Discussiones Mathematicae General Algebra and Applications 38 (2018) 5–18 doi:10.7151/dmgaa.1286

WEAK RELATIVE COMPLEMENTS IN ALMOST DISTRIBUTIVE LATTICES

RAMESH SIRISETTI

Department of Mathematics GIT, GITAM University Visakhapatnam- 530 045, India e-mail: ramesh.sirisetti@gmail.com

AND

G. Jogarao

Department of Mathematics AIET Bhogapuram- 531 162, India

e-mail: jogarao.gunda@gmail.com

Abstract

In this paper, the concept of relative complementation in almost distributive lattice is generalized. We obtain several properties on the sets of weak relative complement elements. We prove a sufficient condition for a weakly relatively complemented almost distributive lattice with dense elements to become a generalized stone almost distributive lattice.

Keywords: dense elements, relative complements, weak relative complementation, almost distributive lattice, generalized stone almost distributive lattice.

2010 Mathematics Subject Classification: 06D75, 06B10.

1. INTRODUCTION

The class of distributive lattices plays a key role in the theory of lattice (Boolean algebras). Many authors generalized the concept of distributive lattice in different aspects, one of them, Swamy and Rao [8] introduced the concept of Almost **D**istributive Lattice (ADL) as a common abstraction of ring theoretic and lattice theoretic generalization of a Boolean algebra which satisfies almost all conditions

of a distributive lattice $(L, \wedge, \vee, 0)$ except the commutativity of \wedge , \vee and the right distributivity of \vee over \wedge . In fact, each one of these three conditions are equivalent to each other. The authors also introduced relatively complemented ADLs and studied broadly. In [7], Ramesh and Rao introduced weakly relatively complemented ADLs and obtained some equivalent conditions for an ADL to become weakly relatively complemented. For an ADL L with dense elements, the authors introduced the set $B_D(L) = \{a \in L/ \text{ there exists } b \in L \text{ such that } a \wedge b = 0 \text{ and } a \vee b \text{ is a dense element}\}$ and proved that $B_D(L)$ is always a weakly relatively complemented ADL.

In this paper, we introduce weak relative complements in ADLs and obtain several properties on them. We present a class of weakly relatively complemented subADLs in an ADL. We characterize weakly relatively complemented ADLs in terms of annihilator ideals. We derive a sufficient condition for an ADL to become a weakly relatively complemented ADL. Also, we obtain some necessary and sufficient conditions for a weakly relatively complemented ADL to become a Boolean algebra. Finally, we obtain a sufficient condition for a weakly relatively complemented ADL with dense elements to become a generalized stone ADL.

2. Preliminaries

At first, we remind that the notion of almost distributive lattice and necessary properties.

Definition [8]. An algebra $(L, \wedge, \vee, 0)$ of type (2, 2, 0) is said to be an *almost distributive lattice* (abbreviated: ADL), if it satisfies the following

- (i) $0 \wedge a = 0$
- (ii) $a \lor 0 = a$
- (iii) $a \land (b \lor c) = (a \land b) \lor (a \land c)$
- (iv) $(a \lor b) \land c = (a \land c) \lor (b \land c)$
- (v) $a \lor (b \land c) = (a \lor b) \land (a \lor c)$
- (vi) $(a \lor b) \land b = b$
- for all $a, b, c \in L$.

Definition [8]. Let X be a non-empty set. Fix $x_0 \in X$. For any $x, y \in X$, define

$$x \wedge y = \begin{cases} x_0 & \text{if } x = x_0 \\ y & \text{if } x \neq x_0 \end{cases} \qquad \qquad x \vee y = \begin{cases} y & \text{if } x = x_0 \\ x & \text{if } x \neq x_0. \end{cases}$$

Then (X, \wedge, \vee, x_0) is an ADL with x_0 as its zero element. This ADL, which is not a lattice, is called a *discrete ADL*.

Throughout this paper L stands for an ADL $(L, \land, \lor, 0)$ unless otherwise mentioned. For any $a, b \in L$, we say that a is less than or equal to b and write $a \leq b$ if $a \land b = a$ or, equivalently $a \lor b = b$. It is easy to observe that \leq is a partial ordering on L. An element $a \in L$ is said to be the greatest element, if $x \leq a$ for all $x \in L$.

Lemma 1 [8]. For any $a, b, c \in L$, we have the following:

- (i) $a \wedge 0 = 0$ and $0 \vee a = a$
- (ii) $a \wedge a = a \vee a = a$
- (iii) $a \lor (b \lor a) = a \lor b$
- (iv) \wedge is associative
- (v) $a \wedge b \wedge c = b \wedge a \wedge c$
- (vi) $a \wedge b = 0 \iff b \wedge a = 0$
- (vii) $a \wedge b \leq b$ and $a \leq a \vee b$
- (viii) $(a \lor b) \land c = (b \lor a) \land c$
- (ix) $a \lor b = b \lor a \iff a \land b = b \land a$.

Lemma 2 [8]. The following are equivalent in L:

- (i) $(a \wedge b) \vee a = a$, for all $a, b \in L$
- (ii) $a \wedge b = b \wedge a$, for all $a, b \in L$
- (iii) $a \lor b = b \lor a$, for all $a, b \in L$
- (iv) (L, \wedge, \vee) is a distributive lattice.

A non-empty subset I (resp., F) of L is said to be an *ideal* (resp., *filter*), if for any $a, b \in I$ (resp., F) and $x \in L$, $a \lor b, a \land x \in I$ (resp., $a \land b, x \lor a \in F$). For any non-empty subset S of L, $(S] = \{(\bigvee_{i=1}^{n} s_i) \land x \mid s_1, s_2, \ldots, s_n \in S, x \in L \text{ and}$ n is a positive integer} is the smallest ideal containing S. In particular, for any $a \in L$, $(a] = \{a \land x \mid x \in L\}$ is the principal ideal generated by a. For $a, b \in L$, the greatest lower bound of (a] and (b] is $(a \land b]$ and the least upper bound of (a] and (b] is $(a \lor b]$. For any non-empty subset A of L, the set $A^* = \{x \in L \mid a \land x = 0,$ for all $a \in A\}$ is called the *annihilator* of A in L. It becomes an ideal in L. In particular, for any $a \in L$, $\{a\}^* = (a)^*$, where (a) = (a] is the principal ideal generated by a.

Lemma 3 [3, 4]. For any $a, b, c \in L$, we have the following:

- (i) $a \leq b \Longrightarrow (b)^* \subseteq (a)^*$
- (ii) $(a)^{***} = (a)^*$
- (iii) $(a \lor b)^* = (a)^* \cap (b)^*$
- (iv) $(a \wedge b)^{**} = (a)^{**} \cap (b)^{**}$

(v) $(a)^* \subseteq (b)^* \iff (b)^{**} \subseteq (a)^{**}$ (vi) $a \in (a)^{**}$ (vii) $(a \lor b)^* = (b \lor a)^*$ (viii) $(a \land b)^* = (b \land a)^*$ (ix) $(a)^* = (b)^* \iff (a)^{**} = (b)^{**}$.

An element d in L is said to be *dense*, if $(d)^* = \{0\}$. Let us denote by D the set of dense elements in L. Then D is a filter (provided $D \neq \emptyset$). Moreover, if $d \in D$, then $d \lor x, x \lor d \in D$ for all $x \in L$. An element $m \in L$ is said to be *maximal*, if $m \land x = x$ for all $x \in L$. It is easy to observe that every maximal element is dense.

Definition [8]. Given a, b in L, an element x of L is said to be a relative complement of a with respect to b, if $a \wedge x = 0$ and $a \vee x = a \vee b$.

Definition [7]. *L* is said to be *weakly relatively complemented*, if for any $a, b \in L$, there exists $x \in L$ such that $a \wedge x = 0$ and $(a \vee x)^* = (a \vee b)^*$.

Theorem 4 [7]. If every non-zero element is dense in L, then L is weakly relatively complemented.

3. Weak relative complements

In this section, we introduce weak relative complements in ADLs. We present a class of weakly relatively complemented subADLs in an ADL. We obtain several properties on the sets of weak relative complements.

Definition. Given a, b in L, an element x of L is said to be a *weak relative* complement of a with respect to b, if $a \wedge x = 0$ and $(a \vee x)^* = (a \vee b)^*$.

Example 5. Every relative complement element is a weak relative complement.

Remark 6. But a weak relative complement element need not be relative complement. For, see the following:

Example 7 [7]. Let $X_2 = \{0, a\}$ and $X_3 = \{0, b_1, b_2\}$ be two discrete ADLs. Then $X_2 \times X_3 = \{(0, 0), (0, b_1), (0, b_2), (a, 0), (a, b_1), (a, b_2)\}$. Take $L = \{0, c_1, c_2, c_3, m_1, m_2\}$, where $0 = (0, 0), c_1 = (0, b_1), c_2 = (0, b_2), c_3 = (a, 0), m_1 = (a, b_1), m_2 = (a, b_2)$. Define \wedge, \vee on L as follows:

\wedge	0	c_1	c_2	c_3	m_1	m_2
0	0	0	0	0	0	0
c_1	0	c_1	c_2	0	c_1	c_2
c_2	0	c_1	c_2	0	c_1	c_2
c_3	0	0	0	c_3	c_3	c_3
m_1	0	c_1	c_2	c_3	m_1	m_2
m_2	0	c_1	c_2	c_3	m_1	m_2

2	\vee	0	c_1	c_2	c_3	m_1	m_2
	0	0	c_1	c_2	c_3	m_1	m_2
	c_1	c_1	c_1	c_1	m_1	m_1	m_1
	c_2	c_2	c_2	c_2	m_2	m_2	m_2
	c_3	c_3	m_1	m_2	c_3	m_1	m_2
2	m_1	m_1	m_1	m_1	m_1	m_1	m_1
2	\overline{m}_2	m_2	\overline{m}_2	\overline{m}_2	\overline{m}_2	\overline{m}_2	m_2

Then $(L, \wedge, \vee, 0)$ is an ADL but not a lattice. For any $a, b \in L$, define x by

$$x = \begin{cases} b, & \text{if } a \land b = 0\\ 0, & \text{if } a \text{ is dense or } a \lor b = a\\ c_3, & \text{otherwise.} \end{cases}$$

Then $x \in L$, $a \wedge x = 0$ and $(a \vee x)^* = (a \vee b)^*$. Therefore x is a weak relative complement of a with respect to b. Now, for $c_3, c_1 \in L$, c_2 is a weak relative complement element of c_3 with respect to c_1 . But c_2 is not a relative complement element of c_3 with respect to c_1 (because $c_3 \wedge c_2 = 0$ and $c_3 \vee c_2 = m_2 \neq m_1 = c_3 \vee c_1$).

Given $a, b \in L$, the relative complement of a with respect to b exists and is unique [8], but a weak relative complement of a with respect to b exists and need not be unique. See Example 7, for $c_3, c_1 \in L$, there exist $x_1 = c_1, x_2 = c_2 \in L$ such that $c_3 \wedge x_1 = 0$, $(c_3 \vee x_1)^* = (c_3 \vee c_1)^*$ and $c_3 \wedge x_2 = 0$, $(c_3 \vee x_2)^* = (c_3 \vee c_1)^*$. So that $x_1 = c_1 \neq c_2 = x_2$. Therefore x_1 and x_2 are two different weak relative complements of c_3 with respect to c_1 .

Given a, b in L, the set of weak relative complements of a with respect to b is denoted by $\langle a, b \rangle$. For any $a \in L$, $\langle a, 0 \rangle$ and $\langle 0, a \rangle$ are non-empty.

The following theorem has a straightforward proof from the definition of a weakly relatively complemented ADL.

Theorem 8. *L* is weakly relatively complemented if and only if $\langle a, b \rangle$ is nonempty, for all $a, b \in L$.

L is a disjunctive ADL [2], if for any $x, y \in L, x \neq y$ implies $(x)^* \neq (y)^*$.

Theorem 9 [7]. If L is disjunctive, then every weak relative complement element is relative complement.

Now, we have the following theorem.

Theorem 10. Let $a, b \in L$ such that $\langle a, b \rangle \neq \phi$. Then $\langle a, b \rangle$ is closed under \land and \lor . Moreover $\langle a, b \rangle \cup \{0\}$ is a weakly relatively complemented subADL of L.

Proof. Let $x, y \in \langle a, b \rangle$. Then $a \wedge x = 0 = a \wedge y$ and $(a \vee x)^* = (a \vee b)^* = (a \vee y)^*$. Therefore $a \wedge (x \wedge y) = (a \wedge x) \wedge y = 0$ (by Lemma 1(iv)) and $a \wedge (x \vee y) = (a \wedge x) \vee (a \wedge y) = 0$. Now,

$$[a \lor (x \land y)]^{**} = [(a \lor x) \land (a \lor y)]^{**} \text{ (by Def. 1.1(L5)[8])} = (a \lor x)^{**} \cap (a \lor y)^{**} \text{ (by Lemma 3(iv))} = (a \lor b)^{**}.$$

Therefore $[a \lor (x \land y)]^* = (a \lor b)^*$. Hence $x \land y \in \langle a, b \rangle$. Similarly,

$$\begin{split} [a \lor (x \lor y)]^{**} &= [(a \lor (x \lor y))^*]^* \\ &= [(a)^* \cap (x \lor y)^*]^* \qquad \text{(by Lemma 3(iii))} \\ &= [(a)^* \cap ((x)^* \cap (y)^*)]^* \qquad \text{(by Lemma 3(iii))} \\ &= [((a)^* \cap (x)^*) \cap ((a)^* \cap (y)^*)]^* \\ &= [(a \lor x)^* \cap (a \lor y)^*]^* \qquad \text{(by Lemma 3(iii))} \\ &= [(a \lor b)^* \cap (a \lor b)^*]^* \\ &= (a \lor b)^{**}. \end{split}$$

Therefore $[a \lor (x \lor y)]^* = (a \lor b)^*$. Hence $x \lor y \in \langle a, b \rangle$ and $\langle a, b \rangle$ is closed under \land and \lor . Thus $\langle a, b \rangle \cup \{0\}$ is a subADL of L. Let $x \in \langle a, b \rangle$ and $x \neq 0$. Then $a \land x = 0$ and $(a \lor x)^* = (a \lor b)^*$. For $t \in \langle a, b \rangle$,

$$t \in (x)^* \Rightarrow t \land x = 0$$

$$\Rightarrow t \land x = 0 = t \land a \qquad (\text{since } t \in \langle a, b \rangle)$$

$$\Rightarrow t \in (a \lor x)^* = (a \lor b)^* \qquad (\text{since } x \in \langle a, b \rangle)$$

$$\Rightarrow t \in (a \lor t)^* \qquad (\text{since } (a \lor t)^* = (a \lor b)^*)$$

$$\Rightarrow t \land t = 0 = t.$$

Therefore x is dense in $\langle a, b \rangle$. Hence every non-zero element in $\langle a, b \rangle \cup \{0\}$ is dense. By Theorem 4, $\langle a, b \rangle \cup \{0\}$ is a weakly relatively complemented subADL of L.

Lemma 11. For any $a, b \in L$, we have the following:

- (i) $\langle a, a \rangle = \{0\}$ (ii) $\langle a, 0 \rangle = \{0\}$
- (iii) $\langle a \lor b, b \rangle = \{0\}$
- (iv) $\langle a, a \wedge b \rangle = \{0\}.$

Proof. (i) and (ii) are trivial. (iii) Let $x \in \langle a \lor b, b \rangle$. Then $(a \lor b) \land x = 0$ and $[(a \lor b) \lor x]^* = [(a \lor b) \lor b]^*$. Therefore $x \in (a \lor b)^*$ and $[(a \lor b) \lor x]^* = (a \lor b)^*$ as $(a \lor b) \lor b = a \lor b$ (by Lemma 1(vii)). So that $x \in [(a \lor b) \lor x]^*$. Hence $x \land x = 0 = x$.

(iv) Let $x \in \langle a, a \wedge b \rangle$. Then $a \wedge x = 0$ and $(a \vee x)^* = [a \vee (a \wedge b)]^*$. Therefore $x \in (a)^*$ and $(a)^* = (a \vee x)^*$ as $a \vee (a \wedge b) = a$ (by Lemma 1(vii)). So that $x \in (a \vee x)^*$. Hence $x \wedge x = 0 = x$.

Lemma 12. For any $a, b \in L$, we have the following:

- (i) If $0 \in \langle a, b \rangle$, then $(a)^* \subseteq (b)^*$
- (ii) If $a \in \langle a, b \rangle$, then a = 0 = b
- (iii) If d is dense in L and $d \in \langle a, b \rangle$, then a = 0 and b is dense.
- (iv) $b \in \langle a, b \rangle$ if and only if $a \wedge b = 0$.

Proof. (i) If $0 \in \langle a, b \rangle$, then $a \wedge 0 = 0$ and $(a \vee 0)^* = (a \vee b)^*$. Therefore $(a)^* = (a)^* \cap (b)^*$ (by Lemma 3(iii)). Hence $(a)^* \subseteq (b)^*$.

(ii) If $a \in \langle a, b \rangle$, then $a \wedge a = 0$ and $(a \vee a)^* = (a \vee b)^*$. Therefore a = 0 and $(0)^* = (b)^*$. Hence b = 0.

(iii) If $d \in \langle a, b \rangle$, then $a \wedge d = 0$ and $(a \vee d)^* = (a \vee b)^*$. Therefore a = 0 and $(a \vee b)^* = (a \vee d)^* = \{0\}$ (since d is dense). So that $(b)^* = \{0\}$. Hence a = 0 and b is dense.

(iv) If $b \in \langle a, b \rangle$, then $a \wedge b = 0$. The other direction is trivial.

-

Given an ADL L with dense elements, define $B_D(L) = \{a \in L \mid \text{ there exists} b \in L \text{ such that } a \land b = 0 \text{ and } a \lor b \text{ is a dense element} \}$ [7]. It is always a weakly relatively complemented ADL (by Theorem 4.2 [7]).

Lemma 13. For any $a, b \in L$, we have the following:

- (i) If a is dense, then $\langle a, b \rangle = \{0\}$
- (ii) If b is dense, then $\langle a, b \rangle \subseteq B_D(L)$
- (iii) If b is maximal, then $\langle a, b \rangle \subseteq B_D(L)$
- (iv) If b is dense, then $\langle 0, b \rangle = D$.

Proof. (i) If a is dense, then $a \wedge 0 = 0$ and $(a \vee 0)^* = (a \vee b)^* = \{0\}$, for any $b \in L$ (since $a, a \vee b$ are dense). Therefore $0 \in \langle a, b \rangle$. So that $\langle a, b \rangle \neq \phi$. Let $x \in \langle a, b \rangle$. Then $a \wedge x = 0$. Therefore x = 0 (since a is dense). Hence $\langle a, b \rangle = \{0\}$.

(ii) Let $x \in \langle a, b \rangle$. Then $a \wedge x = 0$ and $(a \vee x)^* = (a \vee b)^*$. Since b is dense, $(a \vee x)^* = (a \vee b)^* = \{0\}$ (since $a \vee b$ is dense). Therefore $a \vee x$ is dense. Hence $x \in B_D(L)$. Thus $\langle a, b \rangle \subseteq B_D(L)$.

(iii) Since every maximal element is dense, $\langle a, b \rangle \subseteq B_D(L)$.

(iv) Suppose b is dense. Now,

Therefore $\langle 0, b \rangle = D$.

Theorem 14. If L is weakly relatively complemented and $a, b \in L$, then, $(b)^* \subseteq (x)^*$, for all $x \in \langle a, b \rangle$.

Proof. Let $a, b \in L$. Then there exists $x \in L$ such that $a \wedge x = 0$ and $(a \vee x)^* = (a \vee b)^*$. Now, for this x,

$$\begin{aligned} (x)^{**} &= [x \land (x \lor a)]^{**} & \text{(by Lemma 1.4(2)[8])} \\ &= (x)^{**} \cap (x \lor a)^{**} & \text{(by Lemma 3(iv))} \\ &= (x)^{**} \cap (a \lor b)^{**} & \text{(since } (a \lor x)^{**} = (a \lor b)^{**}) \\ &= [x \land (a \lor b)]^{**} & \text{(by Lemma 3(iv))} \\ &= [(x \land a) \lor (x \land b)]^{**} & \text{(by Definition 1.1(L4)[8])} \\ &= (x \land b)^{**} & \text{(since } x \land a = 0 \text{ and by Lemma 1(vi)).} \end{aligned}$$

Therefore $(x)^{**} = (x)^{**} \cap (b)^{**}$. So that $(x)^{**} \subseteq (b)^{**}$ and hence $(b)^* \subseteq (x)^*$ (by Lemma 3(ii)(v)).

By Theorem 8 and 14, we have the following:

Corollary 15. Let $a, b \in L$ such that $\langle a, b \rangle \neq \phi$. Then $(b)^* \subseteq (x)^*$, for all $x \in \langle a, b \rangle$.

Theorem 16. For any $a, b, c \in L$, we have the following:

- (i) $\langle a, c \rangle = \langle a \wedge c, c \rangle$
- (ii) $\langle a, c \rangle \cap \langle b, c \rangle \subseteq \langle a \lor b, c \rangle$.

Proof. (i) Let $x \in \langle a, c \rangle$. Then $a \wedge x = 0$ and $(a \vee x)^* = (a \vee c)^*$. Therefore $a \wedge c \wedge x = 0$. Now,

$$\begin{split} [(a \wedge c) \lor x]^{**} &= [x \lor (a \wedge c)]^{**} & \text{(by Lemma 3(vii))} \\ &= [(x \lor a) \land (x \lor c)]^{**} \\ &= (x \lor a)^{**} \cap (x \lor c)^{**} & \text{(by Lemma 3(iv))} \\ &= (a \lor c)^{**} \cap [(x)^* \cap (c)^*]^* & \text{(since } (a \lor x)^{**} = (a \lor c)^{**}) \\ &= (a \lor c)^{**} \cap (c)^{**} & \text{(since } (c)^* \subseteq (x)^* \text{ and by Corollary 15)} \\ &= ((a \lor c) \land c)^{**} \\ &= (c)^{**}. \end{split}$$

Therefore $[(a \land c) \lor x]^* = (c)^*$. Hence $x \in \langle a \land c, c \rangle$. On the other hand, let $x \in \langle a \land c, c \rangle$, then $a \land c \land x = 0$ and $((a \land c) \lor x)^* = ((a \land c) \lor c)^* = (c)^*$ (by Lemma 1.4(1) [8]). Therefore $a \land x \in (c)^*$. So that $a \land x \land ((a \land c) \lor x) = 0$. Hence $a \land x = 0$. For $t \in L$,

$$t \in (a \lor x)^* \Rightarrow t \land a = 0 = t \land x$$

$$\Rightarrow t \land a \land c = 0 = t \land x$$

$$\Rightarrow t \in ((a \land c) \lor x)^*$$

$$\Rightarrow t \land c = 0$$
 (since $((a \land c) \lor x)^* = (c)^*$)

$$\Rightarrow t \in (a \lor c)^*.$$

Therefore $(a \lor x)^* \subseteq (a \lor c)^*$. Similarly we can prove $(a \lor c)^* \subseteq (a \lor x)^*$. So that $(a \lor c)^* = (a \lor x)^*$. Hence $x \in \langle a, c \rangle$. Thus $\langle a, c \rangle = \langle a \land c, c \rangle$.

(ii) Let $x \in \langle a, c \rangle \cap \langle b, c \rangle$. Then $a \wedge x = 0 = b \wedge x$ and $(a \vee x)^* = (a \vee c)^*$, $(b \vee x)^* = (b \vee c)^*$. Therefore $(a \vee b) \wedge x = 0$. For $t \in L$,

$$t \in (a \lor b \lor x)^* \Rightarrow t \land a = t \land b = t \land x = 0$$

$$\Rightarrow t \in (a \lor x)^* = (a \lor c)^*$$

$$\Rightarrow t \land c = 0$$

$$\Rightarrow t \in (a \lor b \lor c)^*.$$

Therefore $(a \lor b \lor x)^* \subseteq (a \lor b \lor c)^*$. Similarly $(a \lor b \lor c)^* \subseteq (a \lor b \lor x)^*$. So that $(a \lor b \lor x)^* = (a \lor b \lor c)^*$ and $(a \lor b) \land x = 0$. Hence $x \in \langle a \lor b, c \rangle$. Thus $\langle a, c \rangle \cap \langle b, c \rangle \subseteq \langle a \lor b, c \rangle$.

Theorem 17. For any $a, b, c \in L$, we have the following:

- (i) $\langle a \wedge b, c \rangle = \langle b \wedge a, c \rangle$
- (ii) $\langle a \lor b, c \rangle = \langle b \lor a, c \rangle$.

Proof. Let $a, b, c \in L$. Then, for any $x \in L$,

$$\begin{array}{ll} (a \wedge b) \wedge x = 0 \iff (b \wedge a) \wedge x = 0 & (\text{by Lemma 1(v)}) \\ [(a \wedge b) \vee x]^* & \iff (a \wedge b)^* \cap (x)^* & (\text{by Lemma 3(iii)}) \\ & \iff (b \wedge a)^* \cap (x)^* & (\text{by Lemma 3(viii)}) \\ & \iff [(b \wedge a) \vee x]^*. \end{array}$$

Therefore $\langle a \wedge b, c \rangle = \langle b \wedge a, c \rangle$. Similarly we can prove $\langle a \vee b, c \rangle = \langle b \vee a, c \rangle$.

Lemma 18. If L is weakly relatively complemented and $a, b, c \in L$, then, $\langle a, b \rangle = \langle a, c \rangle \iff (a \lor b)^* = (a \lor c)^*$.

Proof. Suppose that $\langle a, b \rangle = \langle a, c \rangle$. Let $x \in \langle a, b \rangle$. Then $a \wedge x = 0$ and $(a \vee x)^* = (a \vee b)^* = (a \vee c)^*$. Conversely suppose that $(a \vee b)^* = (a \vee c)^*$. Let $x \in \langle a, b \rangle$. Then $a \wedge x = 0$ and $(a \vee x)^* = (a \vee b)^*$. Therefore $a \wedge x = 0$ and $(a \vee x)^* = (a \vee c)^*$. So that $x \in \langle a, c \rangle$. Hence $\langle a, b \rangle \subseteq \langle a, c \rangle$. Similarly we can prove $\langle a, c \rangle \subseteq \langle a, b \rangle$. Thus $\langle a, b \rangle = \langle a, c \rangle$.

Theorem 19. Let I be an ideal in a weakly relatively complemented ADL L. Then I^* is a weakly relatively complemented subADL of L.

Proof. It is easy to prove that I^* is a subADL of L. Let $a, b \in I^* \subseteq L$. Then there exists $x \in L$ such that $a \wedge x = 0$ and $(a \vee x)^* = (a \vee b)^*$. Since $a, b \in I^*$, we have $a \wedge y = 0 = b \wedge y$, for all $y \in I$. So that $y \wedge (a \vee b) = 0$, for all $y \in I$. That $y \in (a \vee b)^*$, for all $y \in I$. Therefore $I \subseteq (a \vee b)^* = (a \vee x)^*$. Hence $a \vee x \in (a \vee x)^{**} \subseteq I^*$ (by Lemma 3(v)(vi)). So $x = (a \vee x) \wedge x \in I^*$ (since I^* is an ideal). Therefore I^* is weakly relatively complemented.

The above theorem characterizes a class of weakly relatively complemented subADLs in an ADL. It is not known if an arbitrary subADL of a weakly relatively complemented ADL is weakly relatively complemented.

Theorem 20. If $(a)^*$ is a principal ideal for all $a \in L$, then L is weakly relatively complemented.

Proof. Let $a, b \in L$. Then there exist $x, y \in L$ such that $(a)^* = (x]$ and $(b)^* = (y]$. For $t \in L$,

$$t \in (a \lor x)^* \Rightarrow t \in (a)^* \cap (x)^* \qquad \text{(by Lemma 3(iii))} \\ \Rightarrow t \in (x] \cap (x)^* = \{0\} \qquad \text{(by Definition 3.1[3])} \\ \Rightarrow t = 0.$$

Therefore $a \lor x$ is dense in L. Similarly we can prove $b \lor y$ is also dense in L.

Take $c = x \wedge b$. Then $a \wedge c = a \wedge x \wedge b = 0 \wedge b = 0$ (since $a \wedge x = 0$). Now, for $t \in L$,

$$\begin{split} t \in (a \lor c)^* &\Rightarrow t \land a = 0 = t \land c \\ &\Rightarrow t \land a \land b = 0 = t \land x \land b \\ &\Rightarrow t \land b \land (a \lor x) = 0 \\ &\Rightarrow t \land b = 0 \qquad \qquad (\text{since } a \lor x \text{ is dense}) \\ &\Rightarrow t \land (a \lor b) = 0 \\ &\Rightarrow t \in (a \lor b)^*. \end{split}$$

Therefore $(a \lor c)^* \subseteq (a \lor b)^*$. Now,

$$(a \lor c) \land (a \lor b) = a \lor (c \land b)$$
 (by Definition 1.1(L5) [8])
$$= a \lor (x \land b \land b)$$

$$= a \lor (x \land b)$$
 (by Lemma 1(ii))
$$= a \lor c.$$

Therefore $(a \lor c) \le (a \lor b)$. So that $(a \lor b)^* \subseteq (a \lor c)^*$ (by Lemma 3(i)). Hence $(a \lor b)^* = (a \lor c)^*$. Thus *L* is weakly relatively complemented.

4. Some results on weakly relatively complemented ADLs with dense elements

In this section, we prove necessary and sufficient conditions for a weakly relatively complemented ADL with dense elements to become a Boolean algebra. We derive a necessary condition for a generalized stone ADL with dense elements. Finally, we prove a sufficient condition for a weakly relatively complemented ADL with dense elements to become a generalized Stone ADL.

Theorem 21. If L is weakly relatively complemented with dense elements, then the following are equivalent:

- (i) L has exactly one dense element
- (ii) L is a Boolean algebra
- (iii) L is disjunctive.

Proof. Let L be a weakly relatively complemented ADL.

(i) \Rightarrow (ii) Assume that *L* has exactly one dense element, say *d*. For any $a \in L$, there exists $x \in L$ such that $a \wedge x = 0$ and $(a \vee x)^* = (a \vee d)^* = \{0\}$ (since $a \vee d$ is dense). Then $a \vee x$ is dense and $a \vee x = d$. Therefore $a \leq a \vee x = d$, for any $a \in L$. Therefore *d* is the greatest element in *L*. Hence *L* is complemented

and bounded. For any $a, b \in L$,

$$a \wedge b = a \wedge b \wedge d$$
 (since d is the greatest element)
= $b \wedge a \wedge d$ (by Lemma 1(v))
= $b \wedge a$.

Therefore L is a bounded distributive lattice with the least element 0 and the greatest element d (by Theorem 1.13 [8]). Hence L is Boolean algebra.

(ii) \Rightarrow (iii) Assume that L is a Boolean algebra. Let $a, b \in L$. Suppose $(a)^* = (b)^*$. For this $a, b \in L$, there exist $x, y \in L$ such that $a \wedge x = 0 = b \wedge y$ and $a \vee x = 1 = b \vee y$, where 1 is the greatest element in L. Therefore $x \in (a)^*$ and $y \in (b)^*$. So that $x \in (b)^*$ and $y \in (a)^*$ (since $(a)^* = (b)^*$). Hence $b \wedge x = 0 = a \wedge y$. Now,

$$a = a \wedge 1$$

= $a \wedge (b \vee y)$
= $(a \wedge b) \vee (a \wedge y)$ (by Definition 1.1(L4) [8])
= $a \wedge b$. (since $a \wedge y = 0$)

Therefore $a \leq b$. Similarly we can prove $b \leq a$. Hence a = b. Thus L is disjunctive.

(iii) \Rightarrow (i) Assume that *L* is disjunctive. Suppose *L* has two dense elements, say *a*, *b*. Therefore $(a)^* = (b)^*$. Since *L* is disjunctive, a = b. Hence *L* has exactly one dense element.

L is a generalized stone ADL [4], if for any $a \in L, (a)^* \vee (a)^{**} = L$. Now, we have the following:

Theorem 22. Every generalized stone ADL L with dense elements is weakly relatively complemented.

Proof. Suppose that L is a generalized stone ADL. Let $x, y \in L$. Then $(x)^* \vee (x)^{**} = L = (y)^* \vee (y)^{**}$. Choose a dense element in L such that $d = a \vee b$ for some $a \in (x)^*$ and $b \in (x)^{**}$ (since L is a stone ADL (i.e., $L = (x)^* \vee (x)^{**}$)). For $s \in L$,

$$s \in (a \lor x)^* \Rightarrow s \land a = 0 = s \land x$$

$$\Rightarrow s \land a = 0 = s \land b \quad (\text{since } s \in (x)^* \text{ and } b \in (x)^{**})$$

$$\Rightarrow s \land (a \lor b) = 0$$

$$\Rightarrow s \land d = 0$$

$$\Rightarrow s = 0. \qquad (\text{since } d \text{ is dense})$$

Therefore $a \lor x$ is dense. Take $t = a \land y$. Then $x \land t = x \land a \land y = 0$ (since

 $a \wedge x = 0$ and by Lemma 1(vi)), and

$$(x \lor t) \land (x \lor y) = x \lor (t \land y)$$
 (by Definition 1.1(L5) [8])
$$= x \lor (a \land y \land y)$$
$$= x \lor (a \land y)$$
(by Lemma 1(ii))
$$= x \lor t.$$

Therefore $(x \lor t) \leqslant x \lor y$. Hence $(x \lor y)^* \subseteq (x \lor t)^*$ (by Lemma 3(i)). For $s \in L$,

$$s \in (x \lor t)^* \Rightarrow s \land x = 0 = s \land t$$

$$\Rightarrow s \land x \land y = 0 = s \land a \land y$$

$$\Rightarrow s \land y \land (x \lor a) = 0 \qquad \text{(by Lemma 1(v))}$$

$$\Rightarrow s \land y = 0 \qquad \text{(since } x \lor a \text{ is dense)}$$

$$\Rightarrow s \land (x \lor y) = 0$$

$$\Rightarrow s \in (x \lor y)^*.$$

Therefore $(x \lor t)^* \subseteq (x \lor y)^*$. Hence $(x \lor t)^* = (x \lor y)^*$. Thus L is weakly relatively complemented.

Remark 23. The converse of above statement need not be true. For, see the following:

Example 24. Let $L = \{0, a, b, c, 1\}$ be an ADL whose Hasse-diagram is

Then L is weakly relatively complemented. For $a, b \in L$, $(a)^* = \{0, b\}$ and $(a)^{**} = \{0, a\}$. Therefore $(a)^* \vee (a)^{**} = \{0, a, b, c\} \neq L$ and hence L is not a generalized stone ADL.

L is a normal ADL [5], if for any $x, y \in L$, $x \wedge y = 0$ implies $(x)^* \vee (y)^* = L$. Now, we have the following. **Theorem 25.** If L is weakly relatively complemented and normal with dense elements, then L is a generalized stone ADL.

Proof. Let d be a dense element in L and $x \in L$. Then there exists $y \in L$ such that $x \wedge y = 0$ and $(x \vee y)^* = (x \vee d)^* = \{0\}$. Therefore $x \wedge y = 0$ and $x \vee y$ is dense. So that $y \in (x)^*$ also $(x)^{**} \subseteq (y)^*$ (by Lemma 3(v)). For $s, t \in L$,

$$s \in (x)^* \text{ and } t \in (y)^* \Rightarrow s \land x = 0 = t \land y$$

$$\Rightarrow s \land x \land t = 0 = t \land y \land s$$

$$\Rightarrow s \land t \land (x \lor y) = 0 \qquad \text{(by Lemma 1(v))}$$

$$\Rightarrow s \land t = 0 \qquad (\text{since } x \lor y \text{ is dense})$$

$$\Rightarrow t \in (x)^{**} \qquad (\text{since } s \in (x)^*)$$

$$\Rightarrow (y)^* \subseteq (x)^{**}.$$

Therefore $(x)^{**} = (y)^*$. Since L is normal and $x \wedge y = 0$, $(x)^* \vee (y)^* = L$. Therefore $(x)^* \vee (x)^{**} = L$. Hence L is a generalized stone ADL.

Acknowledgement

The authors are very much thankful to the referee for valuable comments that greatly improved the manuscript.

References

- [1] G. Birkhoff, Lattice theory (Amer. Math. Soc. Colloquium Pub., 1967).
- [2] G.C. Rao and G. Nanaji Rao, Dense elements in almost distributive lattices, Southeast Asian Bull. Math. 27 (2004) 1081–1088.
- [3] G.C. Rao and M. Sambasiva Rao, Annihilator ideal in almost distributive lattices, Int. Math. Forum 4 (2009) 733–746.
- [4] G.C. Rao and M. Sambasiva Rao, Annulets in almost distributive lattices, European. J. Pure and Applied Math. 2 (2009) 58–72.
- [5] G.C.Rao and S. Ravi Kumar, Normal almost distributive lattices, Southeast Asian Bull. Math. 32 (2008) 831–841.
- [6] S. Burris and H.P. Sankappanavar, A course in universal algebra (Springer-Verlag, 1980).
- [7] S. Ramesh and G. Jogarao, Weakly relatively complemented almost distributive lattices, Palestine J. Math. 6 (2017) 1–10.
- [8] U.M. Swamy and G.C. Rao, Almost distributive lattices, J. Austral. Math. Soc. 31 (1981) 77–91. doi:10.1017/S1446788700018498

Received 28 February 2017 Revised 27 June 2017 Accepted 6 November 2017