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Abstract

In this paper, we give quadratic approximation of generalized Tribonacci
sequence {Vn}n≥0 defined by Vn = rVn−1 + sVn−2 + tVn−3 (n ≥ 3) and use
this result to give the matrix form of the n-th power of a companion matrix
of {Vn}n≥0. Then we re-prove the cubic identity or Cassini-type formula for
{Vn}n≥0 and the Binet’s formula of the generalized Tribonacci quaternions.
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1. Introduction

Let Q =





1 1 1
1 0 0
0 1 0



 be a companion matrix of the Tribonacci sequence {Tn}n≥0

defined by the third-order linear recurrence relation

(1) T0 = T1 = 0, T2 = 1, Tn = Tn−1 + Tn−2 + Tn−3 (n ≥ 3).

Then, by an inductive argument, the n-th power Qn has the matrix form

(2) Qn =





Tn+2 Tn+1 + Tn Tn+1

Tn+1 Tn + Tn−1 Tn

Tn Tn−1 + Tn−2 Tn−1



 (n ≥ 2).

For further properties of Tribonacci numbers, we refer to [3, 5, 6].
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The property det(Qn) = (det(Q))n = 1 and equation (2) provides an alter-
nate proof of the Cassini-type (or cubic-type) formula for {Tn}n≥0:

(3) T 3
n + T 2

n−1Tn+2 + Tn−2T
2
n+1 − 2Tn−1TnTn+1 − Tn−2TnTn+2 = 1.

Now, let’s think of the other access method in order to give the matrix form
equation (2) of Qn. This method gives the motivation of our research. That is,
our research is based on the following observation. It is well known [11] that the
usual Tribonacci numbers can be expressed using Binet’s formula

(4) Tn =
αn

(α− ω1)(α − ω2)
− ωn

1

(α− ω1)(ω1 − ω2)
+

ωn
2

(α− ω2)(ω1 − ω2)
.

where α, ω1 and ω2 are the roots of the cubic equation x3 − x2 − x − 1 = 0.
Furthermore, α = 1

3
+AT +BT , ω1 =

1

3
+ ǫAT + ǫ2BT and ω2 =

1

3
+ ǫ2AT + ǫBT ,

where

AT =
3

√

19

27
+

√

11

27
, BT =

3

√

19

27
−
√

11

27
,

and ǫ = −1

2
+ i

√
3

2
.

From the Binet’s formula equation (4), using the classic identities α + ω1 +
ω2 = 1, αω1 + αω2 + ω1ω2 = −1, we have for any integer n ≥ 2:

αTn + (1 + ω1ω2)Tn−1 + Tn−2

=
αn−2(α3 + (1 + ω1ω2)α+ 1)

(α− ω1)(α− ω2)
− ωn−2

1
(αω2

1 + (1 + ω1ω2)ω1 + 1)

(α− ω1)(ω1 − ω2)

+
ωn−2
2

(αω2
2 + (1 + ω1ω2)ω2 + 1)

(α− ω2)(ω1 − ω2)
= αn−1.

Then, we obtain

(5) αTn + (1 + ω1ω2)Tn−1 + Tn−2 = αn−1 (n ≥ 2).

Multipling equation (5) by α, using αω1ω2 = 1, if we then interchange the role
of α, and ω1 and α, and ω2, we obtain the quadratic approximation of {Tn}n≥0

(6) Quadratic app. of {Tn} :











αn = Tnα
2 + (Tn−1 + Tn−2)α+ Tn−1,

ωn
1 = Tnω

2
1 + (Tn−1 + Tn−2)ω1 + Tn−1,

ωn
2 = Tnω

2
2 + (Tn−1 + Tn−2)ω2 + Tn−1,

where α, ω1 and ω2 are the roots of the cubic equation x3 − x2 − x− 1 = 0.
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In equation (5), if we replace α with the companion matrix Q and change
Tn−1 into the matrix Tn−1I3, where I3 is the 3×3 identity matrix, then we obtain
the matrix form equation (2) of Qn

Qn = TnQ
2 + (Tn−1 + Tn−2)Q+ Tn−1I3



=





Tn+2 Tn+1 + Tn Tn+1

Tn+1 Tn + Tn−1 Tn

Tn Tn−1 + Tn−2 Tn−1







 .

The Tribonacci sequence has been generalized in many ways, for example,
by changing the recurrence relation while preserving the initial terms, by altering
the initial terms but maintaining the recurrence relation, by combining of these
two techniques, and so on (for more details see [4, 8, 10, 12]).

In this paper, we consider one type of generalized Tribonacci sequences. In
fact, the sequence {Vn}n≥0 defined by Shannon and Horadam [10] depending on
six positive integer parameters V0, V1, V2, r, s and t used in the third-order linear
recurrence relation:

(7) Vn = rVn−1 + sVn−2 + tVn−3 (n ≥ 3).

In this paper, as mentioned above, we provide quadratic approximation of
{Vn}n≥0 and use this result to give the matrix form of the n-th power of a
companion matrix of {Vn}n≥0. Then, we re-prove the Cassini-type formula for the
sequence {Vn}n≥0 and Binet’s formula of the generalized Tribonacci quaternions.

2. Quadratic approximation of the generalized Tribonacci

sequences {Vn}

We consider the generalized Tribonacci sequence {Vn(V0, V1, V2; r, s, t)}, or briefly
{Vn}, defined as in (7), where V0, V1, V2 are arbitrary integers and r, s, t, are
real numbers. This sequence has been studied by Shannon and Horadam [10],
Yalavigi [13] and Pethe [8]. If we set r = s = t = 1 and V0 = V1 = 0, V2 = 1, then
{Vn} is the well-known Tribonacci sequence, and if r = s = t = 1 and V0 = 3,
V1 = 1, V2 = 3, then {Vn} is the Tribonacci-Lucas investigated by Elia in [2].

As the elements of this Tribonacci-type number sequence provide third order
iterative relation, its characteristic equation is x3− rx2− sx− t = 0, whose roots
are α = α(r, s, t) = r

3
+AV +BV , ω1 =

r
3
+ǫAV +ǫ2BV and ω2 =

r
3
+ǫ2AV +ǫBV ,

where

(8) AV =
3

√

r3

27
+

rs

6
+

t

2
+

√
∆, BV =

3

√

r3

27
+

rs

6
+

t

2
−

√
∆,

with ∆ = ∆(r, s, t) = r3t
27

− r2s2

108
+ rst

6
− s3

27
+ t2

4
and ǫ = −1

2
+ i

√
3

2
(see [1]).
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In this paper, ∆(r, s, t) > 0, then the cubic equation x3−rx2−sx− t = 0 has
one real and two nonreal solutions, the latter being conjugate complex. Thus,
the Binet formula for the generalized Tribonacci numbers can be expressed as:

(9) Vn =
Pαn

(α− ω1)(α − ω2)
− Qωn

1

(α− ω1)(ω1 − ω2)
+

Rωn
2

(α− ω2)(ω1 − ω2)
,

where P = V2 − (ω1 + ω2)V1 + ω1ω2V0, Q = V2 − (α + ω2)V1 + αω2V0 and R =
V2 − (α+ ω1)V1 + αω1V0.

In fact, the generalized Tribonacci sequence is the generalization of the well-
known sequences like Tribonacci, Padovan, Narayana and third-order Jacobsthal.
For example, {Vn(0, 0, 1; 1, 1, 1)}n≥0 , {Vn(0, 1, 0; 0, 1, 1)}n≥0 , are Tribonacci and
Padovan sequences, respectively. In particular, the Binet formula for the gen-
eralized Tribonacci sequence {Un}n≥0 = {Vn(0, 0, 1; r, s, t)}n≥0 is expressed as
follows.

Lemma 1. The Binet formula for the generalized Tribonacci sequence {Un}n≥0

is

(10) Un =
αn

(α− ω1)(α− ω2)
− ωn

1

(α− ω1)(ω1 − ω2)
+

ωn
2

(α− ω2)(ω1 − ω2)
,

where α, ω1 and ω2 are the roots of the cubic equation x3 − rx2 − sx− t = 0.

Proof. The validity of this formula can be confirmed using the recurrence rela-
tion.

In [10], using an inductive argument, authors give the matrix form of the

n-th power of a companion matrix M =





r s t

1 0 0
0 1 0



 of {Vn}n≥0

(11)





Vn+2

Vn+1

Vn



 =





r s t

1 0 0
0 1 0





n 



V2

V1

V0





and

(12)





r s t

1 0 0
0 1 0





n

=





Un+2 sUn+1 + tUn tUn+1

Un+1 sUn + tUn−1 tUn

Un sUn−1 + tUn−2 tUn−1



 (n ≥ 2),

where Un is defined by equation (10).
And then give the Cassini-type identity for {Un} by taking the determinant

of both sides of the matrix form equation (12)

(13) U3
n + U2

n−1Un+2 + Un−2U
2
n+1 − 2Un−1UnUn+1 − Un−2UnUn+2 = tn−2,
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for n ≥ 2.
More generally,

(14)





Vn+4 Vn+3 + Vn+2 Vn+3

Vn+3 Vn+2 + Vn+1 Vn+2

Vn+2 Vn+1 + Vn Vn+1



 = Mn





V4 V3 + V2 V3

V3 V2 + V1 V2

V2 V1 + V0 V1



 ,

for n ≥ 0. Or equivalently, we can write the Cassini-type identity for {Vn} by
taking the determinant of both sides of the matrix form equation (14)

(15) V 3
n+2 + V 2

n+1Vn+4 + VnV
2
n+3 − Vn+2(2Vn+1Vn+3 + VnVn+4) = tngV (0),

where gV (0) = V 3
2 + V 2

1 V4 + V0V
2
3 − V2(2V1V3 + V0V4).

Now, we give the quadratic approximation of {Vn} and then use this result
to obtain the matrix form equation (14).

Theorem 2. Let {Vn}n≥0, α, ω1 and ω2 be as above. Then, we have for all

integer n ≥ 0
(16)

Quadratic app. of {Vn} :











Pαn+2 = α2Vn+2 + α(sVn+1 + tVn) + tVn+1,

Qωn+2
1

= ω2
1Vn+2 + ω1(sVn+1 + tVn) + tVn+1,

Rωn+2
2

= ω2
2Vn+2 + ω2(sVn+1 + tVn) + tVn+1,

where P = V2 − (ω1 + ω2)V1 + ω1ω2V0, Q = V2 − (α + ω2)V1 + αω2V0 and R =
V2 − (α+ ω1)V1 + αω1V0.

Proof. Using the Binet’s formula equation (9), we have

αVn+2 + (s+ ω1ω2)Vn+1 + tVn

=
Pαn(α3 + (s+ ω1ω2)α+ t)

(α− ω1)(α − ω2)
− Qωn

1 (αω
2
1 + (s+ ω1ω2)ω1 + t)

(α− ω1)(ω1 − ω2)

+
Rωn

2 (αω
2
2 + (s+ ω1ω2)ω2 + t)

(α− ω2)(ω1 − ω2)
= (V2 − (ω1 + ω2)V1 + ω1ω2V0)α

n+1,

the latter given that αω2
1 +(s+ω1ω2)ω1 + t = 0 and αω2

2 + (s+ω1ω2)ω2 + t = 0.
Then, we get

(17) αVn+2 + (s+ ω1ω2)Vn+1 + tVn = (V2 − (ω1 + ω2)V1 + ω1ω2V0)α
n+1.

Multiplying equation (17) by α and using αω1ω2 = t, we have

Pαn+2 = α2Vn+2 + α(s + ω1ω2)Vn+1 + αtVn

= α2Vn+2 + α(sVn+1 + tVn) + tVn+1,

where P = V2 − (ω1 + ω2)V1 + ω1ω2V0. If we change α, ω1 and ω2 role above
process, we obtain the desired result equation (16).
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Now, we can re-prove equations equation (14) and equation (15) by using the
above quadratic approximation of {Vn} in equation (16).

Corollary 3. Let M =





r s t

1 0 0
0 1 0



 be a companion matrix of {Vn}. Then the

matrix form of the n-th power Mn is given by equation (14) and the Cassini-type
formula for {Vn} is given by equation (15).

Proof. In equation (16), if we change α, ω1 and ω2 into the matrix M and change
tVn+1 into the matrix tVn+1I3, then we have

(18) Mn(V2M
2+(sV1+ tV0)M+ tV1I3) = Vn+2M

2+(sVn+1+ tVn)M+ tVn+1I3.

In fact, equation (18) holds for the following reason: Since

M





Vn+1

Vn

Vn−1



 =





Vn+2

Vn+1

Vn



 and Mn





V2

V1

V0



 =





Vn+2

Vn+1

Vn



 ,

we have

Mn(V2M
2 + (sV1 + tV0)M + tV1I3)





V2

V1

V0





= V2M
n+2





V2

V1

V0



+ (sV1 + tV0)M
n+1





V2

V1

V0



+ tV1M
n





V2

V1

V0





= V2





Vn+4

Vn+3

Vn+2



+ (sV1 + tV0)





Vn+3

Vn+2

Vn+1



+ tV1





Vn+2

Vn+1

Vn





=





V2Vn+4 + (sV1 + tV0)Vn+3 + tV1Vn+2

V2Vn+3 + (sV1 + tV0)Vn+2 + tV1Vn+1

V2Vn+2 + (sV1 + tV0)Vn+1 + tV1Vn



 .

Using Vn+3 = rVn+2+sVn+1+ tVn and Vn+4 = (r2+s)Vn+2+(rs+ t)Vn+1+rtVn,
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we have

Mn(V2M
2 + (sV1 + tV0)M + tV1I3)





V2

V1

V0





=





V4Vn+2 + (sVn+1 + tVn)V3 + tVn+1V2

V3Vn+2 + (sVn+1 + tVn)V2 + tVn+1V1

V2Vn+2 + (sVn+1 + tVn)V1 + tVn+1V0





= (Vn+2M
2 + (sVn+1 + tVn)M + tVn+1I3)





V2

V1

V0



 .

Thus from equation (18) we have

Mn(V2M
2 + (sV1+tV0)M + tV1I3) = Mn





V4 sV3 + tV2 tV3

V3 sV2 + tV1 tV2

V2 sV1 + tV0 tV1





= Mn





V4 V3 + V2 V3

V3 V2 + V1 V2

V2 V1 + V0 V1









1 0 0
0 t 0
0 s− t t





and

Vn+2M
2 + (sVn+1 + tVn)M + tVn+1I3

=





Vn+4 sVn+3 + tVn+2 tVn+3

Vn+3 sVn+2 + tVn+1 tVn+2

Vn+2 sVn+1 + tVn tVn+1





=





Vn+4 Vn+3 + Vn+2 Vn+3

Vn+3 Vn+2 + Vn+1 Vn+2

Vn+2 Vn+1 + Vn Vn+1









1 0 0
0 t 0
0 s− t t



 .

Since the matrix





1 0 0
0 t 0
0 s− t t



 is invertible, we obtain the desired result equa-

tion (14) and by taking the determinant of both sides of the matrix form equation
(14) we obtain the desired result equation (15). The proof is completed.

Remark 4. For some positive integer k, if r = k, s = 0 and t = 1, then {Un} is
the k-Narayana sequence {bk,n} investigated by Ramı́rez and Sirvent in [9]. The
k-Narayana numbers can be expressed using Binet’s formula

(19)

bk,n =
αn
k

(αk − ωk,1)(αk − ωk,2)
−

ωn
k,1

(αk − ωk,1)(ωk,1 − ωk,2)

+
ωn
k,2

(αk − ωk,2)(ωk,1 − ωk,2)
.
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where αk, ωk,1 and ωk,2 are the roots of the cubic equation x3 − kx2 − 1 = 0.
Furthermore, using the notation of equation (8), the roots given in [9] can be
written as αk = k

3
+Ak +Bk, ωk,1 =

k
3
+ ǫAk + ǫ2Bk and ωk,2 =

k
3
+ ǫ2Ak + ǫBk,

where

Ak =
3

√

k3

27
+

1

2
+

√

k3

27
+

1

4
, Bk =

3

√

k3

27
+

1

2
−
√

k3

27
+

1

4
,

and ǫ = −1

2
+ i

√
3

2
is a cubic root of unity.

From the Binet’s formula equation (19), using the identities αk+ωk,1+ωk,2 =
k, αkωk,1 + αkωk,2 + ωk,1ωk,2 = 0, we have for any integer n ≥ 2:

αkbk,n+2 + (ωk,1ωk,2)bk,n+1 + bk,n

=
αn
k (α

3
k + (ωk,1ωk,2)αk + 1)

(αk − ωk,1)(αk − ωk,2)
−

ωn
k,1(αkω

2
k,1 + (ωk,1ωk,2)ωk,1 + 1)

(αk − ωk,1)(ωk,1 − ωk,2)

+
ωn
k,2(αkω

2
k,2 + (ωk,1ωk,2)ωk,2 + 1)

(αk − ωk,2)(ωk,1 − ωk,2)
= αn+1

k ,

the latter given that αkω
2
k,1+(ωk,1ωk,2)ωk,1+1 = 0 and αkω

2
k,2+(ωk,1ωk,2)ωk,2+

1 = 0. Then, we get

(20) αkbk,n+2 + (ωk,1ωk,2)bk,n+1 + bk,n = αn+1

k .

Multipling equation (20) by αk, using αkωk,1ωk,2 = 1, and if we change αk,
ωk,1 and ωk,2 in the role above process, we obtain the quadratic approximation
of {bk,n}n≥0

(21) Quadratic app. of {bk,n} :











αn
k = bk,nα

2
k + bk,n−2αk + bk,n−1,

ωn
k,1 = bk,nω

2
k,1 + bk,n−2ωk,1 + bk,n−1,

ωn
k,2 = bk,nω

2
k,2 + bk,n−2ωk,2 + bk,n−1,

where αk, ωk,1 and ωk,2 are the roots of the cubic equation x3 − x2 − x− 1 = 0.
In equation (20), if we replace αk with the companion matrix Qk and change

Tn−1 into the matrix Tn−1I3, where I3 is the 3×3 identity matrix, then we obtain
the matrix form of Qn

k :

Qn
k = bk,nQ

2
k + bk,n−2Qk + bk,n−1I3



=





bk,n+2 bk,n bk,n+1

bk,n+1 bk,n−1 bk,n
bk,n bk,n−2 bk,n−1







 ,

where Qk =





k 0 1
1 0 0
0 1 0



.
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The next corollary gives an alternative proof of the Binet’s formula for the
generalized Tribonacci quaternions (see [1, Theorem 2.1]).

Corollary 5. For any integer n ≥ 0, the n-th generalized Tribonacci quaternion
is

(22) QV,n =
Pααn

(α− ω1)(α− ω2)
− Qω1ω

n
1

(α− ω1)(ω1 − ω2)
+

Rω2ω
n
2

(α− ω2)(ω1 − ω2)
,

where P , Q and R as in equation (9), α = 1+αi+α2j+α3k, ω1 = 1+ω1i+ω2
1j+k

and ω2 = 1+ω2i+ω2
2j+k. If V0 = V1 = 0 and V2 = 1, we get the classic Tribonacci

quaternion.

Proof. For the equation (16), we have

α2QV,n+2 + α (sQV,n+1 + tQV,n) + tQV,n+1

= α2 (Vn+2 + Vn+3i+ Vn+4j+ Vn+5k)

+ α (sVn+1 + tVn + (sVn+2 + tVn+1)i+ (sVn+3 + tVn+2)j+ (sVn+4 + tVn+3)k)

+ t (Vn+1 + Vn+2i+ Vn+3j+ Vn+4k)

= α2Vn+2 + α (sVn+1 + tVn) + tVn+1 +
(

α2Vn+3 + α (sVn+2 + tVn+1) + tVn+2

)

i

+
(

α2Vn+4 + α (sVn+3 + tVn+2) + tVn+3

)

j

+
(

α2Vn+5 + α (sVn+4 + tVn+3) + tVn+4

)

k.

From the identity Pαn+2 = α2Vn+2 + α(sVn+1 + tVn) + tVn+1 in Theorem 2, we
obtain

(23) α2QV,n+2 + α (sQV,n+1 + tQV,n) + tQV,n+1 = Pααn+2.

Similarly, we have

(24) ω2
1QV,n+2 + ω1 (sQV,n+1 + tQV,n) + tQV,n+1 = Qω1ω

n+2
1

,

(25) ω2
2QV,n+2 + ω2 (sQV,n+1 + tQV,n) + tQV,n+1 = Rω2ω

n+2
2

.

Subtracting equation (24) from equation (23) gives

(26) (α + ω1)QV,n+2 + (sQV,n+1 + tQV,n) =
Pααn+2 −Qω1ω

n+2
1

α− ω1

.

Similarly, subtracting equation (25) from equation (23) gives

(27) (α+ ω2)QV,n+2 + (sQV,n+1 + tQV,n) =
Pααn+2 −Rω2ω

n+2

2

α− ω2

.
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Finally, subtracting equation (27) from equation (26), we obtain

QV,n+2 =
1

ω1 − ω2

(

Pααn+2 −Qω1ω
n+2
1

α− ω1

− Pααn+2 −Rω2ω
n+2
2

α− ω2

)

=
Pααn+2

(α− ω1)(α − ω2)
− Qω1ω

n+2
1

(α− ω1)(ω1 − ω2)
+

Rω2ω
n+2
2

(α− ω2)(ω1 − ω2)
.

So, the corollary is proved.

3. Conclusions

Sequences of integer numbers have been studied over several years, with emphasis
on studies of the well known Fibonacci sequence (and then the Lucas sequence)
that is related to the golden ratio. In this paper, we also contribute for the study
of Tribonacci sequence giving some identities which some of them involve gener-
alized Tribonacci numbers. In the future, we intend to discuss the invertibility of
these type matrices associated with these sequence (or quadratic approximation
of generalized Tribonacci numbers with negative subscripts) using the identities
given by Kuhapatanakul and Sukruan in [7].
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