a
group of order [IN* x G| = |F(Mapy(N))"| = | Mapy(N)|. In both these cases,
it means that elements of the set Map,(N) can be indexed by elements of the
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additive group N x G, with f(,, gy = A, for every n € N*. With the addition
defined by fm.a) + fnp) = fimsn,atp) forallm,n € N* and a,b € G, the monoid
Mapy(N) forms a nondistributive ring.

Since A(m+n) = fnin,0) = fm,0) + fin,0) = A(m)+A(n) for all m,n € N, it
follows that the map A: N — Map, (V) defined by A(n) = f(, ¢y for every n € N
is a nondistributive ring monomorphism. [ |

3. ORE LOCALIZATIONS OF NONDISTRIBUTIVE RINGS

In ring theory, by a right ring of quotients of a given ring R with respect to a
multiplicatively closed set S C R we mean a ring denoted by RS™!, together with
a ring homomorphism p: R — RS™!, for which: (1) u(s) is invertible in RS~}
for every s € S, (2) every element of RS™! is of the form p(a)u(s)~! where a € R
and s € S, (3) ker p = {a € R | as = 0 for some s € S}. A ring R has a right ring
of quotients RS~ with respect to a multiplicatively closed set S C R if and only
if S satisfies the following conditions: (a) aSNsR # () foralla € Rand s € S (we
say that S is a right Ore set), (b) for every a € R if sa = 0 for some s € S, then
asy = 0 for some s; € S, the latter may be replaced by the following equivalent
condition: (b’) for all a,b € R if sa = sb for some s € S, then as; = bs; for some
s1 € S. In particular, if S is the multiplicatively closed set of regular elements in
R, then R has a right ring of quotients RS~! (we say that R is a right Ore ring)
if and only if S is a right Ore set. In this case, we speak of RS~ as the (total)
classical right ring of quotients of R and denote it by Q7,(R). Now, let R be a
domain and let S = R\ {0}. In this case, the condition (a) may be re-expressed
in the following equivalent form: (a’) aRNbR # 0 for all a,b € S. This condition
is called the right Ore condition on R. Thus R is a right Ore domain if and only
if R satisfies the right Ore condition. The classical work here is [10].

According to a definition introduced by Graves and Malone in [7], a nearring
of right quotients of a given nearring N with respect to a multiplicatively closed
set S C N is a nearring Ng, together with a nearring monomorphism ¢: N — Ng,
for which: (1) ¢(s) is invertible in Ng for every s € S, (2) every element of Ng is
of the form ¢(n)@(s)~! where n € N and s € S. The authors proved that if S is a
multiplicatively closed set of both left and right cancellable elements in a nearring
N, then N has a nearring of right quotients Ng if and only if nS N sN # () for
allm € N and s € S. This condition is called the right Ore condition on N
with respect to S. Their construction is analogous to the Ore construction of
the classical right ring of quotients Q7,(R) of a ring R. The fact is that if a
nearring N satisfies the left cancellation law, then: (1) N has no proper zero
divisors, (2) also the right cancellation law holds in N. In this case, S = N\ {0}
is the multiplicatively closed set of both left and right cancellable elements in NV,
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and a nearring of right quotients Ng exists if and only if N satisfies the right
Ore condition: *N N sN # 0 holds for all 7,5 € S. Graves and Malone defined
a neardomain to be a nearring N satisfying both the left cancellation law and
the right Ore condition. In particular, if N is a neardomain, then a nearring of
right quotients Ng exists and is a nearfield. Nearrings of right quotients were
considered by various authors in [1,7,9,12,15,17-19]. The left analogue of the
notion of a nearring of right quotients was defined similarly. Unfortunately, as
pointed out by Maxson [12], the Ore construction does not hold for a nearring
of left quotients gV, because a substitute for the left distributive law in N is
necessary for the addition in g¢/N to be well defined.

The main purpose of this section is to introduce the notion of a nondistribu-
tive ring of left quotients, which is a generalization of the notion of a left ring
of quotients, and for which the Ore construction holds. We suggest defining a
nondistributive ring of left quotients of a given nondistributive ring N with re-
spect to a multiplicatively closed set S C N to be a nondistributive ring S™!N
together with a nondistributive ring homomorphism n: N — S™!N for which:
(1) n(s) is both invertible and left distributive in S~!N for every s € S, (2)
every element of S™!N is of the form 7(s)~'n(n) where n € N and s € S, (3)
kern = {n € N | r(s +n) = rs for some r,s € S}. Then we determine neces-
sary and sufficient conditions for the existence of a nondistributive ring of left
quotients S~ N. Condition (3) describing ker  follows from the purpose that we
set ourselves in this section. In the case when N is a nearring, kern has to be
a left ideal in N and, in consequence, k(m + n) — km € kern has to hold for all
k,m € N and n € kern. In the case when N is a ring, kern = {n EN|rn=0
for some r € S } and, in consequence, r(m + n) — rm = 0 has to hold for all
m € N, n € kern and some r € S depending on n. Simultaneously, we should
be as far away as possible from the left distributivity in IV, and, of course, we
require Ore construction to hold for S~ N. All of this is realized when we define
kern as in (3). To define a left Ore set S C N when N is a nondistributive ring,
we follow a pattern as we follow when N is a ring. Namely, for any n € N and
s € S, we write n(n)n(s)~! in the form n(s1)~!n(n1) where ny € N and s1 € S,
and we receive n(n1s — syn) = 0, which means r3(sy 4+ n1s — s1n) = rasy for some
ro,s9 € S. It might appear that a generalization of the left analogue of condition
(b’) on the case when N is a nondistributive ring ought to be as follows: for all
m,n € N if r(s+mt—nt) = rs for some r, s,t € S, then r(s1 +t1m—t1n) = r1s1
for some r1,s1,t; € S. Unfortunately, this generalization turned out to be insuf-
ficient. We re-define the left analogue of condition (b’) on the case when N is
a nondistributive ring as follows: for all m,n € N if r(s + tmu — tnu) = rs for
some r, s,t,u € S, then ri(s; + m —n) = rys; for some r1,s; € S. To check the
correctness of our choice, we act by n on both sides of r(s 4+ tmu — tnu) = rs
where m,n € N and r, s,t,u € S, then we apply the invertibility of n(r), n(t) and
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n(u) in SN, and we recive n(m — n) = 0, which means 71(s; +m —n) = r1s;
for some rq,s1 € S.

Let N be a nondistributive ring. We say, analogously as in ring theory, that
a set S C N is multiplicatively closed if 0 ¢ S, 1 € S and rs € S for any r,s € S.
With S so defined, we associate the following two sets

T= {n € N | ra(s2 +n — s1) = rasg for some s1,79, 82 € S} oS
and
U= {n € N | ro(sy + nry — s1) = rosg for some ry, 51,79, 59 € S} OT.

Definition 3.1. Let S be a multiplicatively closed set in a nondistributive ring
N. We call a nondistributive ring @) a nondistributive ring of left quotients of N
with respect to S if there exists a nondistributive ring homomorphism n: N — @
for which

(i
(ii

(ii

n(s) is invertible in @ for every s € S.
n(s) is left distributive in @ for every s € S.
every q € () can be expressed as ¢ = n(s)"!n(n) where n € N and s € S.

)
)
)
(iv) kernp={n € N |r(s+n)=rs for some r,s € S}.

We have no reason to expect a nondistributive ring of left quotients of N
with respect to a given multiplicatively closed set S C N to exist, see for instance
Example 3.2. The fact is that if such a nondistributive ring exists, we can quickly
deduce that

(i) n(s) is invertible in @ for every s € U.
(ii") n(s) is left distributive in @ for every s € U.

To prove (i’), we act by 1 on both sides of ry(se + srq — s1) = rasy where
r1,81,72, 82 € S, then we apply the invertibility of n(r1) and n(r2) in @, and we
receive 1(s) = n(s1)n(r1) "1, an invertible element in Q. To prove (ii’), we divide
both sides of p +q = n(r1)(n(r1)~'p + n(r1)"'q) by n(r1) where p,q¢ € Q and
r1 € S, then we apply the left distributivity of n(s1) in @ where s; € S, and
we receive 1(s1)n(r1) " (p + q) = n(s1)n(r1)"p + n(s1)n(r1)~tq, which means,
according to (i’), that n(s)(p + q) = n(s)p + n(s)q for every s € U.

Example 3.2. We denote by P(X) the family of subsets of a given set X =
{z1,x9,23}. According to Example 2.3, the set P(X) is a commutative semigroup
with zero and unit, with respect to AB = AN B for all A,B € P(X). Assume
that elements of the set P(X) are indexed by elements of the dihedral group
Dyg of order eight as follows A,, = 0, 4, = X, Ay, = {1,2}, Apy = {2,3},
A = {1,3}, A, = {1}, A, = {2} and A, = {3} With the addition defined
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by A, + A; = Ay, for all 0,7 € Dg, the semigroup P(X) forms a commutative
nondistributive ring. Consider the multiplicatively closed set .S = {Aal,Aoz} C
P(X). We claim that a nondistributive ring of left quotients S~'P(X) does not
exist. Otherwise, since Ay,(As, + Ar,) = Asy Aoy = As, = AsyAsy, we would
have A;, € kern, and thus A, (4, + Ar) — A, Ay, € kern. But A, (A, +
Ar) — AL Ay = A As, — AL A, = Ay — A, = A, which would mean
Asi(Ag; + Ary) = Ay Ay, for some A, Ay, € S. Simultaneously, Ay, (Ag, +
AT4) = AolATl = ATl # Aol = A01A01 and ACTl (Aoz + AT4) = AO'IATS = ATS #
Ay, = Ay Apy, and Ay, (Asy + Ary) = AsAr = A # Ay, = As, Ay, and
Asy(Apy + Ary) = Ay Ary = Ay # Apy = Apy Agy, a contradiction.

We now move on to the main result in this section, namely we determine the
necessary and sufficient conditions for the existence of a nondistributive ring of
left quotients of a given nondistributive ring N with respect to a multiplicatively
closed set S C N.

Theorem 3.3. A nondistributive ring N has a nondistributive ring of left quo-
tients QQ with respect to a multiplicatively closed set S C N if and only if S
satisfies the following conditions

(a) for alln € N and s € S there exist ny € N and s1,72,82 € S such that
ro(sg +ny1s — sin) = rass.

(b) for all m,n € N and s € U there exist r1,s1 € S such that ri(s1 + s(m +
n) —sn —sm) =risi.

(¢) for all m,n € N if r(s + tmu — tnu) = rs for some r,s,t,u € S, then
ri(s1 +m—mn) =rys; for some r1,s1 € S.

(d) for allm,n € N if r(s+m) =rs and t(u +n) = tu for some r,s, t,u € S,
then r1(s1 +m —n) = ri1s1 for somery,s1 € S.

(e) forallm,n € N ifr(s+n) =rs for somer,s € S, thenri(s1+m+n—m) =
r181 for some r1,81 € 5.

(f) for all k,l,m,n € N if r(s+m —n) =rs for some r,s € S, then ri(s1 +
kml — knl) = ry1s1 for some ri,s; € S.

The additional assumption that N is an abelian nondistributive ring (respectively,
a commutative nondistributive ring, a left nearring, a right nearring) implies the
same for Q.

Proof of the necessary condition. Items (a) and (c) follow from previous
considerations. To prove item (b), we apply (ii’) according to which n(s)(n(m) +
n(n)) = n(s)n(m) + n(s)n(n), which means n(s(m +n) — sn — sm) = 0, and thus
r1(s1 + s(m +n) — sn — sm) = rys; for some r1,s1 € S. We leave the proofs of
the remaining items to the readers. [ |
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The proof that the fulfillment by the set S C N of conditions (a)—(f) guar-
antees the existence of a nondistributive ring of left quotients of N with respect
to S will require some auxiliary result.

Lemma 3.4. Under conditions (a)—(f) stated above,

(@) for alln € N and s € U there exist ny € N and s1,r2,82 € S such that
ro(S2 + n1s — $1n) = raso.

(b”) for all myn € N and s € U there exist 1,81 € S such that r1(s1 + s(m —
n) + sn —sm) = rys.

(c") for all myn € N if r(s + tmu — tnu) = rs for some r,s,u € S and t € U,
then r1(s1 +m —n) = ris1 for somery,s1 € S.

(@) for all m,n € N if r(s+m) =rs and t(u+ n) = tu for some r,s,t,u € S,
then r1(s1 = m £ n) = ris1 for somery,s1 €S.

(f) for all k,l,m,n € N if r(s+m —n) = rs for some r,s € S, then ri(s1 =
(kml — knl)) = ry1s1 for some ri,s1 € S.

Proof. From (d) for any m,n € N we can quickly deduce the following two
observations:

r(s+mn) =rs for some r,s € S implies

(3.1)
r1(s1 —n) = ry1s; for some 11,1 € S.
and
(3.2) r(s+m)=rs and t(u+ n) = tu for some r,s,t,u € S imply

r1(s1 + m+n) = rys; for some r1,s1 € S.

To prove (a’), we first apply the description of U and condition (a) according
to which

ro(se + sr1 — 1) = ros9

and
r4(84 4+ ngsy — s3nry) = 48y

where n3 € N and rq, s1,79, S2, S3,74, S4 € S, then we apply (f) and (3.2) accord-
ing to which

r5(s5 + ngsry — sgnry) = rs(ss + (ngsr1 — ngsy) + (n3sy — sgnry)) = rsss
where 75, s5 € S, and finally we apply (c) to obtain
r6(s¢ + ngs — sgn) = resg

for some rg, s € S.
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To prove (b’), we first apply (b) according to which
r7(s7 + s(m —n) — s(—n) — sm) = rrsy
and
rg(sg — sn — s(—n)) = rg(ss + s((—n) +n) — sn — s(—n)) = rss

where r7,s7,78,88 € S, then we apply (3.1) and (e) to the latter equation to
obtain

r9(sg + sm + s(—n) + sn — sm) = rg(sg + sm — (—sn — s(—n)) — sm) = rgsg
for some r9, sg € S, and finally we apply (3.2) to obtain
r10(s10 + s(m — n) + sn — sm)
=rio(s10 + (s(m —n) — s(—n) — sm) + (sm + s(—n) + sn — sm)) = r1ps10

for some r19, s19 € S.
To prove (c’), for any n € N we need the following observation:

(3.3) r(s+tn) = rs for some r,s € S and t € U implies
i r1(s1 + tin) = r1s; for some 71, $1,t1 € S.

To prove (3.3), we first apply (a’) according to which
r12(812 + 11t — s11) = 112812

where n1; € N and s11,712, 812 € S, then we apply (f) and (3.1) according to
which
r13(513 + n11tn) = r13s13

and
r14(814 + s110 — n11tn) = r14(s14 — (n11tn — s11M)) = 14514

where 713, $13, 714, $14 € S, and finally we apply (3.2) to obtain
r15(s15 + s111) = r15(s15 + (S1117 — n11tn) + niitn) = ri5s1s

for some 715,515 € S, which is the desired observation. Now, for any m,n € N,
r,s,u € S and t € U such that r(s+tmu—tnu) = rs we first apply (b’) according
to which

r16(s16 + t(mu — nu) + tnu — tmu) = rigsie

where 716, 516 € S, next we apply (3.2) according to which

r17(s17 + t(mu — nu))
= ri7(s17 + (t(mu — nu) + tnu — tmu) + (tmu — thu)) = ri7siy
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where r17,s17 € S, then we apply (3.3) according to which
ris(s1s + tis(mu — nu)) = rigsis
where 718, s18, t15 € S, and finally we apply (c) to obtain
719(819 +m —n) = 119819

for some rig, 819 € S.
To prove (d’), we first apply (3.2) and (d) according to which

r20(820 + M 4+ 1) = T20520

and
r91(s21 + M — n) = ro1891

where 799, S99, 721, $21 € S, then we apply (3.1) and (e) to obtain
T'22($22 —m — n) = 7“22(822 +n— (m + TL) — n) = 7922522

and
T'23($23 —m + n) = 7“23(823 - n — (m — TL) + n) = 723523

for some rg2, $22,793, S23 € S.
Condition (f’) follows immediately from (f) and (3.1). ]

Proof of the sufficient condition. Under the assumption on the fulfillment
by the set S C N of conditions (a)—(f) we will construct a nondistributive ring
of left quotients of N with respect to .S by defining an equivalence relation ~ on
S x N and two binary operations, the addition and multiplication, on the set of
equivalence classes (S x N)/.~.

For any (s,n),(s',n’) € S x N, we define

(3.4) (s,n) ~ (s',n) iff there exist m,m’ € N and r,t,u,v € S such that
' m's' € T, r(t + ms —m/s') = rt and u(v + mn —m'n’) = uv.

Under the notation of (3.4), from the description of 7" it follows that

(3.5) ro(sy +m's' — s1) = rosy

where s1,72,52 € S. Applying (d’) to (3.4) and (3.5) we now obtain
r3(s3 +ms — s1) = r3(s3 + (ms —m's’) + (m's’ — s1)) = rys3

for some rj3, s3 € S, which means that also

ms € T.
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From the description of U it follows immediately that
m,m’ € U.

The reflexivity of ~ is obvious. The symmetry of ~ follows from (d’) applying
to (3.4). To prove the transitivity of ~, we assume that (s,n) ~ (s/,n') and
(s',n') ~ (s",n") where n,n',n"” € N and s,s',s"” € S, which means that in
addition to (3.4), also

k/S,, k”s” c T

3.6
( ) T/(t, + klsl _ k”S”) — T,t/ and u,(?}/ + k,n, _ kl/nl/) — UIU/

hold for some k', k" € N and ',/ ,u/,v" € S. From (a’) we simultaneously know
that

(3.7) r5(s5 + nam’ — s4k’) = 1585

where ny € N and s4,75, 5 € S. Applying (f°) to (3.4), (3.6) and (3.7), and then
applying (d’) we now obtain

r6(s¢ + nams — s4k’’s")

= 16(s6 + (nams — ngm’s’) + (nam's’ — s4k’s’) + (s4k's’ — s4k"s")) = rgsg
and

ug(ve + namn — sqk’’'n”)

= ug(vg + (namn — ngm/n’) + (ngm/n’ — s4k'n’) + (s4k'n’ — s4k"n")) = ugve

for some r¢, g, ug, vg € S. Since also s k”s” € ST C T, all of this means that
(s,n) ~ (s",n"). We proved the equivalence of ~.

By a left quotient s\n we mean the equivalence class containing (s,n) €
S x N. The set of equivalence classes under the relation ~ is denoted by Q.

To define the addition in ), we observe that any two left quotients r\m and
s\n can be brought to a common denominator applying (a’), and then

(3.8) r\m + s\n = s17\(s1m + nin) where ro(s2 + n1s — s17) = 289

for some n; € N and s1,72,50 € S. To prove the definition is independent of
the choice of representatives for equivalence classes, we assume that r\m = r"\m/
and s\n = s'\n’ where m,n,m’,;n" € N and r,s,7’,s’ € S. From (a’) it follows
that in addition to (3.8), also

(3.9) ro (s’ +m1's" — s1'r') = ro'sy’
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holds for some ny’ € N and s1/,r9’, s’ € S. From (3.4) we see at once that
sir\sym = r\m = r"\m' = s'r"\s1'm’

and after taking into account (3.8) and (3.9) we see that also
sir\nin = s\n = s'\n' = s;"r'\n1'n/,

which means that

ksir,k'si'r' €T

3.10
( ) r3(ts + ksir — K's1'r’) = r3t3 and uz(vs + ksym — K's1'm') = uzvs
and
Isir,l'si'7" € T
(3.11) e

ra(ty + Isir — U's'r") = ryty and ug(vs + Ingn — U'ni'n’) = ugvy

for some k1, k'l € N and rs,t3, us,vs3,ra, tg,us,v4 € S. From (a’) we simulta-
neously know that since k € U,

(312) 7‘6(86 + ngk — S5l) = T6S6

for some ns € N and s5,7¢,56 € S. Applying (f’) to (3.10), (3.11) and (3.12),
next applying (d’) we have

r7(s7 + nsk's'r’ — ssl's1'r’)
= r7(s7 — (nsksir — nsk's1'r’) + (nsksir — sslsir)

+ (ssls1r — s5l's1'r")) = rrs7
for some r7,s7 € S, and then applying (c’) we obtain
(313) T’g(Sg + ’I’L5k‘/ - 85l/) = rgSs

for some rg,sgs € S. Now, applying (b) to s5l,s5l' € SU C U, applying (f’) to
(3.10), (3.12) and (3.13), applying (e) and (f’) to (3.11), next applying (d’) we
have

ug(vg + s5l(sym + nin) — ssl’(s1'm’ +ni'n’))

= ug(vg + (ssl(s1m + nin) — sslnin — sslsym)

— (nsksim — sslsym) + (nsksim — nsk's1'm/)

+ (nsk's1'm’ — s5l'sy'm’)

+ (s5l's1'm’ + (s5lnin — ssl'ny'n’) — ssl's1'm’)

— (s5l'(s1'm’ + ni'n’) — s5l'ny'n’ — s51's1'm’)) = ugvg
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for some ug, vg € S, and then applying (c¢’) we obtain
u1p(vio + l(sym + nin) — U'(si'm’ + n1'n’)) = urov10
for some u1g,v19 € S. Also
ra(ts +ls1r —Usi'r’) = raty and U'sr' € T.
Taking all this into account, we see that
s1r\(s1m +nin) = s1'r'\(s1'm’ +ni'n’),

which finally confirms that the addition in @ is well defined.
To prove the associativity of the addition in @, we let r\k,s\m,t\n € Q
where k,m,n € N and r,s,t € S. From (a’) it follows that

ro(s2 + n1s — $17) = 1289

3.14

( ) r4(84 + n3t — $3817) = 1484
and

(3.15) r6(S6 + nst — S58) = 1656

rg(sg + nrsss — s7r) = rgss

for some ni,n3,ns,ny € N and s1,79, S9, S3, 74, S4, S5, 76, S¢, 57,78, S8 € S. From
(3.14) and (3.15) we see that

(r\k 4+ s\m) + t\n = s17\(s1k + n1m) + t\n = s3s17r\(s3(s1k + nim) + ngn)
and

r\k + (s\m + t\n) = r\k + s5s\(ssm + nsn) = s7r\(s7k + nz(ssm + nsn)).
From (a’) it follows that also
(3.16) r10(810 + 198381 — S987) = 10810

for some ng € N and sg, 719, S10 € S. Applying (f’) to (3.14), (3.15) and (3.16),
next applying (d’) we have

r11(S11 + N9s3n1S — S9N7855)
= r11(s11 + (ngssnis — ngsssir) + (ngsssir — sgs7r)

— (s9n7s55 — S9877)) = T11511
for some r11,s11 € S, and then applying (¢’) we obtain

(3.17) r12(812 + n9s3n1 — SgN7S5) = riasia
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for some 712, $12 € S. Once more applying (f’) to (3.14), (3.15) and (3.16), next
applying (d’) we have

T’13(813 + ngnst — 897’L77’L5t)

= r13(s13 + (ngnst — ngsgs1r) + (ngs3sir — sgs7r)

— (s9n7s55 — S9877) — (sgn7nst — Sgn7858)) = r13513
for some 713, s13 € S, and then applying (¢’) we obtain
(3.18) 714(814 + N9n3 — SgN7N5) = 14514

for some 714,514 € S. Now, applying (b) to ng,ngss,sg € U, applying (f’) to
(3.16), applying (e), (f’) to (3.17) and (3.18), applying (b) and (e) to son; €
SU C U, next applying (d’) we have

u1s(v1s + ng(s3(s1k + nim) + ngn) — so(s7k + nz(ssm + nsn)))

= ui5(v15 + (n9(s3(s1k + nim) 4+ nan) — ngngn — ngss(sik + nim))

+ (n933(slk + nim) — ngsgnim — ngsss1k)

+ (ngs3zs1k — sgs7k)+

+ (s9s7k + (ngssnim — sgnyssm) — sgs7k)

+ (s957k + sgnzssm + (ngnan — sgngnsn) — (sgs7k + sonzssm))
— (s987k + (son7(ssm + nsn) — songnsn — songssm) — s9s7k)
—(

sg(s7k +n7(ssm +nsn)) — sgnz(ssm + nzn) — sgs7k)) = w1515
for some uy5,v15 € S. Finally, applying (f’) to (3.16) we obtain
715(815 + N9S3S1T — S987T) = 15515

for some 715,515 € S. Also sgs7yr € S C T. Taking all this into account, we see
that
sgs17\(s3(s1k + naim) + ngn) = s7r\(s7k + n7(ssm + nsn)),

which confirms that the addition in @ is associative.

To prove the commutativity of the addition in () under the additional as-
sumption on the commutativity of the addition in N, we let r\m, s\n € Q where
m,n € N and r,s € S. From (a’) it follows that

(3-19) 7"2(82 +nys — 817“) =17989
and

(3.20) r4(84 4+ ngr — s38) = rysy4
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for some ny,ng € N and s1,r9, S92, 3,714,584 € S. From (3.19) and (3.20) we see
that

r\m + s\n = s1r\(sym + nin) and s\n + r\m = s3s\(ssn + nym).
From (a’) it follows that also
(3.21) r6(S6 + M581T — S5538) = T'eS6

for some n5 € N and ss5,76,5¢ € S. Applying (f’) to (3.19), next applying (d’)
we have

’r’7(87 + nsnis — 35333)

= r7(s7 4+ (nsn1s — ngsir) + (nss1r — $5838)) = r7s7
for some 75, s5 € S, and then applying (¢’) we obtain
(322) TS(SS + nsng — 3533) = 78Sy

for some rg,sg € S. Once more applying (f’) to (3.20), next applying (d’) we
have

r9(Sg + nssir — Ssnar)

= 19(s9 + (n5517 — 55535) — (85M37 — 55535)) = 1989
for some rg, sg € S, and then applying (c’) we obtain
(3.23) r10(S10 + M581 — S5M3) = r10810
for some 119, s190 € S. Finally, applying (b) to ns, s; € U, applying (f’) to (3.22)

and (3.23), next applying (d’) and the commutativity of the addition in N we
have

w1 (vi1 + ns(sym + nin) — ss(sgn + ngm))
= uy1(v11 + (ns(s1m + nin) — ngnin — nzsym) + (nsnin — sssgn)

+ (n5s1m — ssngm) — (s5(s3n + ngm) — ssngm — $583n)) = U11011
for some uq1,v11 € 5. Also
r6(S6 + m5s17T — S5538) = rgs¢ and szsgs € S C T
Taking all this into account, we see that

s1r\(s1m + nin) = s3s\(s3n + nzm),
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which confirms that the addition in @ is commutative under the assumption on
the commutativity of the addition in N.

To multiply any two left quotients r\m with s\n we apply (a’) to determine
m1 € N and s1,739,89 € S auch that

(3.24) ro(s2 +mis — sym) = rasa,

and then we define
r\m-s\n = syr\min.

To prove the definition is independent of the choice of representatives for equiva-
lence classes, we assume that r\m = r"\m’ and s\n = s'\n’ where m,n,m’,n’ € N
and r,s,7’,s" € S. From (a’) it follows that in addition to (3.24), also

(3.25) o/ (89" +my's’ — s1'm’) = ro’sy’
holds for some my’ € N and s1/,75/, s’ € S. From (3.4) we see at once that
sir\sym = r\m =r"\m' = s;'r'\sy'm’

which means that

ksir,k'sir' €T

3.26
( ) r3(ts + ksir — k's1'r’) = r3t3 and uz(vs + ksym — K's1'm’) = uzvs
and obviously

Is,I's €T

3.27
( ) ra(ty +1s —U's'") = ryty and uy(vy +In —U'n’) = uqvy

for some k1, k'l € N and rs,t3,us,vs3,ra, tg,us,v4 € S. From (a’) we simulta-
neously know that since [ € U,
(328) 7‘6(86 + msl — 85k1m1) = T6S6

for some myz € N and s5, 76,56 € S. Applying (f*) to (3.24)—(3.28), next applying
(d’) we have

r7(s7+msl's’ — ssk’'mq’s’)
= r7(s7 — (msls — msl's") + (msls — sskmys) + (sskmis — ssksym)

+ (ssksym — s5k’si'm/) — (ssk'my’s’ — ssk’s1'm’)) = rrsq
for some r7,s7 € S, and then applying (c’) we obtain

(3.29) 7“8(88 + TTL5Z/ — 35k/m1') = rgSs8
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for some rg, sg € S. Now, applying (f’) to (3.27), (3.28) and (3.29), next applying
(d’) we have

ug(vg + sskmin — ssk'mi'n’)
= ug(vg — (msln — sskmyn) + (msln — msl'n’)

+ (msl'n’ — ssk'mq'n’)) = ugvg
for some ug,v9 € S, and then applying (c¢’) we obtain
u10(v10 + kmin — k'my'n") = uigv1o
for some wu1g,v19 € S. Also
r3(ts + ksir — K'si'r’) = r3t3 and K's'r’ € T
Taking all this into account, we see that
sir\min = s1'r"\mq'n/,

which finally confirms that the multiplication in @ is well defined.
To prove the associativity of the multiplication in @, we let r\k, s\m,t\n € Q
where k,m,n € N and r,s,t € S. From (a’) it follows that

7‘2(82 + ki1s — Slk‘) = 1989

(3.30)

7“4(84 + mst — tgklm) = 7484
and
(3 31) 7‘6(86 + mst — t5m) = 7S¢

r8(s8 + krtss — s7k) = rgsg

for some ki, ms,ms, k7 € N and s1,79, S2,t3,74, S4, t5, 76, S¢, S7,78, Sg € S. From
(3.30) and (3.31) we see that

(r\k - s\m) - t\n = syr\kim - t\n = tzs;r\msn
and

r\k - (s\m - t\n) = r\k - tss\msn = syr\kymsn.
From (a’) it follows that also
(3.32) r10(810 + not3s1 — S987) = r10S10

for some ng € N and sg, 719, S10 € S. Applying (f’) to (3.30), (3.31) and (3.32),
next applying (d’) we have

r11(s11 + notskis — sokrtss)

= 7“11(811 + (ngtgkls — ngtgslk) + (ngtgslk — 8987k)

— (Sgk7t5$ — 8987k)) =T11S811
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for some 711,511 € S, and then applying (¢’) we obtain
(3.33) 7“12(812 + ngtsky — $9k7t5) = 712819

for some 712,512 € S. Once more applying (f’) to (3.30), (3.31) and (3.33), next
applying (d’) we have

u13(U13 + ngmst — 89k¢7m5t)
= ulg(vlg + (ngmgt — ngtgklm) + (ngtgklm — 39k7t5m)

— (sokrmst — sok7tsm)) = uizvis
for some uy3,v13 € S, and then applying (¢’) and (f’) we obtain
u14(v14 + ngman — sokymsn) = u14v14
for some u14,u14 € S. Finally, applying applying (f’) to (3.32) we obtain
714(814 + Not3s17T — S987T) = T14514

for some 714,514 € S. Also sgs7r € S C T. Taking all this into account, we see
that
tzsir\masn = syr\krmsn,

which confirms that the multiplication in @) is associative.

To prove the right distributivity in @@ under the additional assumption on
the right distributivity in N, we let r\k, s\m,t\n € @Q where k,m,n € N and
r,s,t € S. From (a’) it follows that

ro(s2 +n1s — s171) = 1289

3.34
( ) r4(s4 + ngt — t3(s1k + nim)) = rysy
and
r6(S6 + kst — tsk) = 1656
(335) TS(SS + m?t - t7m) =T858

r10(S10 + Not7s — SotsT) = 10510

for some nl,n3,kz5,m7,n9 € N, 81,7'2,82,t3,’f'4,34,t5,7‘6,36,t7,7‘8,38,89,7‘10,810 €
S. From (3.34) and (3.35) we see that

(r\k + s\m) - t\n = s1r\(s1k + nim) - t\n = tzsir\nsn
and

r\k - t\n + s\m - t\n = t5r\ksn + t7s\msn = sotsr\(soksn + ngmn).
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From (a’) it follows that also
(3.36) r12(s12 + ni1tzs1 — S1189t5) = r12512

for some ny; € N and s11,712,512 € S. Applying (f) to (3.35) and (3.36), and
then applying (d’) we obtain

(3.37) r13(513 + nuitasik — s1159kst)
. = r13(s13 + (nu1t3sik — s11s9tsk) — (s1150kst — s1150t5k)) = 113513

for some 713,13 € S. Once more applying (f’) to (3.34), (3.35) and (3.36), next
applying (d’) we have
r14(514 + n11t3n15 — S1109t75)
= r14(s14 + (n11t3n1s — ny1tzsir) + (n11t3s1r — s1159ts7)
— (s11n9t75 — S1189t57)) = T14514
for some 714, s14 € S, and then applying (¢’) we obtain
(3.38) 715(515 + n11tany — s11ngty) = T15515

for some 115, $15 € S. Now, applying (b) to ni1t3 € U, applying (f’) to (3.34),
applying (e), (f’) to (3.35) and (3.38), applying (e) to (3.37), next applying (d’)
we have

u16(v16 + S1150k5t + s11m9Mm7t — ny1N3t)

= u16(vi6 — (n11t3(s1k +nim) — nirtgnim — niitzsik)

— (n11nst — ni1ts(s1k +nym))

— ((n11nat — siingtym) + (n11tgnim — syingtym) — (niingt — syingtym))

— ((n11nst — s11ngtym — s1189kst) + (n11tssik — s1189kst)

— (n1inat — syingtym — s1159kst))

+ ((n11nst — siingmst) + (s1ingmet — siingtym) — (niinst — syingmet)))

= U16V16

for some uy6,v16 € S, and then applying the right distributivity in N, (¢’) and
(f) we obtain

(3.39) u17(vi7 + S1189ksn + s11ngMmyn — niN3n) = U1Tv17

for some uy7,v17 € S. Finally, applying (b) to s;3 € S C T, and then applying
(d’) we obtain

u1g(vig + niinsn — s11(sgksn + ngmen))

= u1s(vis — (s1189k5n + s11n9M7N — N11M3N)

— (s11(s9ksn + ngmyn) — syingmyn — s1189ksn)) = u1gvis
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for some u1g,v18 € S. Also

r18(518 + n11t3sir — s1189t5T) = r18S18

for some rig,s18 € S, which follows from (f’) applying to (3.36), and s11s9t5r €
S C T. Taking all this into account, we see that

tssir\nsn = sgtsr\(soksn + ngmsn),

which confirms that the multiplication in @ is right distributive under the as-
sumption on the right distributivity in V.

We will not present the details here, but the fact is that the additional as-
sumption on the commutativity (respectively, the left distributivity) of the mul-
tiplication in IV implies the same for Q.

To prove @ is a nondistributive ring of left quotients of N with respect to
S, we define n: N — @ via n(n) = 1\n where n € N, and then we verify
the conditions listed in Definition 3.1. We leave the detailed verification to the
readers. We only draw our attention to (ii). To prove the left distributivity of
elements from 7(S) in @, we let 1\r, s\m,t\n € @ where m,n € N and r,s,t € S.
From (a’) it follows that

r9(S9 + N1t — s18) = 1ras
(3.40) 2(s2 + 1y 18) = 1252
r4(S4 4+ ngs1s — s3r) = rysy

and

r6(S6 + n5s — S51) = 1686
(3.41) rg(sg + nyt — s7r) = rgsg

r10(510 + N9s7 — S955) = T10510

for some ny,n3,n5,n7,19 € N, 51,72, 82, 83,74, 54, 85,76, 56, 57,78, 58, 59, 10, 510 €
S, and since in fact ng € U,

r11(s11 + n3(s1m + nin) — (n3sym + nznin))
(3.42)
- 7"11(811 + ’I’L3(81m + ’I’Ll’l’L) —n3nin — n381m) =T11511

for some 711,511 € S. From (3.40), (3.41) and (3.42) we see that

I\r-(s\m+t\n) = 1\r - sis\(s1m + nin)
= s3\n3(sym + nin) = s3\(nzsym + ngnin)

and

I\r - s\m+ 1\r - t\n = s5\nsm + s7\nrn = sg9s5\(sgnsm + ngnyn).
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From (a’) it follows that also
(3.43) r13(813 + N1283 — $125985) = 13513

for some n13 € N and s12,713, 513 € S. Applying (f’) to (3.40), (3.41) and (3.43),
next applying (d’) we have

r14(S14 + N12N351S — S1259M55)
= r14(514 + (n12n3518 — N12837) + (N12537T — S1259857)

— (51289155 — 5125985T)) = T14514
for some 714, s14 € S, and then applying (¢’) we obtain
(3.44) r15(515 + N12M351 — S1259M5) = T15515

for some 715,515 € S. Once more applying (f’) to (3.40), (3.41) and (3.43), next
applying (d’) we have

r16(S16 + n1angnit — siangnrt)
= 716(s516 + (n12n3n1t — n1an3sis) + (n12n3s1s — nigssr)
+ (12837 — S1289857T) — (S12N957T — S1259857)

— (s12n9n7t — s12N987T)) = T'16516
for some 716, s16 € S, and then applying (¢’) we obtain
(3.45) r17(S17 + niangny — S12ngny) = r17517

for some ri7,s17 € S. Finally, applying (b) to ni2,s12 € U, applying (f’) to
(3.44), applying (e) and (f’) to (3.45) we obtain

u1g(vig + ni2(n3sym + ngnin) — si2(sgnsm + ngnyn))

= ug(vig + ni2(n3sim + ngnin) — nianznin — nianzsim)
+ (n12n3s1m — s1259n5mM)

+ (s1289m5m + (n12m3nin — S12ngn7TN) — S1289N5M)

—(

512(89n5m + ngnyn) — S12N9NTN — S1259M5M)) = U1RV1R
for some uqg,v18 € S. Also
r13(513 + 11253 — S125955) = 113513 and s128955 € S C T.
Taking all this into account, we see that
s3\(ngsim + nznin) = sgs5\(sgnsm + ngnin),

which confirms that elements from 7(S) are left distributive in Q. [ ]
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By S~'N we denote the nondistributive ring of left quotients of a nondis-
tributive ring N with respect to a multiplicatively closed set S C N constructed
in the proof of Theorem 3.3.

For a given multiplicatively closed set S C N we call a nondistributive ring
homomorphism 7: N — M S-inverting (respectively, S-left distributing) if n(s)
is an invertible (respectively, a left distributive) element in M for every s € S.

Theorem 3.5. Under conditions (a)—(f) stated in Theorem 3.3, n: N — S™IN
is both an S-inverting and an S-left distributing nondistributive ring homomor-
phism, with the following universal property: for both an S-inverting and an
S-left distributing nondistributive ring homomorphism p: N — M, there exists a
unique nondistributive ring homomorphism : STIN — M such that ¥m = .

Proof. For both an S-inverting and an S-left distributing nondistributive ring
homomorphism : N — M, we define 1»: STIN — M via 1(s\n) = o(s) " Lp(n)
where n € N and s € S. To prove the definition is independent of the choice
of representatives for equivalence classes, we assume that s\n = s'\n’ where
n,n’ € N and s,s’ € S, which means that

ms, m's' eT and, in consequence, m, m eU
(3.46)

r(t +ms —m's') = rt and u(v + mn —m'n") = wv

for some m,m’ € N and r,t,u,v € S. Acting by ¢ on both sides of the last two
equations (3.46), next applying the invertibility of ¢(r) and ¢(u) in M we have
p(ms) = o(m's’") and p(mn) = p(m'n’), and then applying the invertibility of
©(m) and @(m') in M we obtain

which confirms that the map v is well defined. We will not present the details
here, but the fact is that ¢ is a nondistributive ring homomorphism, with ¥n = .
To prove the uniqueness of 1, we let ¥/: ST'N — M be a nondistributive ring
homomorphism, with 1'n = ¢. Then

p(n) = (W'n)(n) ='(1\n) = ¢'(1\s - s\n)
= ¢/ (1\s)y(s\n) = ('n)(s)¢'(s\n) = @(s)1(s\n)

for all n € N and s € S, which confirms that
P(s\n) = ¢(s) " p(n) = ¢¥'(s\n)

holds for all n € N and s € S. [ ]



172 M.E. HRYNIEWICKA

Theorem 3.5 asserts that if a nondistributive ring of left quotients @Q of a
nondistributive ring N with respect to a multiplicatively closed set S C N exists,
then Q = S™IN.

We symmetrically define the notion of a nondistributive ring of right quotients
P of a nondistributive ring N with respect to a multiplicative closed set S C N,
with a nondistributive ring homomorphism p: N — P satisfying

(i) w(s) is invertible in P for every s € S.

(i1) w(s) is right distributive in P for every s € S.
(iii) every p € P can be expressed as p = u(n)u(s)~! where n € N and s € S.
(iv) kerp = {n € N | (r +n)s =rs for some r,s € S}.

Theorem 3.6. If a nondistributive ring N has both nondistributive rings of left
and of right quotients with respect to a multiplicatively closed set S C N, then
STIN= NS

Proof. According to Theorem 3.5 and its analogue for NS~!, we only need to
prove the right distributivity of elements from 7(S) in S™'N. For this purpose,
we let m,n € N and s € S. From (ii) we know that (u(m) + u(n))u(s) =
p(m)u(s) + p(n)u(s) holds in NS—1, which means that u((m+n)s —ns —ms) =
0, and thus (r1 + (m + n)s — ns — ms)s; = r1s1; holds for some 71,51 € S.
Acting by n on both sides of the last equation, and then applying the invertibility
of n(s1) in SN we obtain n((m + n)s — ns — ms) = 0, which means that
ro(sa + (M 4 n)s —ns — ms) = resg holds for some ra, s9 € S. The remainder of
the proof is the same as the proof of the right distributivity in S~™'N under the
assumption on the right distributivity in N. [ |

Under the additional assumption on the left distributivity of elements from
U in N, Theorem 3.3 takes the form similar to that in ring theory.

Corollary 3.7. If S is a multiplicatively closed set in a nondistributive ring N,
and if every element from U is left distributive in N, then the nondistributive ring
of left quotients STIN ezists if and only if S satisfies the following conditions

(a) for allm € N and s € S there ezist n1 € N and s1 € S such that nis = sin.
This condition is called the left Ore condition on N with respect to S.

(b) for all m,n € N if ms = ns for some s € S, then sym = sin for some
s1€8.

Corollary 3.8. If S is a multiplicatively closed set of right cancellable elements
in a nondistributive ring N, and if every element from U is left distributive in
N, then the nondistributive ring of left quotients ST'N exists if and only if N
satisfies the left Ore condition with respect to S. Under the additional assumption
that every element from S is also left cancellable in N, the nondistributive ring
N embeds into the nondistributive ring of left quotients S~'N.
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Lemma 3.9. If a nondistributive ring N satisfies the right cancellation law, and
if every element from U is left distributive in N, then
(1) N has no proper zero divisors.

(2) every nonzero element from U is also left cancellable in N.

Proof. To prove (1), we let mn = 0 where m,n € N and n # 0. Then mn = On,
which means that m = 0. To prove (2), we let sm = sn where m,n € N, s € U
and s # 0. Then s(m — n) = 0, which means that m —n = 0. |

Corollary 3.10. If a nondistributive ring N satisfies both the right cancellation
law and the left Ore condition with respect to a multiplicatively closed set S C N,
and if every element from U is left distributive in N, then N embeds into the
nondistributive ring of left quotients ST N.

Example 3.11. Let R be a commutative ring, and let M be a left free R-module
with a free basis {8, n} To express any k € M as a unique R-linear combination
of {s,n}, we will use the notation k = ays + Bgn where ag, 8 € R. For every
k € M, we define the R-module endomorphism ¢g: M — M via

(s) ags if a, = B d o (n) agn if ap = By
s) = an n) =
vk k otherwise vk 0 otherwise

A trivial verification shows that

( ) aERm if af — ,Bk
m) =
vk ok otherwise

and
wo(k) =0 =i(0), @ein(k) =k=pr(s+n)
Pak = APk, PePm = Py (m)

for all k,m € M and o € R. From this we conclude that with the multiplication
defined by
k-m = pp(m)

for all k,m € M, the additive group M forms a zerosymmetric left nearring with
unit s + n. Consider

S={s+n}U{as|acUR)} C M,

a multiplicatively closed set in M, where U(R) means the unit group in R. To
prove the left Ore condition on M with respect to S, we let m € M and as € S.
Then

(amofls + amofln) cas = @ama,1(5+n)(a3)

= ama_lag05+n(s) = ms = ps(m)=s-m
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where a,a s + apa™in € M and s € S. To prove (b) from Corollary 3.7, we
let k- as=m-as where k,m € M and as € S. Then

apr(s) = pr(as) =k-as=m-as = py,(as) = apn(s),
and hence k- s =m-s. From this it follows that

aps = apPs(s) = Pa,s(s) =ars-s=@g(k)-s=s-k-s

=s-m-s=ps(M):$=ams-$=Qa,s(s) = anps(s) = ans,
which means that a; = a,,, and, in consequence,
s k= ps(k) = ags = ams = ps(m) = s-m.

From Corollary 3.7 we now conclude that the left nearring M has the left nearring
of left quotients S~1M.

All conditions (a)—(f) from Theorem 3.3 except (b) are formulated for ele-
ments of the set S. In connection with this, the question arises whether also in
condition (b) the set U may be replaced by the set S.

4. NEARRINGS OF LEFT QUOTIENTS

In Example 3.11, for the nondistributive ring M, applying Corollary 3.7, we
proved the existence of the nondistributive ring of left quotients S~'M with
respect to the multiplicatively closed set S C M. However, sometimes it oc-
curs that simply the knowledge of the existence of the nondistributive ring of
left quotients S™'N of a given nondistributive ring N with respect to a given
multiplicatively closed set S C N is insufficient, and a closer knowledge of the
nondistributive ring S~' N is necessarily. In this section, for some nondistributive
ring IN, we construct a nondistributive ring of left quotients @ with respect to
some multiplicatively closed set S C NN. This construction is inspired by Michael
Holcombe [9] and Alan Oswald [15]. In the former of the papers, for an additive
group I', the author considers a multiplicative semigroup S C End(T") of group
endomorphisms of I'; which includes the identity endomorphism, but not the zero
endomorphism, and which: (1) is both left and right cancellative and reversible,
(2) for all y € T" and s € S if ys =0, then vy =0, (3) forall y € T and r,s € S
if yr = 7s, then v =0 or r = s, (4) there exist y1,72,...,7p € '\ {0} such that
¥iSNy;S=0foralizjandT = {0} UL, 7S A good example illustrating
these assumptions is the additive group of integers Z* and the multiplicative semi-
group S = {pn: Z" — Z* | n € N and zp, = xn for every z € Z*} C End(Z").
The author next constructs two sets of equivalence classes A = (I' x S)/. and
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G = (S x S5)/~, and then proves that G is a multiplicative group, and A is an ad-
ditive group acted faithfully on by the group G by regular group automorphisms,
and admitting only a finite number of orbits under the action of the group G.
His construction is analogous to the Ore construction of the classical right ring
of quotients Q7,(R) of a ring R. Finally, the author considers two sets N =
Mapg(l') = {n: T = T | On = 0 and yns = ysnforall v € T and s € S} and
Q = Mapg(A) = {q:A—)A\Oq:OandéqudgqforalléeAandgEG},
and then proves that @) is a left nearring of right quotients of a left nearring N,
namely (1) N can be embedded, viewed as a left nearring, into @, (2) every both
left and right cancellable element in N is invertible in @, (3) every element of @
is of the form nf~! where n,0 € N and 6 is both left and right cancellable.

Throughout this section, by I' we denote an additive group, and by S C
Map(T') a semigroup of maps from I' into itself preserving 0, with the identity
map, but not the zero map, with respect to the map composition, and satisfying
the following conditions:

(a) for all o, € I" and s € S there exists s; € S such that s;s(a + 5) =
s1(sa+ sp).
for all r,s € S if tr = ts for some t € S, then rt; = st1 for some t; € S.

)
c) for all r,s € S if rt = st for some ¢t € S, then ¢t = t;s for some ¢; € S.
) for all r,s € S there exist r1,s; € S such that rs; = sry.

)

for all ,s € S there exist r1,s1 € S such that s;r = rys.

For simplicity of notation, we write s instead of s(a).

Lemma 4.1. Under conditions (a)—(e) stated above,

(@) for all o, € T and s € S there exists s1 € S such that sis(a — ) =
si(sa —spB).

(f) for all a, B € T if s = sp3 for some s € S, then s1(—a) = s1(—f) for some
s1€8.

Proof. To prove (a’), we first apply (a) according to which
s1s(a— B) = s1(sa + s(—p))

and

s352(—5(— ) — sB) = s3(s25(8 — B) + s2(—s(=5) — s5))
= s3(s2(s8 + (=) + s2(—s(=B) — sB))
= s5352(88 + s(—=fB) — (=) —s8) =0
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where s1, s2,53 € S, then we apply (e) according to which s4s; = r483s9 where
r4,84 € S, and finally we once again apply (a) to obtain

s5sas18(a — B) = s5(sas18(a — B) + ras3sa(—s(—B) — s5)
= s5(s4s1(sa + s(—=0)) + sgs1(—s(=p) — sp))
= spsas1(sa + s(=p) — s(=B) — sB) = szsas1(sa — sp)

for some s5 € S.
To prove (f), we apply (a) and (a’) to obtain

s7s6s(—a) = s7(ses(—a) + se(sa — sP))
= 57(s65(—) + ses(a — B)) = s7ses(—a + a — B) = srses(—)

for some sg,s7 € S. [ ]

Condition (e) enables us to define two equivalence relations ~gxr and ~gxg,
the former on the set S x I', and the latter on the set S x S, as follows

(s,a) ~sxr (s',a’) iff there exist r,r’ € S such that

4.1

(4-1) rs=1's" and ra = r'o

and

(4.2) (r,8) ~sxs (r',s') iff there exist t,#' € S such that

tr =t'r and ts = t's’.

By an analogy with the construction from Section 3, by left quotients s\a and
r\s we mean the equivalence classes containing (s,a) € S xI' and (r,s) € S x S,
respectively, and by S™'T" and S™'S the sets of equivalence classes under the
relations ~gxr and ~gy g, respectively. Condition (e) also enables us to introduce
the addition in S~'T" as follows

(4.3) r\a+ s\B = sir\(sia + r13) where s;r =ris
holds for some 71, s; € S, and the multiplication in S~1S as follows
(4.4) r\s - t\u = tor\sgu where tos = sot

holds for some s9,t5 € S. A standard verification shows that both the definitions
are independent of the choice of representatives for equivalence classes, ST is
an additive group, and S~1S is a multiplicative group acting faithfully on S~'T
by group automorphisms according to the rule

(4.5) r\s - t\a = t3r\ssa where t3s = sst
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holds for some s3,t3 € S.
We also consider the additive group homomorphism n: I' — S™IT' defined
via n(a) = 1\« for every a € T', and with

kern={a eTl'|sa =0 for some s € S}.
Lemma 4.2. Under the above notations, the group S™'S acts on the additive
group ST by regular automorphisms if and only if
(g) foralla €T and r,s € S if ra = sa, then « € kern or t1r = t1s for some
t1€8.

Proof. To prove the necessary condition, we assume that ra = s«, but tr # ts
for any t € S, the latter means that r\s # 1\1 in S~1S. Since simultaneously
r\s - 1\a = r\sa = r\ra = 1\a, by the assumption it means that 1\a = 1\0 in
S~IT. From this we have a € ker.

To prove the sufficient condition, we assume that r\s - t\a = t\« and t\« #
1\0 in S~IT, the latter means that a & kern. Applying (e) according to which

t1s = st
where s1,t1 € S, we see that ¢17\sja = t\«, which means that
utyr = u't and usja = v
for some u,u’ € S. Since a & kern, by the assumption the latter means that
tous; = tou’
for some to € S. Taking all this into account, we now see that
tout;r = tou't = tousit = tout;s.
From this we obtain r\s = tout r\tout1s = touts\taut;s = 1\1 in S718. [ |

Lemma 4.3. Under the above notations, if there exist a finite set {ozl- | i€ J} -
I'\ kern such that I' = kernU\J,c; Sa; and Sy N Sa; =0 for alli,j € J, i # 7,
then the additive group S™'T" has a finite number of orbits under the action (4.5)
of the group S™1S, namely

(h) S7'T = {1\0} UU,c; SIS - 1\ay.

Proof. Assume that s\a # 1\0 in S7!T', which means that a ¢ ker7. Accord-
ing to the assumption, it follows that a = ta; for some ¢ € J and t € S. In
consequence, s\a = s\ta; = s\t - 1\oy € S715 - 1\oy;.

Suppose now that r\s-1\o; = t\u-1\¢; for some ¢,j € J, i # jand r,s,t,u €
S, which means that r\sco; = t\ua;. From this it follows that vsa; = v'uq; for
some v,v" € S. This contradicts the assumption on Sc; N Serj = 0. [ |
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In the remainder of this section we will require I' to satisfy the assumptions of
Lemmas 4.2 and 4.3.

Lemma 4.4. Under conditions (a)—(e) stated above, the set

N = {f € Mapy(T) | for all @ € T" and s € S there exists s; € S
such that s;sfa = slfsoz}

together with the pointwise addition and the map composition forms a nearring.
Furthermore,

n(sfa) =n(fsa)

« € kernp implies sa € kern and fa € kern

fra € kern for some r € S implies fsa € kern for every s € S
fra € Sag for some r € S implies fsa € Say, for every s € S

forallfe N,ael',keJ andseS.

Proof. The fact is that the set Mapy(I') of maps from I into itself preserving 0,
together with the addition defined pointwisely and the map composition, forms
a nearring. It remains to prove that N is its subnearring.

To prove that IN is an additive subgroup of Map,(T'), we first apply the
description of IN and condition (e) according to which for any f,g € N, a € T
and s € 5,

s18fa = s1fsa, sasga = sogsa and s381 = 1389

hold for some s1, 9,73, 53 € S, then we apply (a’) according to which
s483518(fa — ga) = s4(sgs18fa — s3s1sga)

and
s5s381(fsa — gsa) = s5(s3s1fsa — s3s19s5a)

where s4,s5 € S, and finally we once again apply (e) according to which
8654 = 1655
where rg, s¢ € S, to obtain

s65453515(f — g)a = sgsaszsi1s(fa — ga)
= sgs4(s3s15fa — s3s159) = sgsa(s3s15fa — rysasga)
= reS5(8381 fsa — r3sagsa) = r¢s5(s3s1fsa — s3s1gsa)

= res58351(fsa — gsa)) = sgsgs3s1(f — g)sa.
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From the description of N and condition (e) for any f € N and o, 5 € I' we
can quickly deduce the following observation

(4.10) sa = sf3 for some s € S implies s; fa = s1f8 for some s1 € S.

Condition (4.10) enables us to prove that the set IN is closed under the map
composition, namely for any f,g € N, « € I' and s € S from the assumption we
know that

s7sfga = s7fsga and sgsga = sggsa

for some s7,ss € S. Applying (4.10) to the latter equation we have

sofsgo = sg fgsa
for some sg € S. Finally, applying (e) according to which
51087 = T'1059
where 719, s19 € S, we obtain

510875 fga = s1087fsgo = 11089 fsgae = r1089 fgsa = s1087fgsa.

To prove (4.6) and (4.7), we let f € N, « € T and s € S. Since sy1sfa =
s11fsa for some s1; € S by the assumption, hence 1\sfa = sjj\sjisfa =
s11\s11fsa = 1\fsa in S™I'T, which confirms the correctness of (4.6). We
now additionally assume that o € kern, which means that both 1\a = 1\0
in S7IT" and ra = 0 in I for some r € S. From the former it follows that
N\sa = 1\s-1\a = 1\0 in S7'T, which confirms that sa € kern. From the latter
it follows that r1o7 fa = r1ofra = 0 in I' for some r12 € S, which confirms that
also fa € kern.

To prove (4.8) and (4.9), welet f € N, a« € I'and k € J. If fra € kern
for some r € S, then also rfa € kern by (4.6), and hence also fa € kern.
According to (4.7), we now have sfa € kern for every s € S. From this we obtain
fsa € kern for every s € S again by (4.6). Moving on to (4.9), if fra € Say, for
some r € S, then fsa € Saj for every s € S and some j € J depending on s.
We know that ri3rfa = ri3fra and si3sfa = s13fsa for some ri3,s13 € S by
(4.6). Applying (e) according to which si47137 = r148138 where r14, 514 € S, we
now obtain sijuri3fra = syurizrfa = rigs13sfa = riusizfsa € Sa; N Say, which
clearly forces j = k. [

In the nearring IV, we consider two subsets

R= {f € N | for every g € N if gfa € kern holds for every a € T,
then also ga € ker n holds for every a € F}
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and
T:{f€N|f(oz—}—ﬁ)—fﬁ—fozEkernholdsforalla,ﬁef},

both closed under the map composition. The former of the assertions is obvious.
We base the proof of the latter on the following observation

fla=B)+ B~ fa
(4.11) = (f(a—B) ~ (J(B+ (=B)) — [(=B) - [B) — f(a - B))
+ (fla=B) = f(=B) — fa) € kern
and on the observation arising from this
fla=B=)+fy+ /B~ fa
=(fla=B=+fy—fla=p)+ (fla=p)+ [B— fa) € kern

where f € T and o, 5,7 € I'. Let f,g € T and o, 8 € T'. Since g(a+5)—gB—ga €
ker n by the assumption, we have

(4.12)

flgla+B) — 9B — ga) € kern
by (4.7). But we also have

flgla+B) —gB —ga) + fga+ fgB — fg(a+ B) € kern
by (4.12). Taking all this into account, we now see that
fgla+B)— fgB — fga
= —(f(gla+B) —gB —ga) + fga+ fgB — fg(a+ B))
+ flgla+B) — 9B — ga) € kern.
For any f € N and k € J, we let

Jo(f)={i€J| fa; € kern}
and
Je(f)={ieJ| fa; € Sy}
It may happen that Ji(f) = 0, but definitely J;(f) N Ji(f) = 0 for every j € J,
J# k.
Lemma 4.5. Under the above notations, for all f € R and k € J, Jo(f) =0 and

Ji(f) contains exactly one element. More precisely, there exists a permutation
of the set J such that

(4.13) f(kern) =kern and f(Sa;) = Say;

for every i € J.
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Proof. Suppose that Ji(f) = 0 for some f € R and k € J, and consider the
map g: I' = I" defined via

ga = 0 for every « € kern
gsay = 0 for every s € S
gsa; = saj forall j€J,j#kandselS.

Since g € Mapy(I') and sga = gsa for all a € T', s € §, it means that g € N.
We claim that (idr —g)fa € kern for every a € T'. Indeed, if fa € kern, then
also (idp —g)fa € kern by (4.7). Assume now that fa ¢ kern, which means
that o & kern again by (4.7), and thus a € Sa; for some i € J depending on
a. If fa € Sag, then also fa; € Say by (4.9), contrary to the assumption that
Jp(f) = 0. In this way we obtain fa € Sa; for some j € J, j # k, and, in
consequence, (idr —g)fa = fa — gfa = 0 € kern. According to the description
of the set R, we now obtain (idr —g)a € kern for every a € I'. For a = oy, we
have o = (idp —g)ay € kern, a contradiction. |

Consider the nearring

Q ={g € Mapy(S™'T) | 7\s-q(t\a) = q(r\s - t\e)
forall « € I' and 7, s,t € S}

with respect to the addition defined pointwisely and the map composition, and
the map £: N — Q defined via

E(f)(1\0) = 1\0
E(f)(r\s-N\a;) =7r\s-1\fa; forall fe N,i€ Jand r,seS.

The action of the group S~15 on the additive group S~'T" by regular automor-
phisms forces the map & to be a well defined additive group homomorphism.
The proof of the equality £(fg)(1\e;) = &£(f)&(g)(1\e;) where f,g € N and
1 € J requires us to consider two separate cases. If ga; € kern, then also
fga; € kern by (4.7), and from this we have {(fg)(1\a;) = 1\fga; = 1\0 =
E(f)AN0) = &(f)(I\gas) = &(f)€(g)(1\e). If goy = weyj for some j € J and
u € S, then, according to (4.6), we have {(fg)(1\a;) = 1\fgoy = 1\ fue; =
Nufoj = &(f)(N\uey) = E(f)(A\gay) = &(f)E(9)(1\ey). From the definition of
the map &, for any f € N, a € I" and r,s,t € S we conclude that

(4.14) E()(M\s - t\a) = r\s -1\ fa.

To prove this, we check that {(f)(1\a) = 1\fa where f € N and a € I'. If
a € kern, then also fa € kern by (4.7), and from this we have {(f)(1\a) =
E(f)(A\0) = 1\0 = 1\ fo. If a = ueyj for some j € J and u € S, then, according

to (4.6), we have £(f)(1\o) = &(f)(1\ue;) = Nufa; = 1\ fua; =1\ fa.
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The purpose of this section is to examine when Q) is a nearring of left quotients
of the nearring IN with respect to the multiplicatively closed set S = RNT C N.

Theorem 4.6. Under the above notations, for every f € R there exists ¢y € Q
such that £(f)qr = qr&(f) = idg-1p.

Proof. Let f € R. According to Lemma 4.5, there exists a permutation 7 of
the set J such that fa; = u;ar ) for every @ € J and some u; € S depending to
i. Consider the map ¢y : S7IT' — S~IT defined via

g7 (1\0) = 1\0
qr(r\s - Nagg)) =7r\s-u\1-1\q; for all i € J and r,s € S.

The fact is that ¢y € Q. We claim that £(f)qr = ¢r&(f) = idg-1p. Indeed, for
any 7 € J and r, s € S we have

E(f)ar(r\s - New) = E(F)r\s - ur—1()\1 - \ae-133))
=r\s- uwfl(i)\l . 1\foz7r71(i) =r\s- uwfl(i)\l . 1\uﬂ71(i)ai =r\s- 1\

and

qr§(f)(r\s - Nai) = qp(r\s - 1\ fou)
= qr(r\s - Nujaz) = r\s- Nu; - w\1- N\ = r\s- 1\a. -

Theorem 4.7. Under the above notations, {(f)(q1 + q2) = £(f)q +&(f)ge holds
forall f €T and q1,92 € Q.

Proof. Let f €T, q1,q2 € Q, i € J and r,s € S. Assume that ¢;(r\s - 1\«o;) #
1\0 and ¢o(r\s - 1\«;) # 1\0. Without loss of generality we can assume that
q(r\s - N\o) = t\u - 1\ej and g2(r\s - 1\a;) = t\v - 1\ey, for some j,k € J and
t,u,v € S by (e). From the description of T' and observation (4.14) we obtain

)@ + q2)(r\s - Naw) = E(f)(E\(uarj + vag)) = ¢\ f (uey; + vay)
t\(fuaj + foag) = t\ fua; + t\ fooy,
E(f)(\uay) + E(f)(\var) = (E(f)ar +E(f)a2)(r\s - T\aw;). n

Notice that

ker & = {h € N | ha € kern for every a € I‘}.
Theorem 4.8. Under the above notations,

keré ={h € N | sf(g+ h)a = sfga for some f,g € S,

for every a € I', and for some s € S depending to a}.
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Proof. Let f,g € S, h € ker§, the latter means that ha € kern for every
a € T, and let a € T'. According to the description of T', we have f(ga +
ha) — fha — fga € kern. Since f € R, we also have fha € f(kern) = kern
by Lemma 4.5. From this we see that f(ga + ha) — fga € kern, hence we have
1\ f(ga+ ha) = 1\ fga, and thus we obtain sf(ga + ha) = sfga for some s € S.

Assume now that sf(g + h)a = sfga where f,g € S, h € N, o € T and

5 € . Then 1\s-£(f)(1\(ga+ha)) = 1\sf(ga+ha) = 1\sfga = 1\s-£(f)(1\ga)
by (4.14). Since 1\s acts on S~'T as an additive group automorphism and since
£(f) is invertible in Q C Mapy(S~IT), we see that 1\(ga + ha) = 1\ga. From
this we have &(h)(1\a) = 1\ha = 1\0 for every o € T', and thus we obtain

g(h) :05—11". |

Theorem 4.9. Under the above notations, every q € Q can be expressed as
q=&(f)71¢(g) where f € R and g € N. Under the additional assumption
(i) for all r,s € S there exists t1 € S such that tyrs = tysr,

also feT.

Proof. For every k € J, we let

Jolq) = {i € J | q(1\a;) = 1\0}

and
Jr(q) = {i € J|q(\a;) € 579 - 1\ay },

then for every i € Ji(q), we let q(1\a;) = 7k \sik - 1\ax where r, s;x € S. Since
J is a finite set, condition (d) enables us to assume without loss of generality that
rikUik = Sigu for all k € J, i € J(q), for some vy, € S depending to k and 4, and
for some u € S common to all k£ and i. From this we have 1\vj - u\1l = ri\ Sk,
and, in consequence,

q(N\a;) = 1\0 for every i € Jy(q)
g(N\e;) = N\vjg - u\1 - N\, for all k € J and i € Ji(q).

Consider the maps f,g: I' = I' defined via

fa =0 for every a € kern
fsa; = suay for alli € J and s € S

and

ga = 0 for every « € kern
gsa; =0 for all i € Jy(q) and s € S
gsa; = svay, for all k € J, i € Ji(q) and s € S.
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Since f,g € Mapy(T'), sfa = fsa and sga = gsa for all & € T, s € S, it
means that f,g € IN. We prove that f € R. For this purpose, we assume that
hfa € kernp where h € N and a € I'. If a € kern, then obviously ha € kern by
(4.7). Assume now that o = ro; for some ¢ € J and r € S. From (e) we know
that

S1UT = T1TU

for some r1,s1 € 5, next according to the description of IN we have
sorihruc; = sohrirua; and rosjuhra; = rohsjurao;
where 79, 59 € S, and finally we once again apply (e) to obtain
8372 = 1352
for some r3, s3 € S. Taking all this into account, we now see that

s3rosiuha = sgrosjuhra; = sgrohsiura; = rysohriruco;

= rgsorihrua; = rysarihfra; = rysarihfa € kern

by (4.7). From this it follows that ha € kern. This confirms that f € R.

For every i € Jolg) we have £(f)"¢(g)(1\as) = qr(1\gas) = q7(1\0) =
1\0 = ¢(1\;). Similarly, for all k € J and i € Ji(q) we have &(f)71&(g)(1\a;) =
gr(N\gas) = qp(N\vigoy) = \vg - u\l - Ny = ¢(1\ey;). This clearly forces
q=&(f)7¢(g)-

We now prove that f € T provided (i) holds. If a, 8 € kern, then obviously
a+ f € kern, and hence f(a+ ) — f8 — fa = 0 € kern. Assume now that
a € kern and 8 = sa; where j € J and s € S. Then obviously a + 8 ¢ ker,
hence a + 8 = tay, for some k € J, t € S, and thus tay, — sa; € kern. From (e)
and (i) we know that

s1tu = squt, t1su = tius and tos1 = Sotq
for some s1,t1, 89,t2 € S, next from (a’) we have
s3tasi(tuay, — suaj) = s3(tasituay — tasisuay)

and
tstasiu(tay — saj) = ta(tasiutoy, — tasjusa;)

for some s3,t3 € S, and finally we once again apply (e) to obtain

t483 = 8413
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where s4,t4 € S. Taking all this into account, we now see that

tasstasi(f(a+ B) — fB — fa) = tasstasi (tuay, — sua;)

= tys3(tasituay — tasisucy) = satg(tasituog, — sotisua;)
= syt3(tasiutay, — satiusey) = satg(tasiutoy, — tasjusa;)
= sytgtasiu(tar — sa;) € kern

by (4.7). From this we obtain f(a+ ) — f8 — fa € kern. In the case when
a = ra;, B = saj and a + B8 € kern for some i,j € J, r,s € S, we have
ra; + soj € kern. Similar arguments applied to this case enable us to prove
that wi(fa+ f8 — f(a+ B)) = wi(ruey + sucj) = wiu(ra; + so;) € kern for
some wy € S, and thus f(a+ 8) — f8 — fa € kern. Finally, in the case when
a = ro;, B = sa; and a+ B = toy, for some 4,5,k € J, r,5,t € S, we have
toy, — saj — roy = 0. In the same manner we can prove that wa(f(a+3) — f8 —
fa) = wa(tuay, — suaj — rua;) = wou(tay — sa; — ray) = 0 for some wy € S,
which implies f(a+ 8) — f8 — fa € kern. This completes the proof. [

From now on we will require S to satisfy condition (i). This condition forces
previous conditions (c) and (e).

Theorem 4.10. Under the additional assumption
(j) for all {r; | i € I} C S there existr € S and {s; | i € I} C S such that
T =TS,
keré = {h € N | f(g+h)a = fga for some f,g € S and every a € T'}.

Proof. Let g € S and h € ker{. According to Lemma 4.5, there exists a
permutation 7 of the set J such that g(kern) = kern and g(Sa;) = Sag
for every i € J. For all i € J and o € Sa;, we let ga = rqay ;) where r € S.
Since ha € kerm, then obviously ga + ha & kern, hence ga + ha = s,y for
some k € J and s, € S, and thus 1\raar ;) = 1\(ga + ha) = 1\saay € S-1s.
Naey NS71S - 1\ag. From this we have k = m(i) and 1\rq = 1\s4, the latter
means that t,r, = toSq for some t, € S. That rous, = SaU, for some u, € S
follows from (b). From (j) we now see that rou = syu for some u € S common
to all a & kern. Consider the map f: ' — I' defined via

fa =0 for every a € kern
fsa; = sua; for all i € J and s € S.
As in the proof of Theorem 4.9, f € S. From all of this we obtain
flg+h)a= fsatri) = Saliry = oty gy = fratyq) = fga

for all : € J and o € Se;. If o € kern, then obviously (g + h)a € kern and
ga € kern by (4.7), and hence f(g + h)a = 0 = fga. This completes the
proof. [
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Example 4.11. For fixed prime numbers p < ¢ with ¢ =1 mod p, we consider
the quotient ring R = Z/pqZ and its ideal I = pZ/pqZ. To simplify notation, we
write 7 instead of n + pgZ where n € Z. For any m,m € R, by m =7 mod I we
mean m — 7 € I, and we immediately note that

m=n mod I iff m=n mod p.

Indeed, m =7 mod I means that m — n + pqZ € pZ/pqZ, which is equivalent
to m —n € pZ, and consequently m = n mod p. We partition the set R into the
equivalent classes

m]={neR|m=n modI}

where M € R. We now consider
S={Xs: R" = RT|5€ [I] and \sn =35 7 for every m € R"} C End(R™),

the commutative multiplicative semigroup of additive group endomorphisms of
R™. The semigroup S evidently satisfies conditions (a)-(e) and (i). That S also
satisfies (j) follows from the following observation:

qc [ﬂ and g =75 ¢ for every 5 € [ﬂ

To see this, we let 5 € [T], which means that s =1 mod p. From this we have
sq = q mod pq, which confirms that s ¢ = g. That § € [T] follows from the
assumption on ¢ = 1 mod p. The fact that S satisfies (j) and also (g) now
becomes evident.

Notice that

kernz{ﬁ€R+|§ﬁ:6f0rsome§€ [ﬂ}:{ﬁeR‘WQﬁ:ﬁ}: [ﬁ]

Indeed, from 57 = 0 for some 5 € [T] it follows that also g m = ¢ 5 m = 0, which
means that ¢gn =0 mod pg. Then obviously n =0 mod p, which confirms that
ne [6} Conversely, assume that n € [6], which means that n =0 mod p. Then
gn =0 mod pgq, from this g m = 0, and since § € [T], hence n € ker .

We finally prove that S satisfies (h). Let J = {T, 2,... ,m} For every
m € J, we consider

Sm={sm|se[1]}.

If ¥ m = 5 m for some 7,5 € [T], then since m € U(R), hence 7 = 5. If
Sm N Sn # () for some m,n € J, then 7 m = 5 7 for some 7,5 € [T], from this
alsogm =q¢7Tm =795 n = qn, which means that gm = ¢gn mod pg. Then
obviously m = n mod p, which means that m—7 =0 mod I. But m—7n =k
for some k € { —(p-1),...,-1,0,1,...,p — 1}. From k£ = 0 mod I, which
means that £ =0 mod p, it now follows that £ = 0, and hence 2 = 7. Finally,
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if there existed m € J such that Sm Nkern # ), then we would have s m € kern
for some 5 € [ﬂ, from this we would obtain g m =g 7 5 m = 0 for some 7 € [T]
Since m € U(R), it would follow that g = 0, contrary to g € [T] In this way we
obtain the partition
R =kernU U Sm
meJ

of the set R into p subsets with ¢ elements. Since sm =m mod p for all m € J
and 5 € [T], hence s m € [m], and thus

Sm = [m] for every m € J.
We now consider the nearring

N = {f € Mapy(R") | for all m € R" and 5 € [1] there exists 57 € [1]
such that 575 f m=37 f 57}
:{fGMapO(R+)|§§fﬁ:§f§ﬁf0rallﬁ€R+ and 5 € [T]}

For maps f,g € N defined via

0ifn € kern 0ifm € kern
fn= qifﬁem and g m = Tifﬁem
7 otherwise 7 otherwise

we have_f(f+g) 1= f_(ﬁ—i—T) =g+ 1sinceg+1 € [Q], and (ff + fg) 1=
fq+f1=q+G#7q+1since ¢ #1 mod pg. This means that in the nearring
N, the left distributivity does not hold.
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