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Abstract

In the paper, we introduce the notion of a nondistributive ring N as
a generalization of the notion of an associative ring with unit, in which
the addition needs not be abelian and the distributive law is replaced by
n0 = 0n = 0 for every element n of N . For a nondistributive ring N , we
introduce the notion of a nondistributive ring of left quotients S−1N with
respect to a multiplicatively closed set S ⊆ N , and determine necessary and
sufficient conditions for the existence of S−1N .
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1. Introduction

Since the publication of [4] by Dickson in 1905, there exists the notion of a left
nearfield defined as a generalization of the notion of a division ring, in which
the right distributive law is missing. Since the publication of [20] by Vandiver
in 1934, there exists the notion of a semiring R defined as a generalization of
the notion of an associative ring with unit, namely the lack of the requirement
that every element in R has an additive inverse is compensated in part by the
requirement that the multiplication by zero annihilates R, see [6] and the ref-
erences given there. A study of ring-like structures which are generalizations of
Boolean rings was initiated by Dorninger, Länger and Ma̧czyński in the series
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of papers published in the years 1997–2001, see for instance [5] for the complete
list of mentioned papers. The present paper is intended to initiate a discussion
on nondistributive rings. We suggest defining a nondistributive ring N to be a
generalization of an associative ring with unit, in which the addition needs not
be abelian and the distributive law is replaced by n0 = 0n = 0 where n ∈ N . In
Section 2 we present a few examples of nondistributive rings. Further examples
of nondistributive rings are submitted by interval arithmetic. For a deeper dis-
cussion on the arithmetic of approximate numbers we refer the readers to [11] of
Markov and the references given there. In ring theory, the notions of a semisim-
ple artinian ring, the Jacobson radical, a Jacobson semisimple ring, a Jacobson
radical ring are fundamental. Every Jacobson radical ring R is a group both with
respect to the addition and with respect to the circle operation r ◦ s = r+ s+ rs
where r, s ∈ R. Both operations mentioned above have the same neutral element.
Substituting the multiplication in R for the circle operation we lose the distribu-
tivity. The above example motivates to take an interest in nondistributive rings
N , in which the postulate n0 = 0n = 0 where n ∈ N needs not hold. In a private
conversation, Stefan Veldsman suggested a further generalization of an associative
ring not necessarily with unit, which he called a symmetric generalized nearring
N , and in which the addition needs not be abelian and the distributive law is
replaced by 0k(m+n) = 0km+0kn, k(0m+n) = 0m+kn, k(m+0n) = km+0n,
(k+m)n0 = kn0 +mn0, (k0 +m)n = k0 +mn and (k+m0)n = kn+m0 where
k,m, n ∈ N .

In ring theory, the Öre localizations provide one of the most powerful tools
for proving theorems. The theory of noncommutative localizations started in
the early 1930’s when Oystein Öre investigated the possibility to embed domains
into division rings. He did not assume the existence of a unit in the considered
domains. In his famous paper [14] published in 1931, Öre found the necessary and
sufficient condition for constructing the (total) classical right ring of quotients of
a given domain. For the general procedure of localizing any noncommutative ring
R with unit with respect to any multiplicatively closed set S ⊆ R, we refer the
readers to [10]. A generalization of the Öre construction of the classical right ring
of quotients for semirings is due to Vandiver [21].

By a (zerosymmetric right) nearring (with unit) we mean a nondistributive
ring satisfying the right distributive law. A nearring of right quotients of a given
nearring was defined by Graves and Malone in [7] as a natural generalization of
a right ring of quotients of a ring. Their construction was analogous to the Öre
construction of the classical right ring of quotients of a domain. The attempt
of analogous construction of a nearring of left quotients of a nearring was un-
successful. In Section 3, we define a nondistributive ring of left quotients of a
nondistributive ring N with respect to a multiplicatively closed set S ⊆ N to
be a nondistributive ring S−1N , together with a nondistributive ring homomor-
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phism η : N → S−1N , for which: (1) η(s) is both invertible and left distributive
in S−1N for every s ∈ S, (2) every element of S−1N is of the form η(s)−1η(n)
where n ∈ N and s ∈ S, (3) ker η =

{

n ∈ N | r(s + n) = rs for some r, s ∈ S
}

.
The left distributivity of elements η(s) in S−1N makes the construction of a
nearring of left quotients of a nearring possible. In Section 4 we construct for a
nearring N an example of a nearring of left quotients S−1N with the noninjective
homomorphism η : N → S−1N .

The author wishes to express her thanks to the reviewer for constructive
criticisms and valuable comments, which were of great help in revising the paper.

2. Nondistributive rings

Referring to a graduate course in ring theory, by a ring we mean a set R of no
fewer than two elements, together with two binary operations called the addition
and multiplication, in which: (1) R is an abelian group with respect to the
addition, (2) R is a semigroup with unit with respect to the multiplication, (3)
(r + s)t = rt + st and r(s + t) = rs + rt for all r, s, t ∈ R. A nearring N is a
generalization of a ring, namely the addition needs not be abelian and only the
right distributive law is required, additionally the left distributive law is replaced
by n0 = 0 for every n ∈ N . The last postulate means that we require a nearring
to be zerosymmetric with unit. For a deeper discussion of nearrings we refer
the readers to [2, 3, 13, 16]. The paper is intended as an attempt to initiate a
discussion on sets N satisfying the nearring axioms except the right distributive
law, which we replace by 0n = 0 for every n ∈ N .

Definition 2.1. By a nondistributive ring we mean a set N of no fewer than two
elements together with two binary operations called the addition and multiplica-
tion, in which

(1) N is a (not necessarily abelian) group with respect to the addition, with the
neutral element denoted by 0.

(2) N is a semigroup with unit with respect to the multiplication, with the
neutral element denoted by 1.

(3) n0 = 0n = 0 for every n ∈ N . This condition is called zerosymmetric.

We say that a nondistributive ring is abelian (respectively, commutative) if the
additive group mentioned above is abelian (respectively, the multiplicative semi-
group mentioned above is commutative). By a nondistributive division ring we
mean a nondistributive ring N , in which N \ {0} is a group with respect to the
multiplication.
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Definition 2.2. By a nondistributive ring homomorphism we mean a map η :
M → N where M , N are nondistributive rings, and such that

(1) η is a group homomorphism for the additive structure on M , N .

(2) η is a monoid homomorphism for the multiplicative structure on M , N .

The kernel of a nondistributive ring homomorphism η is defined to be the kernel
of η viewed as an additive group homomorphism.

Example 2.3. Let L be a partially ordered set, in which every two element
subset {x, y} ⊆ L has the infimum inf{x, y}, and which additionally has the least
element 0 and the greatest element 1. Then the operation x ∧ y = inf{x, y}, as
we know, makes L into a commutative semigroup with zero and unit. Assume
that elements of the set L are indexed by elements of an additive group G, with
the least element 0 = x0. To simplify notation, we use the same symbol 0 for the
neutral element of the group G. We can make the above assumption, since every
nonempty set admits a group structure (the statement is equivalent to the Axiom
of Choice, see [8]). With the addition defined by xa + xb = xa+b for all a, b ∈ G,
the set L forms an additive group with the neutral element x0 = 0. All of this
means that the set L together with both binary operations + and ∧ mentioned
above is a commutative nondistributive ring.

As an example of a partially ordered set we consider the family P(X) of
subsets of a given set X = {x1, x2, . . . , xn}, partially ordered by inclusion. The
set P(X) becomes a commutative semigroup with zero and unit, with respect to
A∧B = A∩B for all A,B ∈ P(X). Elements of the set P(X) can be indexed by
elements of G = Z/2Z×Z/2Z× · · · ×Z/2Z, the direct product of n-copies of the
additive group Z/2Z. For all i = 1, 2, . . . , n and ε1, ε2, . . . , εn ∈ Z/2Z we write
xi ∈ A(ε1,ε2,...,εn) if and only if εi = 1. It is evident that the addition defined
as follows A(ε1,ε2,...,εn) + A(η1,η2,...,ηn) = A(ε1+η1,ε2+η2,...,εn+ηn) coincides with the
symmetric difference A(ε1,ε2,...,εn) △ A(η1,η2,...,ηn) =

(

A(ε1,ε2,...,εn) \ A(η1,η2,...,ηn)

)

∪
(

A(η1,η2,...,ηn) \ A(ε1,ε2,...,εn)

)

. Thereby the set P(X) together with both binary
operations + and ∩ mentioned above turns out to be a commutative ring.

Let P(X) be the same commutative semigroup with zero and unit as pre-
viously. Assume that this time elements of the set P(X) can be indexed by
elements of the group G = D8 × Z/2Z × Z/2Z × . . . × Z/2Z, where D8 =
{σ0 = (1), σ1 = (1, 2, 3, 4), σ2 = (1, 3)(2, 4), σ3 = (1, 4, 3, 2), τ1 = (2, 4), τ2 =
(1, 2)(3, 4), τ3 = (1, 3), τ4 = (1, 4)(2, 3)} is the dihedral group of order eight,
provided that ∅ = A(σ0,0,0,...,0). With the addition defined as previously, the
semigroup P(X) forms a commutative nondistributive ring. If the distibutive-
ness held in P(X), writing Aσi

instead of A(σi,0,0,...,0) for every i = 0, 1, 2, 3, we
would obtain Aσ1

∩ Aσ2
= Aσ1

∩ (Aσ1
+ Aσ1

) = Aσ1
+ Aσ1

= Aσ2
and thus

Aσ2
= (Aσ1

+Aσ1
) ∩Aσ2

= Aσ2
+Aσ2

= Aσ0
, a contradiction.



Nondistributive rings and their Öre localizations 151

Example 2.4. In the construction of a nondistributive ring from Example 2.3,
we can consider any semigroup with zero and unit instead of the commutative
semigroup L with zero and unit. Let Q8∪{0} be the noncommutative semigroup
with zero and unit, obtained from the quaternion group Q8 = {±1,±i,±j,±k}
of order eight by adjoining the zero element. Assume that elements of the set
Q8∪{0} are indexed by elements of the group Z/3Z×Z/3Z as follows x(0,0) = 0,
x(1,0) = 1, x(2,0) = −1, x(0,1) = −i, x(0,2) = i, x(1,1) = −j, x(2,2) = j, x(2,1) = −k
and x(1,2) = k. With the addition defined by x(a,b) + x(c,d) = x(a+c,b+d) for all
a, b, c, d ∈ Z/3Z, the semigroup Q8 ∪ {0} forms an abelian and noncommutative
nearfield. The left distributivity does not hold since i(1 + i) = ik = −j but
i+ i2 = i− 1 = j.

The problem of characterizing semigroups with zero and unit admitting a ring
structure seems to be far from being solved. Examples 2.3 and 2.4 demonstrate
that the problem becomes trivial if we ask about semigroups with zero and unit
admitting a nondistributive ring structure.

Example 2.5. For a ring R, we denote by N one of the following semigroups with
zero and unit, with respect to the map composition: the semigroup End(R) ∪
{0R} of ring endomorphisms of R together with the zero map, the semigroup
Mono(R) ∪ {0R} of ring monomorphisms from R into itself together with the
zero map, the semigroup Epi(R) ∪ {0R} of ring epimorphisms from R onto itself
together with the zero map, the semigroup Aut(R)∪{0R} of ring automorphisms
of R together with the zero map. Assume that elements of the set N are indexed
by elements of an additive group G, with the zero map 0R = f0 where 0 denotes
the neutral element of the group G. With the addition defined by fa + fb = fa+b

for all a, b ∈ G, the semigroup N forms a nondistributive ring.
Let F be the splitting field of a polynomial f(x) = x4 + bx2 + c ∈ Q[x] irre-

ducible in the ring Q[x]. If c(b2 − 4c) is a square in Q then, according to the Ka-
plansky Theorem, the Galois group Gal(F/Q) = {σ1 = (1), σ2 = (1, 2, 3, 4), σ3 =
(1, 4, 3, 2), σ4 = (1, 3)(2, 4)} is a cyclic group of order four. Let Gal(F/Q) ∪ {0F}
be a commutative semigroup with zero and unit, obtained from Gal(F/Q) by
adjoining the zero map σ0 = 0F. With the addition defined by σi + σj = σi+j for
all i, j ∈ Z/5Z, the semigroup Gal(F/Q)∪{0F} forms a field isomorphic to Z/5Z.

Let F be still the splitting field of a polynomial f(x) = x4 + bx2 + c ∈ Q[x]
irreducible in the ring Q[x]. Assume that this time c is a square in Q. Then,
according to the Kaplansky Theorem, the Galois group Gal(F/Q) = {σ1 = (1),
σ2 = (1, 2)(3, 4), σ3 = (1, 3)(2, 4), σ4 = (1, 4)(2, 3)} is the Klein four-group. Let
Gal(F/Q) ∪ {0F} be still a commutative semigroup with zero and unit, obtained
from Gal(F/Q) by adjoining the zero map σ0 = 0F. With the addition defined
as previously, the semigroup Gal(F/Q)∪{0F} forms an abelian and commutative
nondistributive division ring. If the distributivity held in Gal(F/Q) ∪ {0F}, we
would obtain σ1 = σ2 ◦ σ2 = (σ1 + σ1) ◦ σ2 = σ2 + σ2 = σ4, a contradiction.
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Example 2.6. For a nonempty set X with a fixed element 0, we denote by N
one of the following semigroups with zero and unit, with respect to the map
composition: the semigroup Map0(X) =

{

f : X → X | f(0) = 0
}

of maps from
X into itself preserving 0, the semigroup Inj0(X)∪{0X} of injections from X into
itself preserving 0 together with the zero map, the semigroup Sur0(X) ∪ {0X}
of surjections from X onto itself preserving 0 together with the zero map, the
semigroup Bi0(X) ∪ {0X} of bijections from X onto itself preserving 0 together
with the zero map. In the same manner as previously the semigroup N becomes
a nondistributive ring.

For a nondistributive ring N , we denote by N+ the additive group of N .
A well known result in ring theory asserts that every ring R embeds into the
ring End(R+) of group endomorphisms of R+. An analogously result in nearring
theory asserts that every nearring N embeds into the nearring M0(N

+) of maps
from N+ into itself preserving 0, with the addition defined pointwisely and the
map composition.

Example 2.7. For a nondistributive ring N , we denote by r.Hom(N) the semi-
group with zero and unit

{

f : N → N | f(xn) = f(x)n for all n, x ∈ N
}

of right
homogeneous maps from N into itself, with respect to the map composition. For
every n ∈ N , we define the map λn : N → N via λn(x) = nx where x ∈ N .
Since λn ∈ r.Hom(N) for every n ∈ N , λ0 = 0N , λ1 = idN and λmn = λmλn for
all m,n ∈ N , it follows that the map λ : N → r.Hom(N) defined by λ(n) = λn
for every n ∈ N is a semigroup homomorphism. It is also evident that for all
m,n ∈ N if λm = λn, then m = λm(1) = λn(1) = n, and that f = λf(1) for every
f ∈ r.Hom(N). All of this means that λ is a semigroup isomorphism, and, in
consequence, elements of the set r.Hom(N) are indexed by elements of the addi-
tive group N+. With the addition defined by λm +λn = λm+n for all m,n ∈ N+,
the semigroup r.Hom(N) forms a nondistributive ring isomorphic to N .

Theorem 2.8. Every nondistributive ring N embeds into the nondistributive ring

Map0(N) of maps from N , viewed as a set, into itself preserving 0.

Proof. According to Example 2.7, the map λ : N → r.Hom(N) defined by
λ(n) = λn for every n ∈ N is a monoid isomorphism. Since λn(0) = 0 for every
n ∈ N , it follows that r.Hom(N) ⊆ Map0(N) also as monoids. This enables us
to embed N into Map0(N) only as monoids.

In the case when Map0(N) is a finite set, we denote byG any additive group of
order |G| = |N+||N |−2. Then N+×G is a group of order |N+×G| = |N+||N |−1 =
|Map0(N)|. In the case when Map0(N) is an infinite set, we denote by G the
additive group F(Map0(N))+ of finite subsets of Map0(N). Then N+ × G is a
group of order |N+ × G| = |F(Map0(N))+| = |Map0(N)|. In both these cases,
it means that elements of the set Map0(N) can be indexed by elements of the
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additive group N+ × G, with f(n,0) = λn for every n ∈ N+. With the addition
defined by f(m,a) +f(n,b) = f(m+n,a+b) for all m,n ∈ N+ and a, b ∈ G, the monoid
Map0(N) forms a nondistributive ring.

Since λ(m+n) = f(m+n,0) = f(m,0) +f(n,0) = λ(m)+λ(n) for all m,n ∈ N , it
follows that the map λ : N → Map0(N) defined by λ(n) = f(n,0) for every n ∈ N
is a nondistributive ring monomorphism.

3. Ore localizations of nondistributive rings

In ring theory, by a right ring of quotients of a given ring R with respect to a
multiplicatively closed set S ⊆ R we mean a ring denoted by RS−1, together with
a ring homomorphism µ : R → RS−1, for which: (1) µ(s) is invertible in RS−1

for every s ∈ S, (2) every element of RS−1 is of the form µ(a)µ(s)−1 where a ∈ R
and s ∈ S, (3) ker µ =

{

a ∈ R | as = 0 for some s ∈ S
}

. A ring R has a right ring
of quotients RS−1 with respect to a multiplicatively closed set S ⊆ R if and only
if S satisfies the following conditions: (a) aS∩sR 6= ∅ for all a ∈ R and s ∈ S (we
say that S is a right Öre set), (b) for every a ∈ R if sa = 0 for some s ∈ S, then
as1 = 0 for some s1 ∈ S, the latter may be replaced by the following equivalent
condition: (b’) for all a, b ∈ R if sa = sb for some s ∈ S, then as1 = bs1 for some
s1 ∈ S. In particular, if S is the multiplicatively closed set of regular elements in
R, then R has a right ring of quotients RS−1 (we say that R is a right Öre ring)
if and only if S is a right Öre set. In this case, we speak of RS−1 as the (total)
classical right ring of quotients of R and denote it by Qr

cl(R). Now, let R be a
domain and let S = R \

{

0
}

. In this case, the condition (a) may be re-expressed
in the following equivalent form: (a’) aR∩ bR 6= 0 for all a, b ∈ S. This condition
is called the right Öre condition on R. Thus R is a right Öre domain if and only
if R satisfies the right Öre condition. The classical work here is [10].

According to a definition introduced by Graves and Malone in [7], a nearring
of right quotients of a given nearring N with respect to a multiplicatively closed
set S ⊆ N is a nearringNS , together with a nearring monomorphism φ : N → NS ,
for which: (1) φ(s) is invertible in NS for every s ∈ S, (2) every element of NS is
of the form φ(n)φ(s)−1 where n ∈ N and s ∈ S. The authors proved that if S is a
multiplicatively closed set of both left and right cancellable elements in a nearring
N , then N has a nearring of right quotients NS if and only if nS ∩ sN 6= ∅ for
all n ∈ N and s ∈ S. This condition is called the right Öre condition on N
with respect to S. Their construction is analogous to the Öre construction of
the classical right ring of quotients Qr

cl(R) of a ring R. The fact is that if a
nearring N satisfies the left cancellation law, then: (1) N has no proper zero
divisors, (2) also the right cancellation law holds in N . In this case, S = N \

{

0
}

is the multiplicatively closed set of both left and right cancellable elements in N ,
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and a nearring of right quotients NS exists if and only if N satisfies the right
Öre condition: rN ∩ sN 6= 0 holds for all r, s ∈ S. Graves and Malone defined
a neardomain to be a nearring N satisfying both the left cancellation law and
the right Öre condition. In particular, if N is a neardomain, then a nearring of
right quotients NS exists and is a nearfield. Nearrings of right quotients were
considered by various authors in [1, 7, 9, 12, 15, 17–19]. The left analogue of the
notion of a nearring of right quotients was defined similarly. Unfortunately, as
pointed out by Maxson [12], the Öre construction does not hold for a nearring
of left quotients SN , because a substitute for the left distributive law in N is
necessary for the addition in SN to be well defined.

The main purpose of this section is to introduce the notion of a nondistribu-
tive ring of left quotients, which is a generalization of the notion of a left ring
of quotients, and for which the Öre construction holds. We suggest defining a
nondistributive ring of left quotients of a given nondistributive ring N with re-
spect to a multiplicatively closed set S ⊆ N to be a nondistributive ring S−1N
together with a nondistributive ring homomorphism η : N → S−1N for which:
(1) η(s) is both invertible and left distributive in S−1N for every s ∈ S, (2)
every element of S−1N is of the form η(s)−1η(n) where n ∈ N and s ∈ S, (3)
ker η =

{

n ∈ N | r(s + n) = rs for some r, s ∈ S
}

. Then we determine neces-
sary and sufficient conditions for the existence of a nondistributive ring of left
quotients S−1N . Condition (3) describing ker η follows from the purpose that we
set ourselves in this section. In the case when N is a nearring, ker η has to be
a left ideal in N and, in consequence, k(m + n) − km ∈ ker η has to hold for all
k,m ∈ N and n ∈ ker η. In the case when N is a ring, ker η =

{

n ∈ N | rn = 0
for some r ∈ S

}

and, in consequence, r(m + n) − rm = 0 has to hold for all
m ∈ N , n ∈ ker η and some r ∈ S depending on n. Simultaneously, we should
be as far away as possible from the left distributivity in N , and, of course, we
require Öre construction to hold for S−1N . All of this is realized when we define
ker η as in (3). To define a left Öre set S ⊆ N when N is a nondistributive ring,
we follow a pattern as we follow when N is a ring. Namely, for any n ∈ N and
s ∈ S, we write η(n)η(s)−1 in the form η(s1)−1η(n1) where n1 ∈ N and s1 ∈ S,
and we receive η(n1s− s1n) = 0, which means r2(s2 +n1s− s1n) = r2s2 for some
r2, s2 ∈ S. It might appear that a generalization of the left analogue of condition
(b’) on the case when N is a nondistributive ring ought to be as follows: for all
m,n ∈ N if r(s+mt−nt) = rs for some r, s, t ∈ S, then r1(s1+t1m−t1n) = r1s1
for some r1, s1, t1 ∈ S. Unfortunately, this generalization turned out to be insuf-
ficient. We re-define the left analogue of condition (b’) on the case when N is
a nondistributive ring as follows: for all m,n ∈ N if r(s + tmu − tnu) = rs for
some r, s, t, u ∈ S, then r1(s1 + m− n) = r1s1 for some r1, s1 ∈ S. To check the
correctness of our choice, we act by η on both sides of r(s + tmu − tnu) = rs
where m,n ∈ N and r, s, t, u ∈ S, then we apply the invertibility of η(r), η(t) and
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η(u) in S−1N , and we recive η(m− n) = 0, which means r1(s1 +m− n) = r1s1
for some r1, s1 ∈ S.

Let N be a nondistributive ring. We say, analogously as in ring theory, that
a set S ⊆ N is multiplicatively closed if 0 6∈ S, 1 ∈ S and rs ∈ S for any r, s ∈ S.
With S so defined, we associate the following two sets

T =
{

n ∈ N | r2(s2 + n− s1) = r2s2 for some s1, r2, s2 ∈ S
}

⊇ S

and

U =
{

n ∈ N | r2(s2 + nr1 − s1) = r2s2 for some r1, s1, r2, s2 ∈ S
}

⊇ T.

Definition 3.1. Let S be a multiplicatively closed set in a nondistributive ring
N . We call a nondistributive ring Q a nondistributive ring of left quotients of N
with respect to S if there exists a nondistributive ring homomorphism η : N → Q
for which

(i) η(s) is invertible in Q for every s ∈ S.

(ii) η(s) is left distributive in Q for every s ∈ S.

(iii) every q ∈ Q can be expressed as q = η(s)−1η(n) where n ∈ N and s ∈ S.

(iv) ker η =
{

n ∈ N | r(s+ n) = rs for some r, s ∈ S
}

.

We have no reason to expect a nondistributive ring of left quotients of N
with respect to a given multiplicatively closed set S ⊆ N to exist, see for instance
Example 3.2. The fact is that if such a nondistributive ring exists, we can quickly
deduce that

(i’) η(s) is invertible in Q for every s ∈ U .

(ii’) η(s) is left distributive in Q for every s ∈ U .

To prove (i’), we act by η on both sides of r2(s2 + sr1 − s1) = r2s2 where
r1, s1, r2, s2 ∈ S, then we apply the invertibility of η(r1) and η(r2) in Q, and we
receive η(s) = η(s1)η(r1)−1, an invertible element in Q. To prove (ii’), we divide
both sides of p + q = η(r1)(η(r1)−1p + η(r1)−1q) by η(r1) where p, q ∈ Q and
r1 ∈ S, then we apply the left distributivity of η(s1) in Q where s1 ∈ S, and
we receive η(s1)η(r1)−1(p + q) = η(s1)η(r1)−1p + η(s1)η(r1)−1q, which means,
according to (i’), that η(s)(p + q) = η(s)p + η(s)q for every s ∈ U .

Example 3.2. We denote by P(X) the family of subsets of a given set X =
{x1, x2, x3}. According to Example 2.3, the set P(X) is a commutative semigroup
with zero and unit, with respect to AB = A ∩ B for all A,B ∈ P(X). Assume
that elements of the set P(X) are indexed by elements of the dihedral group
D8 of order eight as follows Aσ0

= ∅, Aσ1
= X, Aσ2

=
{

1, 2
}

, Aσ3
=

{

2, 3
}

,
Aτ1 =

{

1, 3
}

, Aτ2 =
{

1
}

, Aτ3 =
{

2
}

and Aτ4 =
{

3
}

. With the addition defined
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by Aσ + Aτ = Aστ for all σ, τ ∈ D8, the semigroup P(X) forms a commutative
nondistributive ring. Consider the multiplicatively closed set S =

{

Aσ1
, Aσ2

}

⊆
P(X). We claim that a nondistributive ring of left quotients S−1P(X) does not
exist. Otherwise, since Aσ2

(Aσ2
+ Aτ2) = Aσ2

Aσ1
= Aσ2

= Aσ2
Aσ2

, we would
have Aτ2 ∈ ker η, and thus Aτ4(Aσ1

+ Aτ2) − Aτ4Aσ1
∈ ker η. But Aτ4(Aσ1

+
Aτ2) − Aτ4Aσ1

= Aτ4Aσ2
− Aτ4Aσ1

= Aσ0
− Aτ4 = Aτ4 , which would mean

Aσi
(Aσj

+ Aτ4) = Aσi
Aσj

for some Aσi
, Aσj

∈ S. Simultaneously, Aσ1
(Aσ1

+
Aτ4) = Aσ1

Aτ1 = Aτ1 6= Aσ1
= Aσ1

Aσ1
and Aσ1

(Aσ2
+ Aτ4) = Aσ1

Aτ3 = Aτ3 6=
Aσ2

= Aσ1
Aσ2

and Aσ2
(Aσ1

+ Aτ4) = Aσ2
Aτ1 = Aτ2 6= Aσ2

= Aσ2
Aσ1

and
Aσ2

(Aσ2
+Aτ4) = Aσ2

Aτ3 = Aτ3 6= Aσ2
= Aσ2

Aσ2
, a contradiction.

We now move on to the main result in this section, namely we determine the
necessary and sufficient conditions for the existence of a nondistributive ring of
left quotients of a given nondistributive ring N with respect to a multiplicatively
closed set S ⊆ N .

Theorem 3.3. A nondistributive ring N has a nondistributive ring of left quo-

tients Q with respect to a multiplicatively closed set S ⊆ N if and only if S
satisfies the following conditions

(a) for all n ∈ N and s ∈ S there exist n1 ∈ N and s1, r2, s2 ∈ S such that

r2(s2 + n1s− s1n) = r2s2.

(b) for all m,n ∈ N and s ∈ U there exist r1, s1 ∈ S such that r1(s1 + s(m +
n) − sn− sm) = r1s1.

(c) for all m,n ∈ N if r(s + tmu − tnu) = rs for some r, s, t, u ∈ S, then

r1(s1 +m− n) = r1s1 for some r1, s1 ∈ S.

(d) for all m,n ∈ N if r(s + m) = rs and t(u + n) = tu for some r, s, t, u ∈ S,

then r1(s1 +m− n) = r1s1 for some r1, s1 ∈ S.

(e) for all m,n ∈ N if r(s+n) = rs for some r, s ∈ S, then r1(s1+m+n−m) =
r1s1 for some r1, s1 ∈ S.

(f) for all k, l,m, n ∈ N if r(s + m − n) = rs for some r, s ∈ S, then r1(s1 +
kml − knl) = r1s1 for some r1, s1 ∈ S.

The additional assumption that N is an abelian nondistributive ring (respectively,

a commutative nondistributive ring, a left nearring, a right nearring) implies the

same for Q.

Proof of the necessary condition. Items (a) and (c) follow from previous
considerations. To prove item (b), we apply (ii’) according to which η(s)(η(m) +
η(n)) = η(s)η(m) + η(s)η(n), which means η(s(m+ n)− sn− sm) = 0, and thus
r1(s1 + s(m + n) − sn − sm) = r1s1 for some r1, s1 ∈ S. We leave the proofs of
the remaining items to the readers.
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The proof that the fulfillment by the set S ⊆ N of conditions (a)–(f) guar-
antees the existence of a nondistributive ring of left quotients of N with respect
to S will require some auxiliary result.

Lemma 3.4. Under conditions (a)–(f) stated above,

(a’) for all n ∈ N and s ∈ U there exist n1 ∈ N and s1, r2, s2 ∈ S such that

r2(s2 + n1s− s1n) = r2s2.

(b’) for all m,n ∈ N and s ∈ U there exist r1, s1 ∈ S such that r1(s1 + s(m −
n) + sn− sm) = r1s1.

(c’) for all m,n ∈ N if r(s + tmu − tnu) = rs for some r, s, u ∈ S and t ∈ U ,

then r1(s1 +m− n) = r1s1 for some r1, s1 ∈ S.

(d’) for all m,n ∈ N if r(s + m) = rs and t(u + n) = tu for some r, s, t, u ∈ S,

then r1(s1 ±m± n) = r1s1 for some r1, s1 ∈ S.

(f’) for all k, l,m, n ∈ N if r(s + m − n) = rs for some r, s ∈ S, then r1(s1 ±
(kml − knl)) = r1s1 for some r1, s1 ∈ S.

Proof. From (d) for any m,n ∈ N we can quickly deduce the following two
observations:

r(s+ n) = rs for some r, s ∈ S implies

r1(s1 − n) = r1s1 for some r1, s1 ∈ S.
(3.1)

and

r(s+m) = rs and t(u+ n) = tu for some r, s, t, u ∈ S imply

r1(s1 +m+ n) = r1s1 for some r1, s1 ∈ S.
(3.2)

To prove (a’), we first apply the description of U and condition (a) according
to which

r2(s2 + sr1 − s1) = r2s2

and
r4(s4 + n3s1 − s3nr1) = r4s4

where n3 ∈ N and r1, s1, r2, s2, s3, r4, s4 ∈ S, then we apply (f) and (3.2) accord-
ing to which

r5(s5 + n3sr1 − s3nr1) = r5(s5 + (n3sr1 − n3s1) + (n3s1 − s3nr1)) = r5s5

where r5, s5 ∈ S, and finally we apply (c) to obtain

r6(s6 + n3s− s3n) = r6s6

for some r6, s6 ∈ S.
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To prove (b’), we first apply (b) according to which

r7(s7 + s(m− n) − s(−n) − sm) = r7s7

and

r8(s8 − sn− s(−n)) = r8(s8 + s((−n) + n) − sn− s(−n)) = r8s8

where r7, s7, r8, s8 ∈ S, then we apply (3.1) and (e) to the latter equation to
obtain

r9(s9 + sm+ s(−n) + sn− sm) = r9(s9 + sm− (−sn− s(−n)) − sm) = r9s9

for some r9, s9 ∈ S, and finally we apply (3.2) to obtain

r10(s10 + s(m− n) + sn− sm)

= r10(s10 + (s(m− n) − s(−n) − sm) + (sm+ s(−n) + sn− sm)) = r10s10

for some r10, s10 ∈ S.
To prove (c’), for any n ∈ N we need the following observation:

r(s+ tn) = rs for some r, s ∈ S and t ∈ U implies

r1(s1 + t1n) = r1s1 for some r1, s1, t1 ∈ S.
(3.3)

To prove (3.3), we first apply (a’) according to which

r12(s12 + n11t− s11) = r12s12

where n11 ∈ N and s11, r12, s12 ∈ S, then we apply (f) and (3.1) according to
which

r13(s13 + n11tn) = r13s13

and
r14(s14 + s11n− n11tn) = r14(s14 − (n11tn− s11n)) = r14s14

where r13, s13, r14, s14 ∈ S, and finally we apply (3.2) to obtain

r15(s15 + s11n) = r15(s15 + (s11n− n11tn) + n11tn) = r15s15

for some r15, s15 ∈ S, which is the desired observation. Now, for any m,n ∈ N ,
r, s, u ∈ S and t ∈ U such that r(s+tmu−tnu) = rs we first apply (b’) according
to which

r16(s16 + t(mu− nu) + tnu− tmu) = r16s16

where r16, s16 ∈ S, next we apply (3.2) according to which

r17(s17 + t(mu− nu))

= r17(s17 + (t(mu− nu) + tnu− tmu) + (tmu− tnu)) = r17s17
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where r17, s17 ∈ S, then we apply (3.3) according to which

r18(s18 + t18(mu− nu)) = r18s18

where r18, s18, t18 ∈ S, and finally we apply (c) to obtain

r19(s19 +m− n) = r19s19

for some r19, s19 ∈ S.
To prove (d’), we first apply (3.2) and (d) according to which

r20(s20 +m+ n) = r20s20

and
r21(s21 +m− n) = r21s21

where r20, s20, r21, s21 ∈ S, then we apply (3.1) and (e) to obtain

r22(s22 −m− n) = r22(s22 + n− (m+ n) − n) = r22s22

and
r23(s23 −m+ n) = r23(s23 − n− (m− n) + n) = r23s23

for some r22, s22, r23, s23 ∈ S.
Condition (f’) follows immediately from (f) and (3.1).

Proof of the sufficient condition. Under the assumption on the fulfillment
by the set S ⊆ N of conditions (a)–(f) we will construct a nondistributive ring
of left quotients of N with respect to S by defining an equivalence relation ∼ on
S ×N and two binary operations, the addition and multiplication, on the set of
equivalence classes (S ×N)/∼.

For any (s, n), (s′, n′) ∈ S ×N , we define

(s, n) ∼ (s′, n′) iff there exist m,m′ ∈ N and r, t, u, v ∈ S such that

m′s′ ∈ T , r(t+ms−m′s′) = rt and u(v +mn−m′n′) = uv.
(3.4)

Under the notation of (3.4), from the description of T it follows that

(3.5) r2(s2 +m′s′ − s1) = r2s2

where s1, r2, s2 ∈ S. Applying (d’) to (3.4) and (3.5) we now obtain

r3(s3 +ms− s1) = r3(s3 + (ms−m′s′) + (m′s′ − s1)) = r3s3

for some r3, s3 ∈ S, which means that also

ms ∈ T.
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From the description of U it follows immediately that

m,m′ ∈ U.

The reflexivity of ∼ is obvious. The symmetry of ∼ follows from (d’) applying
to (3.4). To prove the transitivity of ∼, we assume that (s, n) ∼ (s′, n′) and
(s′, n′) ∼ (s′′, n′′) where n, n′, n′′ ∈ N and s, s′, s′′ ∈ S, which means that in
addition to (3.4), also

k′s′, k′′s′′ ∈ T

r′(t′ + k′s′ − k′′s′′) = r′t′ and u′(v′ + k′n′ − k′′n′′) = u′v′
(3.6)

hold for some k′, k′′ ∈ N and r′, t′, u′, v′ ∈ S. From (a’) we simultaneously know
that

(3.7) r5(s5 + n4m
′ − s4k

′) = r5s5

where n4 ∈ N and s4, r5, s5 ∈ S. Applying (f’) to (3.4), (3.6) and (3.7), and then
applying (d’) we now obtain

r6(s6 + n4ms− s4k
′′s′′)

= r6(s6 + (n4ms− n4m
′s′) + (n4m

′s′ − s4k
′s′) + (s4k

′s′ − s4k
′′s′′)) = r6s6

and

u6(v6 + n4mn− s4k
′′n′′)

= u6(v6 + (n4mn− n4m
′n′) + (n4m

′n′ − s4k
′n′) + (s4k

′n′ − s4k
′′n′′)) = u6v6

for some r6, s6, u6, v6 ∈ S. Since also s4k
′′s′′ ∈ ST ⊆ T , all of this means that

(s, n) ∼ (s′′, n′′). We proved the equivalence of ∼.

By a left quotient s\n we mean the equivalence class containing (s, n) ∈
S ×N . The set of equivalence classes under the relation ∼ is denoted by Q.

To define the addition in Q, we observe that any two left quotients r\m and
s\n can be brought to a common denominator applying (a’), and then

(3.8) r\m+ s\n = s1r\(s1m+ n1n) where r2(s2 + n1s− s1r) = r2s2

for some n1 ∈ N and s1, r2, s2 ∈ S. To prove the definition is independent of
the choice of representatives for equivalence classes, we assume that r\m = r′\m′

and s\n = s′\n′ where m,n,m′, n′ ∈ N and r, s, r′, s′ ∈ S. From (a’) it follows
that in addition to (3.8), also

(3.9) r2
′(s2

′ + n1
′s′ − s1

′r′) = r2
′s2

′
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holds for some n1
′ ∈ N and s1

′, r2
′, s2

′ ∈ S. From (3.4) we see at once that

s1r\s1m = r\m = r′\m′ = s1
′r′\s1

′m′

and after taking into account (3.8) and (3.9) we see that also

s1r\n1n = s\n = s′\n′ = s1
′r′\n1

′n′,

which means that

ks1r, k
′s1

′r′ ∈ T

r3(t3 + ks1r − k′s1
′r′) = r3t3 and u3(v3 + ks1m− k′s1

′m′) = u3v3
(3.10)

and

ls1r, l
′s1

′r′ ∈ T

r4(t4 + ls1r − l′s1
′r′) = r4t4 and u4(v4 + ln1n− l′n1

′n′) = u4v4
(3.11)

for some k, l, k′, l′ ∈ N and r3, t3, u3, v3, r4, t4, u4, v4 ∈ S. From (a’) we simulta-
neously know that since k ∈ U ,

(3.12) r6(s6 + n5k − s5l) = r6s6

for some n5 ∈ N and s5, r6, s6 ∈ S. Applying (f’) to (3.10), (3.11) and (3.12),
next applying (d’) we have

r7(s7 + n5k
′s1

′r′ − s5l
′s1

′r′)

= r7(s7 − (n5ks1r − n5k
′s1

′r′) + (n5ks1r − s5ls1r)

+ (s5ls1r − s5l
′s1

′r′)) = r7s7

for some r7, s7 ∈ S, and then applying (c’) we obtain

(3.13) r8(s8 + n5k
′ − s5l

′) = r8s8

for some r8, s8 ∈ S. Now, applying (b) to s5l, s5l
′ ∈ SU ⊆ U , applying (f’) to

(3.10), (3.12) and (3.13), applying (e) and (f’) to (3.11), next applying (d’) we
have

u9(v9 + s5l(s1m+ n1n) − s5l
′(s1

′m′ + n1
′n′))

= u9(v9 + (s5l(s1m+ n1n) − s5ln1n− s5ls1m)

− (n5ks1m− s5ls1m) + (n5ks1m− n5k
′s1

′m′)

+ (n5k
′s1

′m′ − s5l
′s1

′m′)

+ (s5l
′s1

′m′ + (s5ln1n− s5l
′n1

′n′) − s5l
′s1

′m′)

− (s5l
′(s1

′m′ + n1
′n′) − s5l

′n1
′n′ − s5l

′s1
′m′)) = u9v9
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for some u9, v9 ∈ S, and then applying (c’) we obtain

u10(v10 + l(s1m+ n1n) − l′(s1
′m′ + n1

′n′)) = u10v10

for some u10, v10 ∈ S. Also

r4(t4 + ls1r − l′s1
′r′) = r4t4 and l′s1

′r′ ∈ T.

Taking all this into account, we see that

s1r\(s1m+ n1n) = s1
′r′\(s1

′m′ + n1
′n′),

which finally confirms that the addition in Q is well defined.
To prove the associativity of the addition in Q, we let r\k, s\m, t\n ∈ Q

where k,m, n ∈ N and r, s, t ∈ S. From (a’) it follows that

r2(s2 + n1s− s1r) = r2s2

r4(s4 + n3t− s3s1r) = r4s4
(3.14)

and

r6(s6 + n5t− s5s) = r6s6

r8(s8 + n7s5s− s7r) = r8s8
(3.15)

for some n1, n3, n5, n7 ∈ N and s1, r2, s2, s3, r4, s4, s5, r6, s6, s7, r8, s8 ∈ S. From
(3.14) and (3.15) we see that

(r\k + s\m) + t\n = s1r\(s1k + n1m) + t\n = s3s1r\(s3(s1k + n1m) + n3n)

and

r\k + (s\m+ t\n) = r\k + s5s\(s5m+ n5n) = s7r\(s7k + n7(s5m+ n5n)).

From (a’) it follows that also

(3.16) r10(s10 + n9s3s1 − s9s7) = r10s10

for some n9 ∈ N and s9, r10, s10 ∈ S. Applying (f’) to (3.14), (3.15) and (3.16),
next applying (d’) we have

r11(s11 + n9s3n1s− s9n7s5s)

= r11(s11 + (n9s3n1s− n9s3s1r) + (n9s3s1r − s9s7r)

− (s9n7s5s− s9s7r)) = r11s11

for some r11, s11 ∈ S, and then applying (c’) we obtain

(3.17) r12(s12 + n9s3n1 − s9n7s5) = r12s12
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for some r12, s12 ∈ S. Once more applying (f’) to (3.14), (3.15) and (3.16), next
applying (d’) we have

r13(s13 + n9n3t− s9n7n5t)

= r13(s13 + (n9n3t− n9s3s1r) + (n9s3s1r − s9s7r)

− (s9n7s5s− s9s7r) − (s9n7n5t− s9n7s5s)) = r13s13

for some r13, s13 ∈ S, and then applying (c’) we obtain

(3.18) r14(s14 + n9n3 − s9n7n5) = r14s14

for some r14, s14 ∈ S. Now, applying (b) to n9, n9s3, s9 ∈ U , applying (f’) to
(3.16), applying (e), (f’) to (3.17) and (3.18), applying (b) and (e) to s9n7 ∈
SU ⊆ U , next applying (d’) we have

u15(v15 + n9(s3(s1k + n1m) + n3n) − s9(s7k + n7(s5m+ n5n)))

= u15(v15 + (n9(s3(s1k + n1m) + n3n) − n9n3n− n9s3(s1k + n1m))

+ (n9s3(s1k + n1m) − n9s3n1m− n9s3s1k)

+ (n9s3s1k − s9s7k)+

+ (s9s7k + (n9s3n1m− s9n7s5m) − s9s7k)

+ (s9s7k + s9n7s5m+ (n9n3n− s9n7n5n) − (s9s7k + s9n7s5m))

− (s9s7k + (s9n7(s5m+ n5n) − s9n7n5n− s9n7s5m) − s9s7k)

− (s9(s7k + n7(s5m+ n5n)) − s9n7(s5m+ n5n) − s9s7k)) = u15v15

for some u15, v15 ∈ S. Finally, applying (f’) to (3.16) we obtain

r15(s15 + n9s3s1r − s9s7r) = r15s15

for some r15, s15 ∈ S. Also s9s7r ∈ S ⊆ T . Taking all this into account, we see
that

s3s1r\(s3(s1k + n1m) + n3n) = s7r\(s7k + n7(s5m+ n5n)),

which confirms that the addition in Q is associative.

To prove the commutativity of the addition in Q under the additional as-
sumption on the commutativity of the addition in N , we let r\m, s\n ∈ Q where
m,n ∈ N and r, s ∈ S. From (a’) it follows that

(3.19) r2(s2 + n1s− s1r) = r2s2

and

(3.20) r4(s4 + n3r − s3s) = r4s4



164 M.E. Hryniewicka

for some n1, n3 ∈ N and s1, r2, s2, s3, r4, s4 ∈ S. From (3.19) and (3.20) we see
that

r\m+ s\n = s1r\(s1m+ n1n) and s\n+ r\m = s3s\(s3n+ n3m).

From (a’) it follows that also

(3.21) r6(s6 + n5s1r − s5s3s) = r6s6

for some n5 ∈ N and s5, r6, s6 ∈ S. Applying (f’) to (3.19), next applying (d’)
we have

r7(s7 + n5n1s− s5s3s)

= r7(s7 + (n5n1s− n5s1r) + (n5s1r − s5s3s)) = r7s7

for some r5, s5 ∈ S, and then applying (c’) we obtain

(3.22) r8(s8 + n5n1 − s5s3) = r8s8

for some r8, s8 ∈ S. Once more applying (f’) to (3.20), next applying (d’) we
have

r9(s9 + n5s1r − s5n3r)

= r9(s9 + (n5s1r − s5s3s) − (s5n3r − s5s3s)) = r9s9

for some r9, s9 ∈ S, and then applying (c’) we obtain

(3.23) r10(s10 + n5s1 − s5n3) = r10s10

for some r10, s10 ∈ S. Finally, applying (b) to n5, s5 ∈ U , applying (f’) to (3.22)
and (3.23), next applying (d’) and the commutativity of the addition in N we
have

u11(v11 + n5(s1m+ n1n) − s5(s3n+ n3m))

= u11(v11 + (n5(s1m+ n1n) − n5n1n− n5s1m) + (n5n1n− s5s3n)

+ (n5s1m− s5n3m) − (s5(s3n+ n3m) − s5n3m− s5s3n)) = u11v11

for some u11, v11 ∈ S. Also

r6(s6 + n5s1r − s5s3s) = r6s6 and s5s3s ∈ S ⊆ T.

Taking all this into account, we see that

s1r\(s1m+ n1n) = s3s\(s3n+ n3m),



Nondistributive rings and their Öre localizations 165

which confirms that the addition in Q is commutative under the assumption on
the commutativity of the addition in N .

To multiply any two left quotients r\m with s\n we apply (a’) to determine
m1 ∈ N and s1, r2, s2 ∈ S auch that

(3.24) r2(s2 +m1s− s1m) = r2s2,

and then we define
r\m · s\n = s1r\m1n.

To prove the definition is independent of the choice of representatives for equiva-
lence classes, we assume that r\m = r′\m′ and s\n = s′\n′ wherem,n,m′, n′ ∈ N
and r, s, r′, s′ ∈ S. From (a’) it follows that in addition to (3.24), also

(3.25) r2
′(s2

′ +m1
′s′ − s1

′m′) = r2
′s2

′

holds for some m1
′ ∈ N and s1

′, r2
′, s2

′ ∈ S. From (3.4) we see at once that

s1r\s1m = r\m = r′\m′ = s1
′r′\s1

′m′

which means that

ks1r, k
′s1

′r′ ∈ T

r3(t3 + ks1r − k′s1
′r′) = r3t3 and u3(v3 + ks1m− k′s1

′m′) = u3v3
(3.26)

and obviously

ls, l′s′ ∈ T

r4(t4 + ls− l′s′) = r4t4 and u4(v4 + ln− l′n′) = u4v4
(3.27)

for some k, l, k′, l′ ∈ N and r3, t3, u3, v3, r4, t4, u4, v4 ∈ S. From (a’) we simulta-
neously know that since l ∈ U ,

(3.28) r6(s6 +m5l − s5km1) = r6s6

for some m5 ∈ N and s5, r6, s6 ∈ S. Applying (f’) to (3.24)–(3.28), next applying
(d’) we have

r7(s7 +m5l
′s′ − s5k

′m1
′s′)

= r7(s7 − (m5ls−m5l
′s′) + (m5ls− s5km1s) + (s5km1s− s5ks1m)

+ (s5ks1m− s5k
′s1

′m′) − (s5k
′m1

′s′ − s5k
′s1

′m′)) = r7s7

for some r7, s7 ∈ S, and then applying (c’) we obtain

(3.29) r8(s8 +m5l
′ − s5k

′m1
′) = r8s8
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for some r8, s8 ∈ S. Now, applying (f’) to (3.27), (3.28) and (3.29), next applying
(d’) we have

u9(v9 + s5km1n− s5k
′m1

′n′)

= u9(v9 − (m5ln− s5km1n) + (m5ln−m5l
′n′)

+ (m5l
′n′ − s5k

′m1
′n′)) = u9v9

for some u9, v9 ∈ S, and then applying (c’) we obtain

u10(v10 + km1n− k′m1
′n′) = u10v10

for some u10, v10 ∈ S. Also

r3(t3 + ks1r − k′s1
′r′) = r3t3 and k′s1

′r′ ∈ T.

Taking all this into account, we see that

s1r\m1n = s1
′r′\m1

′n′,

which finally confirms that the multiplication in Q is well defined.
To prove the associativity of the multiplication in Q, we let r\k, s\m, t\n ∈ Q

where k,m, n ∈ N and r, s, t ∈ S. From (a’) it follows that

r2(s2 + k1s− s1k) = r2s2

r4(s4 +m3t− t3k1m) = r4s4
(3.30)

and

r6(s6 +m5t− t5m) = r6s6

r8(s8 + k7t5s− s7k) = r8s8
(3.31)

for some k1,m3,m5, k7 ∈ N and s1, r2, s2, t3, r4, s4, t5, r6, s6, s7, r8, s8 ∈ S. From
(3.30) and (3.31) we see that

(r\k · s\m) · t\n = s1r\k1m · t\n = t3s1r\m3n

and
r\k · (s\m · t\n) = r\k · t5s\m5n = s7r\k7m5n.

From (a’) it follows that also

(3.32) r10(s10 + n9t3s1 − s9s7) = r10s10

for some n9 ∈ N and s9, r10, s10 ∈ S. Applying (f’) to (3.30), (3.31) and (3.32),
next applying (d’) we have

r11(s11 + n9t3k1s− s9k7t5s)

= r11(s11 + (n9t3k1s− n9t3s1k) + (n9t3s1k − s9s7k)

− (s9k7t5s− s9s7k)) = r11s11
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for some r11, s11 ∈ S, and then applying (c’) we obtain

(3.33) r12(s12 + n9t3k1 − s9k7t5) = r12s12

for some r12, s12 ∈ S. Once more applying (f’) to (3.30), (3.31) and (3.33), next
applying (d’) we have

u13(v13 + n9m3t− s9k7m5t)

= u13(v13 + (n9m3t− n9t3k1m) + (n9t3k1m− s9k7t5m)

− (s9k7m5t− s9k7t5m)) = u13v13

for some u13, v13 ∈ S, and then applying (c’) and (f’) we obtain

u14(v14 + n9m3n− s9k7m5n) = u14v14

for some u14, u14 ∈ S. Finally, applying applying (f’) to (3.32) we obtain

r14(s14 + n9t3s1r − s9s7r) = r14s14

for some r14, s14 ∈ S. Also s9s7r ∈ S ⊆ T . Taking all this into account, we see
that

t3s1r\m3n = s7r\k7m5n,

which confirms that the multiplication in Q is associative.
To prove the right distributivity in Q under the additional assumption on

the right distributivity in N , we let r\k, s\m, t\n ∈ Q where k,m, n ∈ N and
r, s, t ∈ S. From (a’) it follows that

r2(s2 + n1s− s1r) = r2s2

r4(s4 + n3t− t3(s1k + n1m)) = r4s4
(3.34)

and

r6(s6 + k5t− t5k) = r6s6

r8(s8 +m7t− t7m) = r8s8

r10(s10 + n9t7s− s9t5r) = r10s10

(3.35)

for some n1, n3, k5,m7, n9 ∈ N , s1, r2, s2, t3, r4, s4, t5, r6, s6, t7, r8, s8, s9, r10, s10 ∈
S. From (3.34) and (3.35) we see that

(r\k + s\m) · t\n = s1r\(s1k + n1m) · t\n = t3s1r\n3n

and

r\k · t\n+ s\m · t\n = t5r\k5n+ t7s\m7n = s9t5r\(s9k5n+ n9m7n).
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From (a’) it follows that also

(3.36) r12(s12 + n11t3s1 − s11s9t5) = r12s12

for some n11 ∈ N and s11, r12, s12 ∈ S. Applying (f’) to (3.35) and (3.36), and
then applying (d’) we obtain

r13(s13 + n11t3s1k − s11s9k5t)

= r13(s13 + (n11t3s1k − s11s9t5k) − (s11s9k5t− s11s9t5k)) = r13s13
(3.37)

for some r13, s13 ∈ S. Once more applying (f’) to (3.34), (3.35) and (3.36), next
applying (d’) we have

r14(s14 + n11t3n1s− s11n9t7s)

= r14(s14 + (n11t3n1s− n11t3s1r) + (n11t3s1r − s11s9t5r)

− (s11n9t7s− s11s9t5r)) = r14s14

for some r14, s14 ∈ S, and then applying (c’) we obtain

(3.38) r15(s15 + n11t3n1 − s11n9t7) = r15s15

for some r15, s15 ∈ S. Now, applying (b) to n11t3 ∈ U , applying (f’) to (3.34),
applying (e), (f’) to (3.35) and (3.38), applying (e) to (3.37), next applying (d’)
we have

u16(v16 + s11s9k5t+ s11n9m7t− n11n3t)

= u16(v16 − (n11t3(s1k + n1m) − n11t3n1m− n11t3s1k)

− (n11n3t− n11t3(s1k + n1m))

− ((n11n3t− s11n9t7m) + (n11t3n1m− s11n9t7m) − (n11n3t− s11n9t7m))

− ((n11n3t− s11n9t7m− s11s9k5t) + (n11t3s1k − s11s9k5t)

− (n11n3t− s11n9t7m− s11s9k5t))

+ ((n11n3t− s11n9m7t) + (s11n9m7t− s11n9t7m) − (n11n3t− s11n9m7t)))

= u16v16

for some u16, v16 ∈ S, and then applying the right distributivity in N , (c’) and
(f’) we obtain

(3.39) u17(v17 + s11s9k5n+ s11n9m7n− n11n3n) = u17v17

for some u17, v17 ∈ S. Finally, applying (b) to s11 ∈ S ⊆ T , and then applying
(d’) we obtain

u18(v18 + n11n3n− s11(s9k5n+ n9m7n))

= u18(v18 − (s11s9k5n+ s11n9m7n− n11n3n)

− (s11(s9k5n+ n9m7n) − s11n9m7n− s11s9k5n)) = u18v18
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for some u18, v18 ∈ S. Also

r18(s18 + n11t3s1r − s11s9t5r) = r18s18

for some r18, s18 ∈ S, which follows from (f’) applying to (3.36), and s11s9t5r ∈
S ⊆ T . Taking all this into account, we see that

t3s1r\n3n = s9t5r\(s9k5n+ n9m7n),

which confirms that the multiplication in Q is right distributive under the as-
sumption on the right distributivity in N .

We will not present the details here, but the fact is that the additional as-
sumption on the commutativity (respectively, the left distributivity) of the mul-
tiplication in N implies the same for Q.

To prove Q is a nondistributive ring of left quotients of N with respect to
S, we define η : N → Q via η(n) = 1\n where n ∈ N , and then we verify
the conditions listed in Definition 3.1. We leave the detailed verification to the
readers. We only draw our attention to (ii). To prove the left distributivity of
elements from η(S) in Q, we let 1\r, s\m, t\n ∈ Q where m,n ∈ N and r, s, t ∈ S.
From (a’) it follows that

r2(s2 + n1t− s1s) = r2s2

r4(s4 + n3s1s− s3r) = r4s4
(3.40)

and

r6(s6 + n5s− s5r) = r6s6

r8(s8 + n7t− s7r) = r8s8

r10(s10 + n9s7 − s9s5) = r10s10

(3.41)

for some n1, n3, n5, n7, n9 ∈ N , s1, r2, s2, s3, r4, s4, s5, r6, s6, s7, r8, s8, s9, r10, s10 ∈
S, and since in fact n3 ∈ U ,

r11(s11 + n3(s1m+ n1n) − (n3s1m+ n3n1n))

= r11(s11 + n3(s1m+ n1n) − n3n1n− n3s1m) = r11s11
(3.42)

for some r11, s11 ∈ S. From (3.40), (3.41) and (3.42) we see that

1\r · (s\m + t\n) = 1\r · s1s\(s1m+ n1n)

= s3\n3(s1m+ n1n) = s3\(n3s1m+ n3n1n)

and

1\r · s\m+ 1\r · t\n = s5\n5m+ s7\n7n = s9s5\(s9n5m+ n9n7n).
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From (a’) it follows that also

(3.43) r13(s13 + n12s3 − s12s9s5) = r13s13

for some n12 ∈ N and s12, r13, s13 ∈ S. Applying (f’) to (3.40), (3.41) and (3.43),
next applying (d’) we have

r14(s14 + n12n3s1s− s12s9n5s)

= r14(s14 + (n12n3s1s− n12s3r) + (n12s3r − s12s9s5r)

− (s12s9n5s− s12s9s5r)) = r14s14

for some r14, s14 ∈ S, and then applying (c’) we obtain

(3.44) r15(s15 + n12n3s1 − s12s9n5) = r15s15

for some r15, s15 ∈ S. Once more applying (f’) to (3.40), (3.41) and (3.43), next
applying (d’) we have

r16(s16 + n12n3n1t− s12n9n7t)

= r16(s16 + (n12n3n1t− n12n3s1s) + (n12n3s1s− n12s3r)

+ (n12s3r − s12s9s5r) − (s12n9s7r − s12s9s5r)

− (s12n9n7t− s12n9s7r)) = r16s16

for some r16, s16 ∈ S, and then applying (c’) we obtain

(3.45) r17(s17 + n12n3n1 − s12n9n7) = r17s17

for some r17, s17 ∈ S. Finally, applying (b) to n12, s12 ∈ U , applying (f’) to
(3.44), applying (e) and (f’) to (3.45) we obtain

u18(v18 + n12(n3s1m+ n3n1n) − s12(s9n5m+ n9n7n))

= u18(v18 + n12(n3s1m+ n3n1n) − n12n3n1n− n12n3s1m)

+ (n12n3s1m− s12s9n5m)

+ (s12s9n5m+ (n12n3n1n− s12n9n7n) − s12s9n5m)

− (s12(s9n5m+ n9n7n) − s12n9n7n− s12s9n5m)) = u18v18

for some u18, v18 ∈ S. Also

r13(s13 + n12s3 − s12s9s5) = r13s13 and s12s9s5 ∈ S ⊆ T.

Taking all this into account, we see that

s3\(n3s1m+ n3n1n) = s9s5\(s9n5m+ n9n7n),

which confirms that elements from η(S) are left distributive in Q.
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By S−1N we denote the nondistributive ring of left quotients of a nondis-
tributive ring N with respect to a multiplicatively closed set S ⊆ N constructed
in the proof of Theorem 3.3.

For a given multiplicatively closed set S ⊆ N we call a nondistributive ring
homomorphism η : N → M S-inverting (respectively, S-left distributing) if η(s)
is an invertible (respectively, a left distributive) element in M for every s ∈ S.

Theorem 3.5. Under conditions (a)–(f) stated in Theorem 3.3, η : N → S−1N
is both an S-inverting and an S-left distributing nondistributive ring homomor-

phism, with the following universal property: for both an S-inverting and an

S-left distributing nondistributive ring homomorphism ϕ : N →M , there exists a

unique nondistributive ring homomorphism ψ : S−1N →M such that ψη = ϕ.

Proof. For both an S-inverting and an S-left distributing nondistributive ring
homomorphism ϕ : N → M , we define ψ : S−1N →M via ψ(s\n) = ϕ(s)−1ϕ(n)
where n ∈ N and s ∈ S. To prove the definition is independent of the choice
of representatives for equivalence classes, we assume that s\n = s′\n′ where
n, n′ ∈ N and s, s′ ∈ S, which means that

ms,m′s′ ∈ T and, in consequence, m,m′ ∈ U

r(t+ms−m′s′) = rt and u(v +mn−m′n′) = uv
(3.46)

for some m,m′ ∈ N and r, t, u, v ∈ S. Acting by ϕ on both sides of the last two
equations (3.46), next applying the invertibility of ϕ(r) and ϕ(u) in M we have
ϕ(ms) = ϕ(m′s′) and ϕ(mn) = ϕ(m′n′), and then applying the invertibility of
ϕ(m) and ϕ(m′) in M we obtain

ϕ(s)−1ϕ(n) = ϕ(s)−1ϕ(m)−1ϕ(m)ϕ(n) = ϕ(ms)−1ϕ(mn)

= ϕ(m′s′)−1ϕ(m′n′) = ϕ(s′)−1ϕ(m′)−1ϕ(m′)ϕ(n′) = ϕ(s′)−1ϕ(n′),

which confirms that the map ψ is well defined. We will not present the details
here, but the fact is that ψ is a nondistributive ring homomorphism, with ψη = ϕ.
To prove the uniqueness of ψ, we let ψ′ : S−1N → M be a nondistributive ring
homomorphism, with ψ′η = ϕ. Then

ϕ(n) = (ψ′η)(n) = ψ′(1\n) = ψ′(1\s · s\n)

= ψ′(1\s)ψ′(s\n) = (ψ′η)(s)ψ′(s\n) = ϕ(s)ψ′(s\n)

for all n ∈ N and s ∈ S, which confirms that

ψ(s\n) = ϕ(s)−1ϕ(n) = ψ′(s\n)

holds for all n ∈ N and s ∈ S.
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Theorem 3.5 asserts that if a nondistributive ring of left quotients Q of a
nondistributive ring N with respect to a multiplicatively closed set S ⊆ N exists,
then Q ∼= S−1N .

We symmetrically define the notion of a nondistributive ring of right quotients
P of a nondistributive ring N with respect to a multiplicative closed set S ⊆ N ,
with a nondistributive ring homomorphism µ : N → P satisfying

(i) µ(s) is invertible in P for every s ∈ S.

(ii) µ(s) is right distributive in P for every s ∈ S.

(iii) every p ∈ P can be expressed as p = µ(n)µ(s)−1 where n ∈ N and s ∈ S.

(iv) kerµ =
{

n ∈ N | (r + n)s = rs for some r, s ∈ S
}

.

Theorem 3.6. If a nondistributive ring N has both nondistributive rings of left

and of right quotients with respect to a multiplicatively closed set S ⊆ N , then

S−1N ∼= NS−1.

Proof. According to Theorem 3.5 and its analogue for NS−1, we only need to
prove the right distributivity of elements from η(S) in S−1N . For this purpose,
we let m,n ∈ N and s ∈ S. From (ii) we know that (µ(m) + µ(n))µ(s) =
µ(m)µ(s) +µ(n)µ(s) holds in NS−1, which means that µ((m+n)s−ns−ms) =
0, and thus (r1 + (m + n)s − ns − ms)s1 = r1s1 holds for some r1, s1 ∈ S.
Acting by η on both sides of the last equation, and then applying the invertibility
of η(s1) in S−1N we obtain η((m + n)s − ns − ms) = 0, which means that
r2(s2 + (m+ n)s− ns−ms) = r2s2 holds for some r2, s2 ∈ S. The remainder of
the proof is the same as the proof of the right distributivity in S−1N under the
assumption on the right distributivity in N .

Under the additional assumption on the left distributivity of elements from
U in N , Theorem 3.3 takes the form similar to that in ring theory.

Corollary 3.7. If S is a multiplicatively closed set in a nondistributive ring N ,

and if every element from U is left distributive in N , then the nondistributive ring

of left quotients S−1N exists if and only if S satisfies the following conditions

(a) for all n ∈ N and s ∈ S there exist n1 ∈ N and s1 ∈ S such that n1s = s1n.

This condition is called the left Öre condition on N with respect to S.

(b) for all m,n ∈ N if ms = ns for some s ∈ S, then s1m = s1n for some

s1 ∈ S.

Corollary 3.8. If S is a multiplicatively closed set of right cancellable elements

in a nondistributive ring N , and if every element from U is left distributive in

N , then the nondistributive ring of left quotients S−1N exists if and only if N
satisfies the left Öre condition with respect to S. Under the additional assumption

that every element from S is also left cancellable in N , the nondistributive ring

N embeds into the nondistributive ring of left quotients S−1N .
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Lemma 3.9. If a nondistributive ring N satisfies the right cancellation law, and

if every element from U is left distributive in N , then

(1) N has no proper zero divisors.

(2) every nonzero element from U is also left cancellable in N .

Proof. To prove (1), we let mn = 0 where m,n ∈ N and n 6= 0. Then mn = 0n,
which means that m = 0. To prove (2), we let sm = sn where m,n ∈ N , s ∈ U
and s 6= 0. Then s(m− n) = 0, which means that m− n = 0.

Corollary 3.10. If a nondistributive ring N satisfies both the right cancellation

law and the left Öre condition with respect to a multiplicatively closed set S ⊆ N ,

and if every element from U is left distributive in N , then N embeds into the

nondistributive ring of left quotients S−1N .

Example 3.11. Let R be a commutative ring, and let M be a left free R-module
with a free basis

{

s, n
}

. To express any k ∈M as a unique R-linear combination
of

{

s, n
}

, we will use the notation k = αks + βkn where αk, βk ∈ R. For every
k ∈M , we define the R-module endomorphism ϕk : M →M via

ϕk(s) =

{

αks if αk = βk

k otherwise
and ϕk(n) =

{

αkn if αk = βk

0 otherwise

A trivial verification shows that

ϕk(m) =

{

αkm if αk = βk

αmk otherwise

and
ϕ0(k) = 0 = ϕk(0), ϕs+n(k) = k = ϕk(s + n)
ϕαk = αϕk, ϕkϕm = ϕϕk(m)

for all k,m ∈M and α ∈ R. From this we conclude that with the multiplication
defined by

k ·m = ϕk(m)

for all k,m ∈M , the additive group M forms a zerosymmetric left nearring with
unit s+ n. Consider

S =
{

s+ n
}

∪
{

αs | α ∈ U(R)
}

⊆M,

a multiplicatively closed set in M , where U(R) means the unit group in R. To
prove the left Öre condition on M with respect to S, we let m ∈M and αs ∈ S.
Then

(αmα
−1s+ αmα

−1n) · αs = ϕαmα−1(s+n)(αs)

= αmα
−1αϕs+n(s) = αms = ϕs(m) = s ·m
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where αmα
−1s + αmα

−1n ∈ M and s ∈ S. To prove (b) from Corollary 3.7, we
let k · αs = m · αs where k,m ∈M and αs ∈ S. Then

αϕk(s) = ϕk(αs) = k · αs = m · αs = ϕm(αs) = αϕm(s),

and hence k · s = m · s. From this it follows that

αks = αkϕs(s) = ϕαks(s) = αks · s = ϕs(k) · s = s · k · s

= s ·m · s = ϕs(m) · s = αms · s = ϕαms(s) = αmϕs(s) = αms,

which means that αk = αm, and, in consequence,

s · k = ϕs(k) = αks = αms = ϕs(m) = s ·m.

From Corollary 3.7 we now conclude that the left nearring M has the left nearring
of left quotients S−1M .

All conditions (a)–(f) from Theorem 3.3 except (b) are formulated for ele-
ments of the set S. In connection with this, the question arises whether also in

condition (b) the set U may be replaced by the set S.

4. Nearrings of left quotients

In Example 3.11, for the nondistributive ring M , applying Corollary 3.7, we
proved the existence of the nondistributive ring of left quotients S−1M with
respect to the multiplicatively closed set S ⊆ M . However, sometimes it oc-
curs that simply the knowledge of the existence of the nondistributive ring of
left quotients S−1N of a given nondistributive ring N with respect to a given
multiplicatively closed set S ⊆ N is insufficient, and a closer knowledge of the
nondistributive ring S−1N is necessarily. In this section, for some nondistributive
ring N , we construct a nondistributive ring of left quotients Q with respect to
some multiplicatively closed set S ⊆ N . This construction is inspired by Michael
Holcombe [9] and Alan Oswald [15]. In the former of the papers, for an additive
group Γ, the author considers a multiplicative semigroup S ⊆ End(Γ) of group
endomorphisms of Γ, which includes the identity endomorphism, but not the zero
endomorphism, and which: (1) is both left and right cancellative and reversible,
(2) for all γ ∈ Γ and s ∈ S if γs = 0, then γ = 0, (3) for all γ ∈ Γ and r, s ∈ S
if γr = γs, then γ = 0 or r = s, (4) there exist γ1, γ2, . . . , γp ∈ Γ \

{

0
}

such that
γiS ∩ γjS = ∅ for all i 6= j and Γ =

{

0
}

∪
⋃p

i=1 γiS. A good example illustrating
these assumptions is the additive group of integers Z+ and the multiplicative semi-
group S =

{

ρn : Z+ → Z+ | n ∈ N and xρn = xn for every x ∈ Z+
}

⊆ End(Z+).
The author next constructs two sets of equivalence classes ∆ = (Γ × S)/∼ and
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G = (S×S)/∼, and then proves that G is a multiplicative group, and ∆ is an ad-
ditive group acted faithfully on by the group G by regular group automorphisms,
and admitting only a finite number of orbits under the action of the group G.
His construction is analogous to the Öre construction of the classical right ring
of quotients Qr

cl(R) of a ring R. Finally, the author considers two sets N =
MapS(Γ) =

{

n : Γ → Γ | 0n = 0 and γns = γsn for all γ ∈ Γ and s ∈ S
}

and
Q = MapG(∆) =

{

q : ∆ → ∆ | 0q = 0 and δqg = δgq for all δ ∈ ∆ and g ∈ G
}

,
and then proves that Q is a left nearring of right quotients of a left nearring N ,
namely (1) N can be embedded, viewed as a left nearring, into Q, (2) every both
left and right cancellable element in N is invertible in Q, (3) every element of Q
is of the form nθ−1 where n, θ ∈ N and θ is both left and right cancellable.

Throughout this section, by Γ we denote an additive group, and by S ⊆
Map0(Γ) a semigroup of maps from Γ into itself preserving 0, with the identity
map, but not the zero map, with respect to the map composition, and satisfying
the following conditions:

(a) for all α, β ∈ Γ and s ∈ S there exists s1 ∈ S such that s1s(α + β) =
s1(sα+ sβ).

(b) for all r, s ∈ S if tr = ts for some t ∈ S, then rt1 = st1 for some t1 ∈ S.

(c) for all r, s ∈ S if rt = st for some t ∈ S, then t1r = t1s for some t1 ∈ S.

(d) for all r, s ∈ S there exist r1, s1 ∈ S such that rs1 = sr1.

(e) for all r, s ∈ S there exist r1, s1 ∈ S such that s1r = r1s.

For simplicity of notation, we write sα instead of s(α).

Lemma 4.1. Under conditions (a)–(e) stated above,

(a’) for all α, β ∈ Γ and s ∈ S there exists s1 ∈ S such that s1s(α − β) =
s1(sα− sβ).

(f) for all α, β ∈ Γ if sα = sβ for some s ∈ S, then s1(−α) = s1(−β) for some

s1 ∈ S.

Proof. To prove (a’), we first apply (a) according to which

s1s(α− β) = s1(sα+ s(−β))

and

s3s2(−s(−β) − sβ) = s3(s2s(β − β) + s2(−s(−β) − sβ))

= s3(s2(sβ + s(−β)) + s2(−s(−β) − sβ))

= s3s2(sβ + s(−β) − s(−β) − sβ) = 0
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where s1, s2, s3 ∈ S, then we apply (e) according to which s4s1 = r4s3s2 where
r4, s4 ∈ S, and finally we once again apply (a) to obtain

s5s4s1s(α− β) = s5(s4s1s(α− β) + r4s3s2(−s(−β) − sβ)

= s5(s4s1(sα+ s(−β)) + s4s1(−s(−β) − sβ))

= s5s4s1(sα+ s(−β) − s(−β) − sβ) = s5s4s1(sα− sβ)

for some s5 ∈ S.
To prove (f), we apply (a) and (a’) to obtain

s7s6s(−α) = s7(s6s(−α) + s6(sα− sβ))

= s7(s6s(−α) + s6s(α− β)) = s7s6s(−α+ α− β) = s7s6s(−β)

for some s6, s7 ∈ S.

Condition (e) enables us to define two equivalence relations ∼S×Γ and ∼S×S,
the former on the set S × Γ, and the latter on the set S × S, as follows

(s, α) ∼S×Γ (s′, α′) iff there exist r, r′ ∈ S such that

rs = r′s′ and rα = r′α′(4.1)

and

(r, s) ∼S×S (r′, s′) iff there exist t, t′ ∈ S such that

tr = t′r′ and ts = t′s′.
(4.2)

By an analogy with the construction from Section 3, by left quotients s\α and
r\s we mean the equivalence classes containing (s, α) ∈ S ×Γ and (r, s) ∈ S ×S,
respectively, and by S−1Γ and S−1S the sets of equivalence classes under the
relations ∼S×Γ and ∼S×S, respectively. Condition (e) also enables us to introduce
the addition in S−1Γ as follows

(4.3) r\α+ s\β = s1r\(s1α+ r1β) where s1r = r1s

holds for some r1, s1 ∈ S, and the multiplication in S−1S as follows

(4.4) r\s · t\u = t2r\s2u where t2s = s2t

holds for some s2, t2 ∈ S. A standard verification shows that both the definitions
are independent of the choice of representatives for equivalence classes, S−1Γ is
an additive group, and S−1S is a multiplicative group acting faithfully on S−1Γ
by group automorphisms according to the rule

(4.5) r\s · t\α = t3r\s3α where t3s = s3t
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holds for some s3, t3 ∈ S.
We also consider the additive group homomorphism η : Γ → S−1Γ defined

via η(α) = 1\α for every α ∈ Γ, and with

ker η =
{

α ∈ Γ | sα = 0 for some s ∈ S
}

.

Lemma 4.2. Under the above notations, the group S−1S acts on the additive

group S−1Γ by regular automorphisms if and only if

(g) for all α ∈ Γ and r, s ∈ S if rα = sα, then α ∈ ker η or t1r = t1s for some

t1 ∈ S.

Proof. To prove the necessary condition, we assume that rα = sα, but tr 6= ts
for any t ∈ S, the latter means that r\s 6= 1\1 in S−1S. Since simultaneously
r\s · 1\α = r\sα = r\rα = 1\α, by the assumption it means that 1\α = 1\0 in
S−1Γ. From this we have α ∈ ker η.

To prove the sufficient condition, we assume that r\s · t\α = t\α and t\α 6=
1\0 in S−1Γ, the latter means that α 6∈ ker η. Applying (e) according to which

t1s = s1t

where s1, t1 ∈ S, we see that t1r\s1α = t\α, which means that

ut1r = u′t and us1α = u′α

for some u, u′ ∈ S. Since α 6∈ ker η, by the assumption the latter means that

t2us1 = t2u
′

for some t2 ∈ S. Taking all this into account, we now see that

t2ut1r = t2u
′t = t2us1t = t2ut1s.

From this we obtain r\s = t2ut1r\t2ut1s = t2ut1s\t2ut1s = 1\1 in S−1S.

Lemma 4.3. Under the above notations, if there exist a finite set
{

αi | i ∈ J
}

⊆
Γ \ ker η such that Γ = ker η ∪

⋃

i∈J Sαi and Sαi ∩Sαj = ∅ for all i, j ∈ J , i 6= j,
then the additive group S−1Γ has a finite number of orbits under the action (4.5)
of the group S−1S, namely

(h) S−1Γ =
{

1\0
}

∪
⋃

i∈J S
−1S · 1\αi.

Proof. Assume that s\α 6= 1\0 in S−1Γ, which means that α 6∈ ker η. Accord-
ing to the assumption, it follows that α = tαi for some i ∈ J and t ∈ S. In
consequence, s\α = s\tαi = s\t · 1\αi ∈ S−1S · 1\αi.

Suppose now that r\s·1\αi = t\u·1\αj for some i, j ∈ J , i 6= j and r, s, t, u ∈
S, which means that r\sαi = t\uαj . From this it follows that vsαi = v′uαj for
some v, v′ ∈ S. This contradicts the assumption on Sαi ∩ Sαj = ∅.



178 M.E. Hryniewicka

In the remainder of this section we will require Γ to satisfy the assumptions of
Lemmas 4.2 and 4.3.

Lemma 4.4. Under conditions (a)–(e) stated above, the set

N =
{

f ∈ Map0(Γ) | for all α ∈ Γ and s ∈ S there exists s1 ∈ S

such that s1sfα = s1fsα
}

together with the pointwise addition and the map composition forms a nearring.

Furthermore,

η(sfα) = η(fsα)(4.6)

α ∈ ker η implies sα ∈ ker η and fα ∈ ker η(4.7)

frα ∈ ker η for some r ∈ S implies fsα ∈ ker η for every s ∈ S(4.8)

frα ∈ Sαk for some r ∈ S implies fsα ∈ Sαk for every s ∈ S(4.9)

for all f ∈ N , α ∈ Γ, k ∈ J and s ∈ S.

Proof. The fact is that the set Map0(Γ) of maps from Γ into itself preserving 0,
together with the addition defined pointwisely and the map composition, forms
a nearring. It remains to prove that N is its subnearring.

To prove that N is an additive subgroup of Map0(Γ), we first apply the
description of N and condition (e) according to which for any f, g ∈ N , α ∈ Γ
and s ∈ S,

s1sfα = s1fsα, s2sgα = s2gsα and s3s1 = r3s2

hold for some s1, s2, r3, s3 ∈ S, then we apply (a’) according to which

s4s3s1s(fα− gα) = s4(s3s1sfα− s3s1sgα)

and

s5s3s1(fsα− gsα) = s5(s3s1fsα− s3s1gsα)

where s4, s5 ∈ S, and finally we once again apply (e) according to which

s6s4 = r6s5

where r6, s6 ∈ S, to obtain

s6s4s3s1s(f − g)α = s6s4s3s1s(fα− gα)

= s6s4(s3s1sfα− s3s1sgα) = s6s4(s3s1sfα− r3s2sgα)

= r6s5(s3s1fsα− r3s2gsα) = r6s5(s3s1fsα− s3s1gsα)

= r6s5s3s1(fsα− gsα) = s6s4s3s1(f − g)sα.



Nondistributive rings and their Öre localizations 179

From the description of N and condition (e) for any f ∈ N and α, β ∈ Γ we
can quickly deduce the following observation

(4.10) sα = sβ for some s ∈ S implies s1fα = s1fβ for some s1 ∈ S.

Condition (4.10) enables us to prove that the set N is closed under the map
composition, namely for any f, g ∈ N , α ∈ Γ and s ∈ S from the assumption we
know that

s7sfgα = s7fsgα and s8sgα = s8gsα

for some s7, s8 ∈ S. Applying (4.10) to the latter equation we have

s9fsgα = s9fgsα

for some s9 ∈ S. Finally, applying (e) according to which

s10s7 = r10s9

where r10, s10 ∈ S, we obtain

s10s7sfgα = s10s7fsgα = r10s9fsgα = r10s9fgsα = s10s7fgsα.

To prove (4.6) and (4.7), we let f ∈ N , α ∈ Γ and s ∈ S. Since s11sfα =
s11fsα for some s11 ∈ S by the assumption, hence 1\sfα = s11\s11sfα =
s11\s11fsα = 1\fsα in S−1Γ, which confirms the correctness of (4.6). We
now additionally assume that α ∈ ker η, which means that both 1\α = 1\0
in S−1Γ and rα = 0 in Γ for some r ∈ S. From the former it follows that
1\sα = 1\s · 1\α = 1\0 in S−1Γ, which confirms that sα ∈ ker η. From the latter
it follows that r12rfα = r12frα = 0 in Γ for some r12 ∈ S, which confirms that
also fα ∈ ker η.

To prove (4.8) and (4.9), we let f ∈ N , α ∈ Γ and k ∈ J . If frα ∈ ker η
for some r ∈ S, then also rfα ∈ ker η by (4.6), and hence also fα ∈ ker η.
According to (4.7), we now have sfα ∈ ker η for every s ∈ S. From this we obtain
fsα ∈ ker η for every s ∈ S again by (4.6). Moving on to (4.9), if frα ∈ Sαk for
some r ∈ S, then fsα ∈ Sαj for every s ∈ S and some j ∈ J depending on s.
We know that r13rfα = r13frα and s13sfα = s13fsα for some r13, s13 ∈ S by
(4.6). Applying (e) according to which s14r13r = r14s13s where r14, s14 ∈ S, we
now obtain s14r13frα = s14r13rfα = r14s13sfα = r14s13fsα ∈ Sαj ∩Sαk, which
clearly forces j = k.

In the nearring N , we consider two subsets

R =
{

f ∈ N | for every g ∈ N if gfα ∈ ker η holds for every α ∈ Γ,

then also gα ∈ ker η holds for every α ∈ Γ
}
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and

T =
{

f ∈ N | f(α+ β) − fβ − fα ∈ ker η holds for all α, β ∈ Γ
}

,

both closed under the map composition. The former of the assertions is obvious.
We base the proof of the latter on the following observation

f(α− β) + fβ − fα

= (f(α− β) − (f(β + (−β)) − f(−β) − fβ) − f(α− β))

+ (f(α− β) − f(−β) − fα) ∈ ker η

(4.11)

and on the observation arising from this

f(α− β − γ) + fγ + fβ − fα

= (f(α− β − γ) + fγ − f(α− β)) + (f(α− β) + fβ − fα) ∈ ker η
(4.12)

where f ∈ T and α, β, γ ∈ Γ. Let f, g ∈ T and α, β ∈ Γ. Since g(α+β)−gβ−gα ∈
ker η by the assumption, we have

f(g(α+ β) − gβ − gα) ∈ ker η

by (4.7). But we also have

f(g(α+ β) − gβ − gα) + fgα+ fgβ − fg(α+ β) ∈ ker η

by (4.12). Taking all this into account, we now see that

fg(α+ β) − fgβ − fgα

= −(f(g(α+ β) − gβ − gα) + fgα+ fgβ − fg(α+ β))

+ f(g(α+ β) − gβ − gα) ∈ ker η.

For any f ∈ N and k ∈ J , we let

J0(f) =
{

i ∈ J | fαi ∈ ker η
}

and
Jk(f) =

{

i ∈ J | fαi ∈ Sαk

}

.

It may happen that Jk(f) = ∅, but definitely Jj(f) ∩ Jk(f) = ∅ for every j ∈ J ,
j 6= k.

Lemma 4.5. Under the above notations, for all f ∈ R and k ∈ J , J0(f) = ∅ and

Jk(f) contains exactly one element. More precisely, there exists a permutation π
of the set J such that

(4.13) f(ker η) = ker η and f(Sαi) = Sαπ(i)

for every i ∈ J .
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Proof. Suppose that Jk(f) = ∅ for some f ∈ R and k ∈ J , and consider the
map g : Γ → Γ defined via

gα = 0 for every α ∈ ker η

gsαk = 0 for every s ∈ S

gsαj = sαj for all j ∈ J , j 6= k and s ∈ S.

Since g ∈ Map0(Γ) and sgα = gsα for all α ∈ Γ, s ∈ S, it means that g ∈ N .
We claim that (idΓ −g)fα ∈ ker η for every α ∈ Γ. Indeed, if fα ∈ ker η, then
also (idΓ −g)fα ∈ ker η by (4.7). Assume now that fα 6∈ ker η, which means
that α 6∈ ker η again by (4.7), and thus α ∈ Sαi for some i ∈ J depending on
α. If fα ∈ Sαk, then also fαi ∈ Sαk by (4.9), contrary to the assumption that
Jk(f) = ∅. In this way we obtain fα ∈ Sαj for some j ∈ J , j 6= k, and, in
consequence, (idΓ−g)fα = fα− gfα = 0 ∈ ker η. According to the description
of the set R, we now obtain (idΓ −g)α ∈ ker η for every α ∈ Γ. For α = αk we
have αk = (idΓ −g)αk ∈ ker η, a contradiction.

Consider the nearring

Q =
{

q ∈ Map0(S
−1Γ) | r\s · q(t\α) = q(r\s · t\α)

for all α ∈ Γ and r, s, t ∈ S
}

with respect to the addition defined pointwisely and the map composition, and
the map ξ : N → Q defined via

ξ(f)(1\0) = 1\0

ξ(f)(r\s · 1\αi) = r\s · 1\fαi for all f ∈ N , i ∈ J and r, s ∈ S.

The action of the group S−1S on the additive group S−1Γ by regular automor-
phisms forces the map ξ to be a well defined additive group homomorphism.
The proof of the equality ξ(fg)(1\αi) = ξ(f)ξ(g)(1\αi) where f, g ∈ N and
i ∈ J requires us to consider two separate cases. If gαi ∈ ker η, then also
fgαi ∈ ker η by (4.7), and from this we have ξ(fg)(1\αi) = 1\fgαi = 1\0 =
ξ(f)(1\0) = ξ(f)(1\gαi) = ξ(f)ξ(g)(1\αi). If gαi = uαj for some j ∈ J and
u ∈ S, then, according to (4.6), we have ξ(fg)(1\αi) = 1\fgαi = 1\fuαj =
1\ufαj = ξ(f)(1\uαj) = ξ(f)(1\gαi) = ξ(f)ξ(g)(1\αi). From the definition of
the map ξ, for any f ∈ N , α ∈ Γ and r, s, t ∈ S we conclude that

(4.14) ξ(f)(r\s · t\α) = r\s · t\fα.

To prove this, we check that ξ(f)(1\α) = 1\fα where f ∈ N and α ∈ Γ. If
α ∈ ker η, then also fα ∈ ker η by (4.7), and from this we have ξ(f)(1\α) =
ξ(f)(1\0) = 1\0 = 1\fα. If α = uαj for some j ∈ J and u ∈ S, then, according
to (4.6), we have ξ(f)(1\α) = ξ(f)(1\uαj) = 1\ufαj = 1\fuαj = 1\fα.
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The purpose of this section is to examine when Q is a nearring of left quotients
of the nearring N with respect to the multiplicatively closed set S = R∩T ⊆ N .

Theorem 4.6. Under the above notations, for every f ∈ R there exists qf ∈ Q

such that ξ(f)qf = qfξ(f) = idS−1Γ.

Proof. Let f ∈ R. According to Lemma 4.5, there exists a permutation π of
the set J such that fαi = uiαπ(i) for every i ∈ J and some ui ∈ S depending to
i. Consider the map qf : S−1Γ → S−1Γ defined via

qf (1\0) = 1\0

qf (r\s · 1\απ(i)) = r\s · ui\1 · 1\αi for all i ∈ J and r, s ∈ S.

The fact is that qf ∈ Q. We claim that ξ(f)qf = qfξ(f) = idS−1Γ. Indeed, for
any i ∈ J and r, s ∈ S we have

ξ(f)qf (r\s · 1\αi) = ξ(f)(r\s · uπ−1(i)\1 · 1\απ−1(i))

= r\s · uπ−1(i)\1 · 1\fαπ−1(i) = r\s · uπ−1(i)\1 · 1\uπ−1(i)αi = r\s · 1\αi

and

qfξ(f)(r\s · 1\αi) = qf (r\s · 1\fαi)

= qf (r\s · 1\uiαπ(i)) = r\s · 1\ui · ui\1 · 1\αi = r\s · 1\αi.

Theorem 4.7. Under the above notations, ξ(f)(q1 + q2) = ξ(f)q1 + ξ(f)q2 holds

for all f ∈ T and q1, q2 ∈ Q.

Proof. Let f ∈ T , q1, q2 ∈ Q, i ∈ J and r, s ∈ S. Assume that q1(r\s · 1\αi) 6=
1\0 and q2(r\s · 1\αi) 6= 1\0. Without loss of generality we can assume that
q1(r\s · 1\αi) = t\u · 1\αj and q2(r\s · 1\αi) = t\v · 1\αk for some j, k ∈ J and
t, u, v ∈ S by (e). From the description of T and observation (4.14) we obtain

ξ(f)(q1 + q2)(r\s · 1\αi) = ξ(f)(t\(uαj + vαk)) = t\f(uαj + vαk)

= t\(fuαj + fvαk) = t\fuαj + t\fvαk

= ξ(f)(t\uαj) + ξ(f)(t\vαk) = (ξ(f)q1 + ξ(f)q2)(r\s · 1\αi).

Notice that

ker ξ =
{

h ∈ N | hα ∈ ker η for every α ∈ Γ
}

.

Theorem 4.8. Under the above notations,

ker ξ =
{

h ∈ N | sf(g + h)α = sfgα for some f, g ∈ S,

for every α ∈ Γ, and for some s ∈ S depending to α
}

.
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Proof. Let f, g ∈ S, h ∈ ker ξ, the latter means that hα ∈ ker η for every
α ∈ Γ, and let α ∈ Γ. According to the description of T , we have f(gα +
hα) − fhα − fgα ∈ ker η. Since f ∈ R, we also have fhα ∈ f(ker η) = ker η
by Lemma 4.5. From this we see that f(gα+ hα) − fgα ∈ ker η, hence we have
1\f(gα+ hα) = 1\fgα, and thus we obtain sf(gα+ hα) = sfgα for some s ∈ S.

Assume now that sf(g + h)α = sfgα where f, g ∈ S, h ∈ N , α ∈ Γ and
s ∈ S. Then 1\s·ξ(f)(1\(gα+hα)) = 1\sf(gα+hα) = 1\sfgα = 1\s·ξ(f)(1\gα)
by (4.14). Since 1\s acts on S−1Γ as an additive group automorphism and since
ξ(f) is invertible in Q ⊆ Map0(S−1Γ), we see that 1\(gα + hα) = 1\gα. From
this we have ξ(h)(1\α) = 1\hα = 1\0 for every α ∈ Γ, and thus we obtain
ξ(h) = 0S−1Γ.

Theorem 4.9. Under the above notations, every q ∈ Q can be expressed as

q = ξ(f)−1ξ(g) where f ∈ R and g ∈ N . Under the additional assumption

(i) for all r, s ∈ S there exists t1 ∈ S such that t1rs = t1sr,

also f ∈ T .

Proof. For every k ∈ J , we let

J0(q) =
{

i ∈ J | q(1\αi) = 1\0
}

and
Jk(q) =

{

i ∈ J | q(1\αi) ∈ S−1S · 1\αk

}

,

then for every i ∈ Jk(q), we let q(1\αi) = rik\sik · 1\αk where rik, sik ∈ S. Since
J is a finite set, condition (d) enables us to assume without loss of generality that
rikvik = siku for all k ∈ J , i ∈ Jk(q), for some vik ∈ S depending to k and i, and
for some u ∈ S common to all k and i. From this we have 1\vik · u\1 = rik\sik,
and, in consequence,

q(1\αi) = 1\0 for every i ∈ J0(q)

q(1\αi) = 1\vik · u\1 · 1\αk for all k ∈ J and i ∈ Jk(q).

Consider the maps f, g : Γ → Γ defined via

fα = 0 for every α ∈ ker η

fsαi = suαi for all i ∈ J and s ∈ S

and

gα = 0 for every α ∈ ker η

gsαi = 0 for all i ∈ J0(q) and s ∈ S

gsαi = svikαk for all k ∈ J , i ∈ Jk(q) and s ∈ S.



184 M.E. Hryniewicka

Since f, g ∈ Map0(Γ), sfα = fsα and sgα = gsα for all α ∈ Γ, s ∈ S, it
means that f, g ∈ N . We prove that f ∈ R. For this purpose, we assume that
hfα ∈ ker η where h ∈ N and α ∈ Γ. If α ∈ ker η, then obviously hα ∈ ker η by
(4.7). Assume now that α = rαi for some i ∈ J and r ∈ S. From (e) we know
that

s1ur = r1ru

for some r1, s1 ∈ S, next according to the description of N we have

s2r1hruαi = s2hr1ruαi and r2s1uhrαi = r2hs1urαi

where r2, s2 ∈ S, and finally we once again apply (e) to obtain

s3r2 = r3s2

for some r3, s3 ∈ S. Taking all this into account, we now see that

s3r2s1uhα = s3r2s1uhrαi = s3r2hs1urαi = r3s2hr1ruαi

= r3s2r1hruαi = r3s2r1hfrαi = r3s2r1hfα ∈ ker η

by (4.7). From this it follows that hα ∈ ker η. This confirms that f ∈ R.

For every i ∈ J0(q) we have ξ(f)−1ξ(g)(1\αi) = qf (1\gαi) = qf (1\0) =
1\0 = q(1\αi). Similarly, for all k ∈ J and i ∈ Jk(q) we have ξ(f)−1ξ(g)(1\αi) =
qf (1\gαi) = qf (1\vikαk) = 1\vik · u\1 · 1\αk = q(1\αi). This clearly forces
q = ξ(f)−1ξ(g).

We now prove that f ∈ T provided (i) holds. If α, β ∈ ker η, then obviously
α + β ∈ ker η, and hence f(α + β) − fβ − fα = 0 ∈ ker η. Assume now that
α ∈ ker η and β = sαj where j ∈ J and s ∈ S. Then obviously α + β 6∈ ker η,
hence α + β = tαk for some k ∈ J , t ∈ S, and thus tαk − sαj ∈ ker η. From (e)
and (i) we know that

s1tu = s1ut, t1su = t1us and t2s1 = s2t1

for some s1, t1, s2, t2 ∈ S, next from (a’) we have

s3t2s1(tuαk − suαj) = s3(t2s1tuαk − t2s1suαj)

and

t3t2s1u(tαk − sαj) = t3(t2s1utαk − t2s1usαj)

for some s3, t3 ∈ S, and finally we once again apply (e) to obtain

t4s3 = s4t3
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where s4, t4 ∈ S. Taking all this into account, we now see that

t4s3t2s1(f(α+ β) − fβ − fα) = t4s3t2s1(tuαk − suαj)

= t4s3(t2s1tuαk − t2s1suαj) = s4t3(t2s1tuαk − s2t1suαj)

= s4t3(t2s1utαk − s2t1usαj) = s4t3(t2s1utαk − t2s1usαj)

= s4t3t2s1u(tαk − sαj) ∈ ker η

by (4.7). From this we obtain f(α + β) − fβ − fα ∈ ker η. In the case when
α = rαi, β = sαj and α + β ∈ ker η for some i, j ∈ J , r, s ∈ S, we have
rαi + sαj ∈ ker η. Similar arguments applied to this case enable us to prove
that w1(fα + fβ − f(α + β)) = w1(ruαi + suαj) = w1u(rαi + sαj) ∈ ker η for
some w1 ∈ S, and thus f(α + β) − fβ − fα ∈ ker η. Finally, in the case when
α = rαi, β = sαj and α + β = tαk for some i, j, k ∈ J , r, s, t ∈ S, we have
tαk − sαj − rαi = 0. In the same manner we can prove that w2(f(α+ β) − fβ −
fα) = w2(tuαk − suαj − ruαi) = w2u(tαk − sαj − rαi) = 0 for some w2 ∈ S,
which implies f(α+ β) − fβ − fα ∈ ker η. This completes the proof.

From now on we will require S to satisfy condition (i). This condition forces
previous conditions (c) and (e).

Theorem 4.10. Under the additional assumption

(j) for all
{

ri | i ∈ I
}

⊆ S there exist r ∈ S and
{

si | i ∈ I
}

⊆ S such that

r = risi,

ker ξ =
{

h ∈ N | f(g + h)α = fgα for some f, g ∈ S and every α ∈ Γ
}

.

Proof. Let g ∈ S and h ∈ ker ξ. According to Lemma 4.5, there exists a
permutation π of the set J such that g(ker η) = ker η and g(Sαi) = Sαπ(i)

for every i ∈ J . For all i ∈ J and α ∈ Sαi, we let gα = rααπ(i) where rα ∈ S.
Since hα ∈ ker η, then obviously gα + hα 6∈ ker η, hence gα + hα = sααk for
some k ∈ J and sα ∈ S, and thus 1\rααπ(i) = 1\(gα + hα) = 1\sααk ∈ S−1S ·
1\απ(i) ∩ S

−1S · 1\αk. From this we have k = π(i) and 1\rα = 1\sα, the latter
means that tαrα = tαsα for some tα ∈ S. That rαuα = sαuα for some uα ∈ S
follows from (b). From (j) we now see that rαu = sαu for some u ∈ S common
to all α 6∈ ker η. Consider the map f : Γ → Γ defined via

fα = 0 for every α ∈ ker η

fsαi = suαi for all i ∈ J and s ∈ S.

As in the proof of Theorem 4.9, f ∈ S. From all of this we obtain

f(g + h)α = fsααπ(i) = sαuαπ(i) = rαuαπ(i) = frααπ(i) = fgα

for all i ∈ J and α ∈ Sαi. If α ∈ ker η, then obviously (g + h)α ∈ ker η and
gα ∈ ker η by (4.7), and hence f(g + h)α = 0 = fgα. This completes the
proof.
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Example 4.11. For fixed prime numbers p < q with q ≡ 1 mod p, we consider
the quotient ring R = Z/pqZ and its ideal I = pZ/pqZ. To simplify notation, we
write n instead of n+ pqZ where n ∈ Z. For any m,n ∈ R, by m ≡ n mod I we
mean m− n ∈ I, and we immediately note that

m ≡ n mod I iff m ≡ n mod p.

Indeed, m ≡ n mod I means that m − n + pqZ ∈ pZ/pqZ, which is equivalent
to m−n ∈ pZ, and consequently m ≡ n mod p. We partition the set R into the
equivalent classes

[

m
]

=
{

n ∈ R | m ≡ n mod I
}

where m ∈ R. We now consider

S =
{

λs : R+ → R+ | s ∈
[

1
]

and λsn = s n for every n ∈ R+
}

⊆ End(R+),

the commutative multiplicative semigroup of additive group endomorphisms of
R+. The semigroup S evidently satisfies conditions (a)–(e) and (i). That S also
satisfies (j) follows from the following observation:

q ∈
[

1
]

and q = s q for every s ∈
[

1
]

.

To see this, we let s ∈
[

1
]

, which means that s ≡ 1 mod p. From this we have
sq ≡ q mod pq, which confirms that s q = q. That q ∈

[

1
]

follows from the
assumption on q ≡ 1 mod p. The fact that S satisfies (j) and also (g) now
becomes evident.

Notice that

ker η =
{

n ∈ R+ | s n = 0 for some s ∈
[

1
]}

=
{

n ∈ R+ | q n = 0
}

=
[

0
]

.

Indeed, from s n = 0 for some s ∈
[

1
]

it follows that also q n = q s n = 0, which
means that qn ≡ 0 mod pq. Then obviously n ≡ 0 mod p, which confirms that
n ∈

[

0
]

. Conversely, assume that n ∈
[

0
]

, which means that n ≡ 0 mod p. Then
qn ≡ 0 mod pq, from this q n = 0, and since q ∈

[

1
]

, hence n ∈ ker η.
We finally prove that S satisfies (h). Let J =

{

1, 2, . . . , p− 1
}

. For every
m ∈ J , we consider

Sm =
{

s m | s ∈
[

1
]}

.

If r m = s m for some r, s ∈
[

1
]

, then since m ∈ U(R), hence r = s. If
Sm ∩ Sn 6= ∅ for some m,n ∈ J , then r m = s n for some r, s ∈

[

1
]

, from this
also q m = q r m = q s n = q n, which means that qm ≡ qn mod pq. Then
obviously m ≡ n mod p, which means that m − n ≡ 0 mod I. But m− n = k
for some k ∈

{

− (p − 1), . . . ,−1, 0, 1, . . . , p − 1
}

. From k ≡ 0 mod I, which
means that k ≡ 0 mod p, it now follows that k = 0, and hence m = n. Finally,
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if there existed m ∈ J such that Sm∩ ker η 6= ∅, then we would have s m ∈ ker η
for some s ∈

[

1
]

, from this we would obtain q m = q r s m = 0 for some r ∈
[

1
]

.
Since m ∈ U(R), it would follow that q = 0, contrary to q ∈

[

1
]

. In this way we
obtain the partition

R = ker η ∪
⋃

m∈J

Sm

of the set R into p subsets with q elements. Since sm ≡ m mod p for all m ∈ J
and s ∈

[

1
]

, hence s m ∈
[

m
]

, and thus

Sm =
[

m
]

for every m ∈ J.

We now consider the nearring

N =
{

f ∈ Map0(R
+) | for all n ∈ R+ and s ∈

[

1
]

there exists s1 ∈
[

1
]

such that s1 s f n = s1 f s n
}

=
{

f ∈ Map0(R
+) | q s f n = q f s n for all n ∈ R+ and s ∈

[

1
]}

.

For maps f, g ∈ N defined via

f n =











0 if n ∈ ker η

q if n ∈
[

1
]

n otherwise

and g n =











0 if n ∈ ker η

1 if n ∈
[

1
]

n otherwise

we have f(f + g) 1 = f(q + 1) = q + 1 since q + 1 ∈
[

2
]

, and (ff + fg) 1 =
f q + f 1 = q + q 6= q + 1 since q 6≡ 1 mod pq. This means that in the nearring
N , the left distributivity does not hold.
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