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Abstract

In this paper, we give quadratic approximation of generalized Tribonacci
sequence {V;,}n>0 defined by V,, = rV,_1 + sV,,—2 + tV,_3 (n > 3) and use
this result to give the matrix form of the n-th power of a companion matrix
of {Vi.}n>0. Then we re-prove the cubic identity or Cassini-type formula for
{Va}n>0 and the Binet’s formula of the generalized Tribonacci quaternions.
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1. INTRODUCTION

1 11
Let@= |1 0 0 | beacompanion matrix of the Tribonacci sequence {7}, },,>0
010
t

defined by the third-order linear recurrence relation
(1) To=T1=0To=1, T, =Ty 1+ Th2+Th3 (n > 3)
Then, by an inductive argument, the n-th power Q™ has the matrix form

Tn+2 Tn+1 + T Tn+1
(2) Q"= | To1 To+Thr Tn | (n>2).
Tn Tnfl + Tnf2 Tnfl

For further properties of Tribonacci numbers, we refer to [3, 5, 6].
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The property det(Q™) = (det(Q))™ = 1 and equation (2) provides an alter-
nate proof of the Cassini-type (or cubic-type) formula for {7}, },,>0:

3) TP+ T7 \Tnyo+ Tn-oTiyy — 2T 1 T Thgr — TnooTnThgo = 1.

Now, let’s think of the other access method in order to give the matrix form
equation (2) of Q™. This method gives the motivation of our research. That is,
our research is based on the following observation. It is well known [11] that the
usual Tribonacci numbers can be expressed using Binet’s formula

an

B wy' wy
(a—w)(la—ws) (a—wi)(ws —ws) * (a0 —wo)(wy —wa)’

where o, w; and wy are the roots of the cubic equation 23 — 22 — 2 — 1 = 0.
Furthermore, o = % + A7+ B, wy = % +€Ar + 2By and wy = % +e?Ar +€Br,

where
19 11 5/19 11
Ar = {5+ Br=1{/= /5
T o7 T\ ap °T 27 27
ande:—%—{—#.

From the Binet’s formula equation (4), using the classic identities o + wy +
wo = 1, aw + aws + wiws = —1, we have for any integer n > 2:

aTy, + (1 +wiwe)Th—1 + Th—2
2@+ (1 +wwa)a+1) w3 (aw? + (1 + wiws)wr + 1)

(o —wi)(a — w2) N (a0 —wi)(wr — wa)

wgf2(ozw§ + (1 + wjwa)ws + 1) -1

(@ — ws) (w1 — wa) N

Then, we obtain
(5) Ty + (1 4+wiwe)Tyg +Tho = o™t (n>2).

Multipling equation (5) by «, using awjws = 1, if we then interchange the role
of o, and wy and «a, and wy, we obtain the quadratic approximation of {7}, },>0

a = Tna2 + (Tnfl + Tnf2)a + T,
(6)  Quadratic app. of {T,,} : { Wi = Thw? + (Tp1 + Tho)wi + Tp1,
Wg = ang + (Tn—l + Tn—2)w2 + Tn—la

where a, w; and wy are the roots of the cubic equation z3 — 2?2 — 2z —1 = 0.
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In equation (5), if we replace o with the companion matrix @ and change
T,,_1 into the matrix T;, 113, where I3 is the 3 x 3 identity matrix, then we obtain
the matrix form equation (2) of Q"

Tn+2 Tn+1 + Tn Tn+1
Qn = TnQ2 + (Tn—l + Tn—Z)Q + Tn—1[3 - Tn+1 Tn + Tnfl Tn
Tn Tn—l + Tn—Z Tn—l

The Tribonacci sequence has been generalized in many ways, for example,
by changing the recurrence relation while preserving the initial terms, by altering
the initial terms but maintaining the recurrence relation, by combining of these
two techniques, and so on (for more details see [4, 8, 10, 12]).

In this paper, we consider one type of generalized Tribonacci sequences. In
fact, the sequence {V},},>0 defined by Shannon and Horadam [10] depending on
six positive integer parameters Vg, V1, Vo, r, s and t used in the third-order linear
recurrence relation:

(7) Vo=rVo_1+sV_o+tV,—3 (n>3).

In this paper, as mentioned above, we provide quadratic approximation of
{Vi}n>0 and use this result to give the matrix form of the n-th power of a
companion matrix of {V}, }n>0. Then, we re-prove the Cassini-type formula for the
sequence {V}, },>0 and Binet’s formula of the generalized Tribonacci quaternions.

2. QUADRATIC APPROXIMATION OF THE GENERALIZED TRIBONACCI
SEQUENCES {V,}

We consider the generalized Tribonacci sequence {V,,(Vy, V1, Va;71, s,t)}, or briefly
{V,.}, defined as in (7), where Vj, V4, Vo are arbitrary integers and r, s, ¢, are
real numbers. This sequence has been studied by Shannon and Horadam [10],
Yalavigi [13] and Pethe [8]. If weset r =s =t =1and Vo =V; =0, V5 =1, then
{V,.} is the well-known Tribonacci sequence, and if r = s =t = 1 and Vj = 3,
Vi =1, Vo =3, then {V,,} is the Tribonacci-Lucas investigated by Elia in [2].

As the elements of this Tribonacci-type number sequence provide third order
iterative relation, its characteristic equation is 23 — r2? — sz — t = 0, whose roots
are a = a(r,s,t) = §+ Ay + By, w1 = §+6AV+G2BV and wy = §+62AV+EBV,
where

> rs t 3 t
(8) AV:32—7+€+§+\/Z,BV:3T—+E+__\/Z,

3

with A = A(r,s,t) = 5 — 5% —1—%‘“—3—?—1—% ande:—%—i—@ (see [1]).
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In this paper, A(r, s,t) > 0, then the cubic equation 22 —rz? — sz —t = 0 has

one real and two nonreal solutions, the latter being conjugate complex. Thus,
the Binet formula for the generalized Tribonacci numbers can be expressed as:
Pa™ QuT Rwy

(a0 — wi)(a — wo) B (a0 —wy)(wg —w2) (a0 —ws)(wy; —wa)’

where P = V5 — (w1 4+ w2) Vi + wiwaVp, @ = Vo — (a + w2)Vi + awsV)y and R =
Vo — (a+w)Vi + aw V).

In fact, the generalized Tribonacci sequence is the generalization of the well-
known sequences like Tribonacci, Padovan, Narayana and third-order Jacobsthal.
For example, {V,,(0,0,1;1,1,1)},>0, {Vn(0,1,0;0,1,1)},>0, are Tribonacci and
Padovan sequences, respectively. In particular, the Binet formula for the gen-
eralized Tribonacci sequence {U,}n>0 = {V,n(0,0,1;7,5,t)},>0 is expressed as
follows.

Lemma 1. The Binet formula for the generalized Tribonacci sequence {Uy, }n>0
18

an

_ wy wy
(a0 —wi)(a—we) (a—wi)(ws —wa) * (a0 — wo) (w1 —wa)’

where o, wi and wy are the roots of the cubic equation x® — ra® — sx —t = 0.

Proof. The validity of this formula can be confirmed using the recurrence rela-
tion. [ |

In [10], using an inductive argument, authors give the matrix form of the

r s t
n-th power of a companion matrix M = | 1 0 0 | of {V,}n>0
010
Viata ros t]" Vo
(11) Voer | =11 0 0 Vi
Vi 010 Vo

and

n

ros t Upny2a  sUpy1 +tU,  tUp4
(12) 1 0 0 = Un+1 SUn + tUn_1 tUn (n > 2),
01 0 U, sUp_1+tU,—9 tU,_1

where U, is defined by equation (10).
And then give the Cassini-type identity for {U,} by taking the determinant
of both sides of the matrix form equation (12)

(13) U2+ U2 Unso + Un2U2 1 = 2Up1UpUpny1 — Up—oUpUpya = t" 2,



QUADRATIC APPROXIMATION OF GENERALIZED TRIBONACCI SEQUENCES 231

for n > 2.
More generally,
Vita Vagz +Varos Vigs Vi Vs+Vo V3
(14) Vatz Vaga+Vagr Vg | =M" | V3 Va4V Vo |,
Vn+2 Vn-l—l + Vn Vn—l—l Vé Vl + ‘/O Vl

for n > 0. Or equivalently, we can write the Cassini-type identity for {V,,} by
taking the determinant of both sides of the matrix form equation (14)

(1) V2 o+ V2 Viga + ViViiis — Voo 2V Vs + Vi Viga) = t7gv (0),

where gy (0) = V5 + V2V 4+ W Vi — Va(2Vi Vs + Vo Vi).
Now, we give the quadratic approximation of {V;,} and then use this result
to obtain the matrix form equation (14).

Theorem 2. Let {V,}n>0, o, w1 and wy be as above. Then, we have for all
nteger n > 0
(16)
Pa™2 = a?V, 19 + a(sVyy1 +tVy) + tVi1,
Quadratic app. of {Vy,} : Qw?” = wVpio + wi(8Vps1 + V) + tVas 1,
R = w2Vyio + wa(sVna1 + Vi) + tVia,

where P = Vo — (w1 + wo) Vi + wiweVp, Q = Vo — (v + wa) Vi + awsVy and R =
V2 - (Oé +OJ1)V1 + Oéu.)1V0.

Proof. Using the Binet’s formula equation (9), we have

aVyio + (S + wlwg)vn+1 + tV,
_ Pa™(ad + (s + wiwa)a + 1) B Qi (aw? + (s + wiwa)wy + 1)

a (o — wi) (o — w2) (o —w1)(wr — wa)

Rw(aw3 + (s + wiwa)ws + )

(0 — wa)(wy — w2)

+

= (Va — (w1 + w2)V1 + wiwa V)™,
the latter given that aw? + (s + wiws)wi +t = 0 and aw3 + (s + wiws)ws +t = 0.
Then, we get
(17)  aVigo + (s + wiw2) Va1 + 1V = (Vo — (w1 + w2) Vi + wiwsVp)a™ .
Multiplying equation (17) by « and using awjws = t, we have
Pa"? = a*Vy 9 + a(s + wiw2) Vg1 + atV,
= Vo + a(sVpy1 +tVy) + tViia,

where P = V5 — (w1 + wo)Vh + wiweVp. If we change o, wy and wy role above
process, we obtain the desired result equation (16). [ |
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Now, we can re-prove equations equation (14) and equation (15) by using the
above quadratic approximation of {V},} in equation (16).

Corollary 3. Let M =

S = 3
=

t
0 | be a companion matrix of {V,,}. Then the
0
n

matrix form of the n-th power M™ is given by equation (14) and the Cassini-type
formula for {V,,} is given by equation (15).

Proof. In equation (16), if we change o, w1 and wy into the matrix M and change
tVy41 into the matrix tV,, 113, then we have

(18) M™(VoM? + (sVi+tVo) M +tVi13) = VipoM? + (sViy1 + 1V )M + 1V, 1 13

In fact, equation (18) holds for the following reason: Since

Vi1 Viyo Vo Viyo
M Vn = Vn+1 and Mn V1 = Vn+1 s
anl Vn ‘/0 Vn
we have
Vo
M™(VoM? + (sVi +tVo) M +tViI3) | W
Vo
Vo Vo Vo
= VoM™ 2 | Vi | + (Vi +tVo) M | Vi | +tViM™ | W
Vo Vo Vo
Vn+4 Vn+3 Vn+2
=Vo| Vius | +(sVi+tVo) | Vo | +tVi | Vg
Vn+2 Vn—l—l Vn

VaViga + (sVi + Vo) Vigs + Vi Va2
= | Vs + (sVi +tVo) Voo + ViV
VoVigo + (sVi +tVo) Vo + VIV,

Using Vyy3 = rVpso+ Va1 +tVy, and Vipg = (r2 +8) Voo + (rs+1) Va1 + 1t Vi,
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we have
Vs
M"(VoM? + (sVi +tVo)M +tVi13) | Vi
Vo

VaVigo + (Vg1 + Vi) Vs + V11 Vo
= VgVn+2 + (SVn_H + tVn)VQ + tVn_HVl
VoVigo + (Vg1 +tV)Vi + tV W
Va
= (Vo M? + (sVpy1 + V)M +tV, 1 13) | Vi
Vo
Thus from equation (18) we have
V4 SV3 + tVQ th
M (VoM2 + (sVittVo)M +tVilz) = M™ | Vs sVa+tVi tVh
V2 SVl + tVO tVl
Vi Vs+Vo V3 1 0 O
=M"| Vs Vo+Vi V3 0o t 0
Vo i+Wy W1 0 s—t t

and
Voo M? + (Vg1 + tV )M + tVii1 I3
[ Vita sVigs + Voo tVoys
= | Vays sV +tViyr tVigo
| Va2 sV +tV, tVn
[ Vita Vigs+Voga Voiys 1 0 0
= | Vars Vara+Vap1 Vg 0o ¢t 0
| Ve VotV Vi 0 s—t t
1 0 0
Since the matrix [ 0 t 0 | is invertible, we obtain the desired result equa-
0 s—t t
tion (14) and by taking the determinant of both sides of the matrix form equation
(14) we obtain the desired result equation (15). The proof is completed. [ |

Remark 4. For some positive integer k, if r = k, s =0 and ¢ = 1, then {U,} is
the k-Narayana sequence {by, ,,} investigated by Ramirez and Sirvent in [9]. The
k-Narayana numbers can be expressed using Binet’s formula

b = s o WI?J
(19) T (ak —wk) (ke —wr2)  (ar — W) (Wk1 — Wi2)
w2,2
_|_

(o — wi2)(wWe1 — wr2)
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where oy, w1 and wy o are the roots of the cubic equation 23 —ka? —1=0.
Furthermore, using the notation of equation (8), the roots given in [9] can be
written as o = % + A + B, wi1 = % + €Ay + 2By, and W2 = % + e2A, + €By,

where
A_ak_3_|_1_|_ k_3+lB_3k_3_|_1_ k_3_|_l
Vot T2 27 T TR\ or T2 T Var Ty

and € = —% + # is a cubic root of unity.
From the Binet’s formula equation (19), using the identities ay 4wy 1 +wi 2 =
k, apwi1 + opwy 2 + Wi 1wk,2 = 0, we have for any integer n > 2:

i 2 + (W 1wk 2) Dk 1 + i
(0] + (wrawro)ag +1)  wig(arwiy + (Wrawe2)we +1)

(o — wp,1)(ok — wr2) (g — wk1)(Wr1 — wk2)
Wi (i g + (W awr2)wh 2 + 1)

(o — wi2)(We 1 — Wi2)

_ . n+l
= ak ,

the latter given that asz,l + (wk, 1wk 2)wk,1 +1 = 0 and O‘szﬂ + (wk,1Wk,2)Wk,2 +
1 =0. Then, we get

(20) abrnto + (Wi 1wk 2) bkt + b = g

Multipling equation (20) by ag, using ajwy 1wk 2 = 1, and if we change ay,
wy,1 and wy o in the role above process, we obtain the quadratic approximation

of {bkn}n>0

A = by n a3 + bg o0 + b1,
(21) Quadratic app. of {byn} : wﬁl = bk‘,nwlz,l + bin—2wWk,1 + brn—1,
Wy o = bk,nwig + bgp—2wk2 + bg 1,

where oy, w1 and wy, 2 are the roots of the cubic equation 22—z —2x—-1=0.

In equation (20), if we replace oy, with the companion matrix @ and change
T,,_1 into the matrix T;, 113, where I3 is the 3 x 3 identity matrix, then we obtain
the matrix form of Q}:

bk,n+2 bk,n bk,n+1

QF = bpnQr + bkn—2Qr +bkn 1l | = | brntr bkn-1  brn ,
bk,n bk,n—2 bk,n—l

where Q) =

S =
_ o O
o O =
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The next corollary gives an alternative proof of the Binet’s formula for the
generalized Tribonacci quaternions (see [1, Theorem 2.1]).

Corollary 5. For any integer n > 0, the n-th generalized Tribonacci quaternion
is
Paa™ Quiw? Ruwowsy

(0 —w)(a—wy) (a0 —w)lw —ws) (o —ws)(ws —ws)’

(22)  Qvin=

where P, Q and R as in equation (9), a = 1+ai+a?j+a’k, w; = 1+wii+wij+k
and wg = 1+w2i+w§j—|—k. If Vo = Vi = 0 and V5 = 1, we get the classic Tribonacci
quaternion.

Proof. For the equation (16), we have

?Qpt2 + a (sQvnt1 +tQvn) + tQvint1

= a® (Vg2 + Vogsi + Vogad + Viysk)

+ a(sVhg1 + Vi + (sVigo + tVip1)i+ (sVigs + tVii2)j + (sVipa + tVigs)k)
+t (Vi1 + Visoi + Vigsj + Vigak)

= &*Vppo + a(sVis1 + V) + Vo1 + (0 Vias + a (sVigo + tVig1) + Vo) i
+ (042Vn+4 + a(sVpts + tVot2) + tVn+3)j

+ (Vi + @ (8Vnga + tViis) + tVoia) k.

From the identity Pa"t? = a?V,, 1o + a(sV,q1 + tVy) +tV, 41 in Theorem 2, we
obtain

(23) a2QV,n+2 +a (SQV,nJrl + tQV,n) + 75QV,nJr1 = PQO/H—Q-

Similarly, we have

(24) W%QV,n+2 + w1 (SQV,nJrl + tQV,n) + tQV,nJrl = Qﬂw?+2a

(25) w%QV,n+2 + w2 (SQV,nJrl + 75QV,n) + 75QV,nJr1 = Rﬂwg+2-

Subtracting equation (24) from equation (23) gives

2 2
Paa™? — Quiwi™

(26) (Oé + (Ul)QV,n+2 + (SQV,TL+1 + tQVm) = p—
Similarly, subtracting equation (25) from equation (23) gives

Pgan+2 _ Rﬂwgﬁﬂ

o — W2

(27) (a4 w2)Qvny2 + (sQvmt1 + tQvn) =
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Finally, subtracting equation (27) from equation (26), we obtain

1 Pgan+2 _ lew?-ﬂ Pga”” _ szwg—ﬂ
QV,n+2 = — - —
W1 — Wy o — W1 o — W
_ Paom?  Quiit? Rwywy ™
(a—wi)(a—ws) (dx—wi)(ws —ws) (a—ws)(ws—wo)
So, the corollary is proved. [ |

3. CONCLUSIONS

Sequences of integer numbers have been studied over several years, with emphasis
on studies of the well known Fibonacci sequence (and then the Lucas sequence)
that is related to the golden ratio. In this paper, we also contribute for the study
of Tribonacci sequence giving some identities which some of them involve gener-
alized Tribonacci numbers. In the future, we intend to discuss the invertibility of
these type matrices associated with these sequence (or quadratic approximation
of generalized Tribonacci numbers with negative subscripts) using the identities
given by Kuhapatanakul and Sukruan in [7].
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