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Abstract

In this paper, we introduce the notion of k-ideal, m−k ideal, prime ideal,
maximal ideal, filter, irreducible ideal, strongly irreducible ideal in ordered
Γ-semirings, study the properties of ideals in ordered Γ-semirings and the
relations between them. We characterize m − k ideals using derivation of
ordered Γ-semirings and prove that every ideal in a mono regular ordered
Γ-semiring is a prime ideal and field ordered Γ-semiring is simple.

Keywords: ordered Γ-semiring, integral ordered Γ-semiring, regular or-
dered Γ-semiring, mono ordered Γ-semiring, prime ideal, maximal ideal, k-
ideal, m− k ideal, filter, irreducible ideal, strongly irreducible ideal.

2010 Mathematics Subject Classification: 16A09, 06F25.

1. Introduction

In 1995, Rao [9, 10, 11, 12] introduced the notion of Γ-semiring as a generalization
of Γ-ring, ternary semiring and semiring. The notion of semiring was introduced
by an American mathematician Vandiver [23] in 1934. The non trivial example of
semiring first appeared in the work of German mathematician Richard Dedikind
in 1894 in connection with the study of algebra of ideals of a commutative ring.
A semiring is an algebraic structure with two associative binary operations where
one of them distributes over the other. In particular, if I is the unit interval on
the real line then (I,max,min) is a semiring in which 0 is the additive identity
and 1 is the multiplicative identity. Though semiring is a generalization of a ring,
ideals of semiring do not coincide with ring ideals. Henriksen [5] defined k-ideals
in semirings to obtain analogous of ring results for semiring. In structure, semir-
ings lie between semigroups and rings. The results which hold in rings but not
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in semigroups hold in semirings, since semiring is a generalization of a ring. The
study of rings shows that multiplicative structure of ring is an independent of ad-
ditive structure whereas in semiring multiplicative structure is not independent
of additive structure. The additive structure and the multiplicative structure of
a semiring play an important role in determining the structure of a semiring.
The theory of rings and theory of semigroups have considerable impact on the
development of theory of semirings. Semirings play an important role in study-
ing matrices and determinants. Semirings are useful in the areas of theoretical
computer science as well as in graph theory, optimization theory, in particular
for studying automata,coding theory and formal languages. Semiring theory has
many applications in other branches. Ahn et al. [2, 3] studied ideals, r-ideals in
incline algebras. Rao et al. [19, 20] studied derivations of ordered Γ-semirings
and Γ-incline.

The notion of Γ-ring was introduced by Nobusawa [21] as a generalization
of ring in 1964. Sen [22] introduced the notion of Γ-semigroup in 1981. The
notion of ternary algebraic system was introduced by Lehmer [7] in 1932, Lister
[8] introduced the notion of ternary ring. Dutta and Kar [4] introduced the notion
of ternary semiring which is a generalization of ternary ring and semiring. After
the paper [9] was published, many mathematicians obtained interesting results
on Γ-semirings. Rao and Venkateswarlu [17] introduced the notion of regular
Γ-incline and field Γ-semiring. Jagatap and Pawar [6] studied quasi-ideals and
minimal quasi-ideals in semirings. Rao [13, 15, 16] introduced bi-quasi-ideals
in semirings, bi-interior ideals of semigroups, bi-quasi-ideals and fuzzy bi-quasi-
ideals in Γ-semigroups. The notion of ideal was introduced by Dedekind for the
theory of algebraic numbers and it was generalized by Noether for associative
rings. The one and two sided ideals were introduced by her, are still central
concepts in ring theory. In this paper, we introduce the notion of prime ideal,
maximal ideal, filter, irreducible ideal, stronngly irreducible ideal in ordered Γ-
semirings. We study the properties of ideals in ordered Γ-semirings. We prove
that every ideal in a mono regular ordered Γ-semiring is a prime ideal and if an
ideal is a m− k ideal then ideal is a maximal ideal.

2. Preliminaries

In this section we will recall some of the fundamental concepts and definitions,
which are necessary for this paper.

Definition 2.1. Let (M,+) and (Γ,+) be commutative semigroups. Then we
call M as a Γ-semiring, if there exists a mapping M × Γ × M → M is written
(x, α, y) as xαy such that it satisfies the following axioms for all x, y, z ∈ M and
α, β ∈ Γ
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(i) xα(y + z) = xαy + xαz

(ii) (x+ y)αz = xαz + yαz

(iii) x(α+ β)y = xαy + xβy

(iv) xα(yβz) = (xαy)βz.

Every semiring R is a Γ-semiring with Γ = R and ternary operation xγy as the
usual semiring multiplication.

Example 2.2. Let S be a semiring and Mp,q(S) denotes the additive abelian
semigroup of all p × q matrices with identity element whose entries are from S.
Then Mp,q(S) is a Γ-semiring with Γ = Mp,q(S) ternary operation is defined by
xαz = x (αt)z as the usual matrix multiplication, where αt denotes the transpose
of the matrix α; for all x, y and α ∈ Mp,q(S).

Definition 2.3. Let M be a Γ-semiring. An element 1 ∈ M is said to be unity
if for each x ∈ M there exists α ∈ Γ such that xα1 = 1αx = x.

Definition 2.4. In a Γ-semiring M with unity 1, an element a ∈ M is said to
be left invertible (right invertible) if there exist b ∈ M, α ∈ Γ such that bαa = 1
(aαb = 1).

Definition 2.5. In a Γ-semiring M with unity 1, an element a ∈ M is said to
be invertible if there exist b ∈ M, α ∈ Γ such that aαb = bαa = 1.

Definition 2.6. In a Γ-semiring M, an element u ∈ M is said to be unit if there
exist a ∈ M and α ∈ Γ such that aαu = 1 = uαa.

Definition 2.7. A Γ-semiring M is said to be simple Γ-semiring if it has no
proper ideals of M.

Definition 2.8. A non zero element a in a Γ-semiringM is said to be zero divisor
if there exist non zero element b ∈ M, α ∈ Γ such that aαb = bαa = 0.

Definition 2.9. A Γ-semiring M is said to be field Γ-semiring if M is a commu-
tative Γ-semiring with unity 1 and every non zero element of M is invertible.

Definition 2.10. A Γ-semiring M with unity 1 and zero element 0 is called an
integral Γ-semiring if it has no zero divisors.

Definition 2.11. A Γ-semiring M is said to be hold cancellation laws if aαb =
aαc, (bαa = cαa) where a, b, c ∈ M, α ∈ Γ, then b = c.

Definition 2.12. Let M be a Γ-semiring is called a pre -integral Γ-semiring if
M holds cancellation laws.
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Example 2.13. Let M be a set of all rational numbers and Γ be a set of all
natural numbers are commutative semigroups with respedt to usual addition.
Define the mapping M × Γ × M ⇒ M by aαb as usual multiplication for all
a, b ∈ M, α ∈ Γ. Then M is a field Γ-semiring.

Definition 2.14. A Γ-semiring M is called an ordered Γ-semiring if it admits a
compatible relation ≤, i.e., ≤ is a partial ordering on M satisfies the following
conditions. If a ≤ b and c ≤ d then

(i) a+ c ≤ b+ d

(ii) aαc ≤ bαd

(iii) cαa ≤ dαb, for all a, b, c, d ∈ M, α ∈ Γ.

Definition 2.15. An ordered Γ-semiring M is said to have zero element if there
exists an element 0 ∈ M such that 0 + x = x = x+ 0 and 0αx = xα0 = 0, for all
x ∈ M, α ∈ Γ.

Definition 2.16. Let M be an ordered Γ-semiring. An element 1 ∈ M is said
to be unity if for each x ∈ M there exists α ∈ Γ such that xα1 = 1αx = x.

Definition 2.17. An ordered Γ-semiringM is said to be commutative Γ-semiring
if xαy = yαx, for all x, y ∈ M and α ∈ Γ.

Definition 2.18. A non-empty subset A of an ordered Γ-semiring M is called
a Γ-subsemiring M if (A,+) is a subsemigroup of (M,+) and aαb ∈ A for all
a, b ∈ A and α ∈ Γ.

Definition 2.19. A non-empty subset A of an ordered Γ-semiring. M is called
a left (right) ideal of an ordered Γ-semiring M if A is closed under addition,
MΓA ⊆ A (AΓM ⊆ A) and if for any a ∈ M, b ∈ A, a ≤ b then a ∈ A.

Definition 2.20. A non-empty subset A of an ordered Γ-semiring M is called a
k-ideal if A is an ideal and x ∈ M, x+ y ∈ A, y ∈ A then x ∈ A.

Definition 2.21. An ordered Γ-semiring M is said to be simple if it has no
proper ideals.

Definition 2.22. Let M be an ordered Γ-semiring. An element a ∈ M is said
to be idempotent of M if there exists α ∈ Γ such that a = aαa and a is also said
to be α idempotent.

Definition 2.23. Let M be an ordered Γ-semiring. Every element of M is an
idempotent of M then M is said to be idempotent ordered Γ-semiring.

Definition 2.24. A non-zero element a in an ordered Γ-semiring M is said
to be zero divisor if there exists non- zero element b ∈ M,α ∈ Γ such that
aαb = bαa = 0.
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Definition 2.25. An ordered Γ-semiring M with unity 1 and zero element 0 is
called an integral ordered Γ-semiring if it has no zero divisors.

Definition 2.26. An ordered Γ-semiring M is said to be totally ordered Γ-
semiring M if any two elements of M are comparable.

Definition 2.27. Let M and N be ordered Γ-semirings. A mapping f : M → N
is called a homomorphism if

(i) f(a+ b) = f(a) + f(b),

(ii) f(aαb) = f(a)αf(b), for all a, b ∈ M, α ∈ Γ.

Definition 2.28. An ordered Γ-semiring M is said to be zero sum free ordered
Γ-semiring if x+ y = 0 ⇒ x = 0 and y = 0, for all x, y ∈ M.

Definition 2.29. In an ordered Γ-semiring M

(i) semigroup (M,+) is said to be positively ordered if a ≤ a+ b and b ≤ a+ b
for all a, b ∈ M,

(ii) semigroup (M,+) is said to be negatively ordered if a+ b ≤ a and a+ b ≤ b
for all a, b ∈ M,

(iii) Γ-semigroup M is said to be positively ordered if a ≤ aαb and b ≤ aαb for
all α ∈ Γ, a, b ∈ M,

(iv) Γ-semigroup M is said to be negatively ordered if aαb ≤ a and aαb ≤ b for
all α ∈ Γ, a, b ∈ M.

Definition 2.30. Let M be an ordered Γ-semiring. If a mapping d : M → M
satisfies the following conditions

(i) d(x+ y) = d(x) + d(y),

(ii) d(xαy) = d(x)αy + xαd(y) for all x, y ∈ M and α ∈ Γ,

then d is called a derivation of M.

3. Ideals in ordered Γ-semirings

In this section, we introduce the notion of k-ideal, m− k ideal, prime ideal, max-
imal ideal, filter, irreducible ideal, strongly irreducible ideal and homomorphism
in ordered Γ-semiring. Throughout this paper,if a ≤ b then a + b = b for all
a, b ∈ M.

Definition 3.1. A Γ-subsemiring I of an ordered Γ-semiring M is called an ideal
(filter) if it is a lower (upper) set, i.e., for any x ∈ I, y ∈ M and y ≤ x ⇒ y ∈ I.
(x ∈ F, y ∈ M and x ≤ y ⇒ y ∈ F.)
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Definition 3.2. A proper ideal P of an ordered Γ-semiring M is said to be prime
ideal if for all x, y ∈ M, α ∈ Γ, xαy ∈ P ⇒ x ∈ P or y ∈ P.

Definition 3.3. An ideal K of an ordered Γ-semiring M is said to be maximal
ideal if K 6= M and for every ideal I of M with K ⊆ I ⊆ M , then either I = K
or I = M.

Definition 3.4. A proper ideal I of an ordered Γ-semiring M is said to be
irreducible ideal if I = A ∩B then I = A or I = B.

Example 3.5. Let M = [0, 1] and Γ = N. A binary operation + is defined as
a + b = max{a, b}, for all a, b ∈ M, x + y = max{x, y}, for all x, y ∈ N and
ternary operation is defined as xγy = xγy (usual product), for all x, y ∈ M and
γ ∈ N. Then M is an ordered Γ-semiring M with ususal ordering. All ideals
of M are closed intervals, [0, a] for some a ∈ M. Let I = [0, 0.2]. Then I is an
irreducible ideal but not a prime ideal.

Definition 3.6. An ideal I of an ordered Γ-semiring M is strongly irreducible
ideal if for ideals J and K of M, J ∩K ⊆ I then J ⊆ I or K ⊆ I.

Definition 3.7. An ideal I of an ordered Γ-semiring M is said to be k-ideal if
x+ y ∈ I, x ∈ M and y ∈ I then x ∈ I.

Definition 3.8. An ideal I of an ordered Γ-semiring M is said to be m− k ideal
if xαy ∈ I, x ∈ I, 1 6= y ∈ M and α ∈ Γ then y ∈ I.

Theorem 3.9. Every m−k ideal of an ordered Γ-semiring M is a k-ideal of M .

Proof. Let I be a m− k ideal of an ordered Γ-semiring M . Suppose x+ y ∈ I,
x ∈ I, y ∈ M and α ∈ Γ, then (x+ y)αy ∈ I. Therefore y ∈ I, since I is a m− k
ideal. Hence I is a k-ideal of M .

Converse of the theorem need not be true.

Example 3.10. Let M be a the set of all non-negative integers and Γ = N be
additive abelian semigroups. Tennary operation is defined as (x, α, y) → xαy,
usual multiplication of integers. Then M is an ordered Γ-semiring. A subset
I = 3M \ {3} of M is an ideal of M but not a k-ideal of M.

Example 3.11. Let M be the set of all natural numbers. Then (M,max,min)
with usual ordering is an ordered semiring. If Γ = M, then M is an ordered
Γ-semiring. If In = {1, 2, ·, ·, ·, n} then In forms a k-ideal but not m− k ideal of
ordered Γ-semiring.
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Example 3.12. Let N be set of all non-negative integers and

M =

{(

a 0
b c

)

| a, b, c ∈ N

}

, Γ =

{(

a 0
0 c

)

| a, c ∈ N

}

be additive abeliean semigroups. Ternary operation is defined as (x, α, y) → xαy,
usual matrix multiplication for all x, y ∈ M and α ∈ Γ. Let A = (aij) and
B = (bij) ∈ M. We define A ⊆ B if and only if aij ≤ bij, for all i, j. Then M is
an ordered Γ-semiring. Define a derivation d : M −→ M by

d

(

a 0
b c

)

=

(

0 0
b 0

)

, for all

(

a 0
b c

)

∈ M.

And define Ker d =

{

A | A ∈ M and d(A) =

(

0 0
0 0

)}

. Then Ker d is a

m− k ideal of an ordered Γ-semiring M.

Theorem 3.13. Let I be a Γ-subsemiring of an ordered Γ-semiring M in which

semigroup (M,+) is band. Then I is an ideal of M if and only if I is a k-ideal
of M.

Proof. Let I be an ideal of an ordered Γ-semiring M and x+ y ∈ I, y ∈ I.

x+ y = (x+ x) + y

= x+ (x+ y)

⇒ x ≤ x+ y.

Therefore, by definition of ideal, x ∈ I. Hence I is a k-ideal.
Conversely suppose that I is a k-ideal of an ordered Γ-semiringM. Let y ∈ M,

x ∈ I and y ≤ x.

⇒ y + x = x

⇒ y + x ∈ I

⇒ y ∈ I, since I is a k-ideal of an ordered Γ-semiring M .

Hence I is an ideal of an ordered Γ-semiring M.

Theorem 3.14. In an ordered Γ-semiring M, every maximal ideal of M is irre-

ducible ideal of M.

Proof. Let S be a maximal ideal of an ordered Γ-semiring M. Suppose S is not
irreducible and S = U ∩ V.

⇒ S 6= U and S 6= V

⇒ S ⊂ U ⊂ M and S ⊂ V ⊂ M.

Which is a contradiction. Hence S is irreducible ideal of an ordered Γ-semiringM.
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Theorem 3.15. Let I be an ideal of an ordered Γ-semiring M.

(i) If I is a prime ideal then I is a strongly irreducible ideal.

(ii) If I is a strongly irreducible ideal then I is an irreducible ideal.

Proof. Let I be an ideal of an ordered Γ-semiring M.
(i) Suppose I is a prime ideal, J and K are ideals of an ordered Γ-semiring

M such that J ∩K ⊆ I. Then JΓK ⊆ I ⇒ J ⊆ I or K ⊆ I, since I is a prime
ideal. Hence I is a strongly irreducible ideal.

(ii) Suppose I is a strongly irreducible ideal, J and K are ideals of an ordered
Γ-semiring M such that J ∩K = I. Then

J ∩K ⊆ I

⇒ J ⊆ I or K ⊆ I

Hence J = I or K = I.

Therefore I is an irreducible ideal of M.

Corollary 3.16. Let M be an ordered Γ-semiring. If I is a prime ideal of M
then I is an irreducible ideal of M.

The following theorem proof is a straightforward verification.

Theorem 3.17. If F is a non-empty subset of an ordered Γ-semiring M , then

the following are equivalent

(i) F is a filter

(ii) a+ b ∈ F, for all a ∈ F and b ∈ M.

Theorem 3.18. Let M be an ordered Γ-semiring in which semigroup (M,+) is

positively ordered.Then F is a filter of an ordered Γ-semiring M if and only if F c

is a M if and only if F c is a prime ideal of an ordered Γ-semiring M .

Proof. Let F be a filter of an ordered Γ-semiring M and a, b ∈ F c. Then a, b /∈ F

⇒ aαb /∈ F and a+ b /∈ F, for all α ∈ Γ

⇒ aαb ∈ F c and a+ b ∈ F c, for all α ∈ Γ.

Let a, b ∈ M and aαb ∈ F c, α ∈ Γ.

Suppose a, b /∈ F c

⇒ a, b ∈ F

⇒ aαb ∈ F,α ∈ Γ.

Which is a contradicts to our assumption. Therefore F c is a prime ideal of an
ordered Γ-semiring M.
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Conversely suppose that F c is a prime ideal of an ordered Γ-semiring M. Let
a, b ∈ F, α ∈ Γ. Then a ≤ a + b. If a + b ∈ F c, then a ∈ F c. Hence a + b /∈ F c.
Therefore a+ b ∈ F. If aαb /∈ F.

⇒ aαb ∈ F c

⇒ a or b ∈ F c, which is a contradiction.

Hence aαb ∈ F.

Let a ∈ F, a ≤ b, b ∈ M. Suppose b /∈ F.

⇒ b ∈ F c

⇒ a ∈ F c,

which is a contradiction. Therefore b ∈ F. Hence F is a filter of an ordered
Γ-semiring M.

Theorem 3.19. Let f : K → L be a homomorphism of ordered Γ-semirings. If

J is an ideal of L then f−1(J) is an ideal of an ordered Γ-semiring K.

Proof. Suppose J is an ideal of L, f : K → L be a homomorphism of ordered
Γ-semirings and x, y ∈ f−1(J), α ∈ Γ.

⇒ f(x), f(y) ∈ J

⇒ f(x) + f(y) = f(x+ y) ∈ J

⇒ x+ y ∈ f−1(J)

x, y ∈ f−1(J) ⇒ f(x), f(y) ∈ J

⇒ f(x)αf(y) ∈ J

⇒ f(xαy) ∈ J

⇒ xαy ∈ f−1(J).

Hence f−1(J) is an ordered Γ-subsemiring of K. Let x ∈ K, y ∈ f−1(J) such that
x ≤ y.

⇒ x+ y = y

⇒ f(x+ y) = f(y)

⇒ f(x) + f(y) = f(y) ∈ J

⇒ f(x) ≤ f(y)

⇒ f(x) ∈ J

⇒ x ∈ f−1(J).

Hence f−1(J) is an ideal of an ordered Γ-semiring K.
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Theorem 3.20. Let M be an ordered Γ-semiring with unity 1 and zero element 0.
If I is an ideal containing a unit element then I = M.

Proof. Let I be an ideal of an ordered Γ-semiring M containing a unit element
u and x ∈ M. Then there exists α ∈ Γ, such that xα1 = x. Since I is an ideal,
xαu ∈ I. Since u is a unit, there exist δ ∈ Γ, t ∈ M such that uδt = 1.

⇒ xαuδt = xα1 = x

⇒ x ∈ I.

Hence I = M.

Theorem 3.21. A field ordered Γ-semiring M is simple.

Proof. Let I be a proper ideal of field ordered Γ-semiring M. Every nonzero
element of I is a unit. By Theorem 3.20, we have I = M. Hence field ordered
Γ-semiring M is simple.

Theorem 3.22. Let M be an ordered Γ-semiring. If I is a m − k ideal of M,
then I is a maximal ideal of M.

Proof. Let I be a m−k ideal of an ordered Γ-semiring M. Suppose J is an ideal
of M such that I ⊆ J, x ∈ J, y ∈ I and α ∈ Γ. Therefore xαy ∈ I. Then x ∈ I,
since I is a m − k ideal of M. Therefore I = J. Hence m − k ideal I of M is
maximal ideal.

The following theorems are characterizations of m − k ideal of an ordered
Γ-semiring M .

Theorem 3.23. Let d be a derivation of an ordered Γ-semiring M , in which

semigroup (M,+) is positively ordered, right cancellative, band and Γ-semigroup

is left cancellative.

Define a set Fixd(M) = {x ∈ M/d(x) = x}. Then Fixd(M) is a k ideal and

a m− k ideal of M .

Proof. Let d be a derivation of M. Suppose x, y ∈ Fixd(M) and α ∈ Γ. Then

d(x) = x, d(y) = y

d(x+ y) = d(x) + d(y) = x+ y.

Therefore x+ y ∈ Fixd(M)

d(xαy) = d(x)αy + xαd(y)

= xαy + xαy

= xαy.
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Therefore Fixd(M) is a Γ-subsemiring of M.
Suppose x ≤ y and y ∈ Fixd(M).

x ≤ y

Then x+ y = y

⇒ d(x+ y) = x+ y

⇒ d(x) + d(y) = x+ y

⇒ d(x) + y = x+ y.

Therefore d(x) = x.

Therefore d(x) = x. Hence Fixd(M) is a k-ideal of M. Suppose xαy ∈ Fixd(M),
x ∈ Fixd(M) and α ∈ Γ. Then d(xαy) = xαy

⇒ d(x)αy + xαd(y) = xαy

⇒ xαy + xαd(y) = xαy

⇒ xα[y + d(y)] = xαy

⇒ y + d(y) = y

⇒ d(y) ≤ y + d(y) = y

we have y ≤ d(y). Hence d(y) = y, y ∈ Fixd(M). Hence Fixd(M) is a m − k
ideal of M .

Definition 3.24. Let d be a derivation of an ordered Γ-semiring M . If x ≤ y
⇒ d(x) ≤ d(y), for all x, y ∈ M , then d is called an isotone derivation.

Theorem 3.25. Let d be an isotone derivatipn of an ordered Γ-semiring M .

Define ker d = {x ∈ M/d(x) = 0}. Then ker d is a k-ideal of an Γ-semiring M .

Proof. Let x, y ∈ ker d and α ∈ Γ. Then

d(x) = 0, d(y) = 0

d(x+ y) = d(x) + d(y) = 0.

Therefore x+ y ∈ ker d.

d(xαy) = d(x)αy + xαd(y)

= 0αy + xα0 = 0.

Therefore xαy ∈ ker d. Suppose y ∈ ker d, x ∈ M and x ≤ y. Then

⇒ d(x) ≤ d(y) = 0

⇒ d(x) = 0.
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Hence ker d is an ideal. Suppose x+y ∈ ker d and y ∈ ker d. Then d(x+y) = 0

⇒ d(x) + d(y) = 0

⇒ d(x) = 0

⇒ x ∈ ker d.

Hence ker d is a k-ideal of an ordered Γ-semiring M .

Theorem 3.26. Let d be an isotone derivation of an integral ordered Γ-semiring

M in which semigroup (M,+) is positively ordered. Define ker d = {x ∈ M/
d(x) = 0}. Then ker d is a m− k ideal of M .

Proof. By Theorem [3.25], ker d is an ideal. Let 0 6= y ∈ ker d, x ∈ M α ∈ Γ
and xαy ∈ ker d, then d(xαy) = 0

⇒ d(x)αy + xαd(y) = 0

⇒ d(x)αy = 0

⇒ d(x) = 0,

since M is an integral ordered Γ-semiring. Therefore ker d is a m − k ideal
of M.

Let M be an ordered Γ-semiring. E[+] denotes the set {x ∈ M | x+ x = x}.

Theorem 3.27. Let M be a pre integral ordered Γ-semiring in which (M,+) is

cancellative semigroup. If E[+] 6= ∅, then E[+] is a k ideal and a m− k ideal of

an ordered Γ-semiring M.

Proof. Let x ∈ E[+], y ∈ M and α ∈ Γ. Then

x = x+ x

⇒ xαy = (x+ x)αy

= xαy + xαy.

Therefore xαy ∈ E[+]. Similarly yαx ∈ E[+]. Suppose x, y ∈ E[+]. Then

x+ x = x, y + y = y

⇒ (x+ y) + (x+ y) = (x+ x) + (y + y) = x+ y

⇒ x+ y ∈ E[+].

Suppose x ≤ y, y ∈ E[+]. Then x+ y = y

⇒ x+ x+ y = x+ y

⇒ x+ x = x.
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Therefore x ∈ E[+]. Hence E[+] is an ideal of an ordered Γ-semiring. Suppose
x, x+ y ∈ E[+]. Then

x+ x = x, x+ y + x+ y = x+ y

⇒ (x+ y) + (x+ y) = x+ y

⇒ (x+ x) + (y + y) = x+ y

⇒ x+ (y + y) = x+ y

⇒ y + y = y

⇒ y ∈ E[+].

Hence E[+] is a k-ideal of an ordered Γ-semiring M . Suppose xαy ∈ E[+],
x ∈ E[+] and α ∈ Γ. Then

xαy + xαy = xαy

⇒xα(y + y) = xαy

⇒y + y = y

⇒y ∈ E[+].

Hence E[+] is a m− k ideal of M .

4. Ideals in quotient ordered Γ-semiring

In this section, we introduce the notion of a quotient ordered Γ-semiring and
study the properties of ideals of quotient ordered Γ-semiring.

Suppose that I is an ideal of an ordered Γ-semiring M with zero element 0.
We define a relation’ ∼’ on an ordered Γ-semiring M by ’x ∼ y’ if and only if
x + i1 = y + i2 for some i1, i2 ∈ I, x, y ∈ M. Obviously ’∼’ is an equivalence
relation.

Let M be an ordered Γ-semiring. The equivalence class of x ∈ M is de-
termined by an ideal I is denoted by x + I. The set of all equivalence classes
{x+ I | x ∈ M} is denoted by M/I. We define two operations on M/I by

(i) (x+ I) + (y + I) = x+ y + I

(ii) (x+ I)α(y + I) = xαy + I, for all x, y ∈ M, α ∈ Γ.

Then M/I is an ordered Γ-semiring.The ordered Γ-semiring M/I is called a
quotient ordered Γ-semiring. If M is a commutative ordered Γ-semiring M then
M/I is a commutative ordered Γ-semiring. Define φ : M → M/I by φ(x) = x+I,
for all x ∈ M. Clearly φ is a homomorphism. We define the order relation on an
ordered Γ-semiring M/I by a + I ≤ b + I if and only if a ≤ b, i.e., a + b = b.
Obviously ≤ is a partial order relation of M/I.
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Theorem 4.1. Let M be an ordered Γ-semiring. If a, b ∈ M, a ∼ b, then

aαx ∼ bαx and a + x ∼ b + x, for all x ∈ M, α ∈ Γ. Then the relation ’∼’ is a

congruence relation.

Proof. Let M be an ordered Γ-semiring. If a ∼ b, α ∈ Γ, a, b, x ∈ M there exist
i1, i2 ∈ I such that a+ i1 = b+ i2

⇒ (a+ i1)αx = (b+ i2)αx

⇒ aαx+ i1αx = bαx+ i2αx

⇒ aαx ∼ bαx

since i1αx, i2αx ∈ I.

Now a+ i1 = b+ i2

⇒ a+ i1 + x = b+ i2 + x

⇒ (a+ x) + i1 = (b+ x) + i2

⇒ a+ x ∼ b+ x.

Hence relation ∼ on ordered Γ-semiring M is congruence relation.

Theorem 4.2. Let I be an ideal of an ordered Γ-semiring M in which semigroup

(M,+) is positively ordered and a ∈ I. Then a+ I = b+ I for every b ∈ M if and

only if b ∈ I. In particular c+ I = I if and only if c ∈ I.

Proof. Let a+ I = b+ I, then a+ u = b+ v for some u, v ∈ I.

⇒ b+ v ∈ I

⇒ b ≤ b+ v ∈ I

⇒ b ∈ I.

Converse is obvious.

The proofs of the following theorems are similar to incline Theorems 2.4 and
2.7 in [2].

Theorem 4.3. If I and J are any ideals of an ordered Γ-semiring M and I ⊆ J ,
then

(i) I is also an ideal of the Γ-subsemiring J.

(ii) J/I is an ideal of the quotient ordered Γ-semiring M/I.

Theorem 4.4. Let I be an ideal of an ordered Γ-semiring M. If A is an ideal

of a quotient ordered Γ-semiring M/I then φ−1(A) is an ideal of an ordered

Γ-semiring M containing I where φ is a natural homomorphism from M onto

M/I.
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Theorem 4.5. Let M be an ordered Γ-semiring M with unity 1 and zero element

0. If a ∈ M then 0 ≤ a ≤ 1.

Theorem 4.6. Let M/I be a quotient ordered Γ-semiring. Then

(i) M/I is a zero sum free quotient ordered Γ-semiring.

(ii) I is the least element of M/I.

(iii) 1 + I is the greatest element of M/I.

(iv) I ≤ a+ I ≤ 1 + I, for all a ∈ M.

Proof. Let M/I be a quotient ordered Γ-semiring.

(i) Suppose (a+ I), (b+ I) ∈ M/I such that (a+ I) + (b+ I) = I

⇒ a+ b+ I = I

⇒ a+ b ∈ I.

We have a ≤ a+ b, b ≤ a+ b

⇒ a, b ∈ I.

Therefore a+ I + b+ I = I

⇒ a+ I = I and b+ I = I.

Hence M/I is a zero sum free quotient ordered Γ-semiring.

(ii) Let a, b ∈ M and a ≤ b.

⇒ a+ b = b

⇒ a+ b+ I = b+ I

⇒ (a+ I) + (b+ I) = b+ I

⇒ a+ I ≤ b+ I.

We have 0 ≤ a, for all a ∈ M.

⇒ 0 + I ≤ a+ I

⇒ I ≤ a+ I, for all a+ I ∈ M.

Hence I is the least element of M/I.

(iii) We have a ≤ 1 ⇒ a+ I ≤ 1 + I, for all a ∈ M. Hence 1 + I is the greatest
element of M/I.

(iv) Obvious.

Theorem 4.7. If a + I is a regular element of an ordered Γ-semiring M/I in

which Γ-semigroup M/I is negatively ordered, then there exist x + I ∈ M/I,
α, β ∈ Γ such that a+ I = (a+ I)α(x+ I) = (x+ I)β(a+ I).
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Proof. Suppose a+ I is a regular element of an ordered Γ-semiring M/I Then
there exist x + I ∈ M/I, α, β ∈ Γ such that a + I = (a + I)α(x + I)β(a + I) ≤
(a + I)α(x + I) ≤ a + I. Therefore (a + I)α(x + I) = a + I. Now a + I =
(a+I)α(x+I)β(a+I) ≤ (x+I)β(a+I) ≤ (a+I). Therefore a+I = (x+I)β(a+I).
Hence a+ I = (a+ I)α(x+ I) = (x+ I)β(a+ I).

Theorem 4.8. Let M/I be an ordered Γ-semiring in which Γ-semigroup M/I is

negatively ordered.Then M/I is a regular ordered Γ-semiring if and only if M/I
is an idempotent ordered Γ-semiring.

Proof. Suppose M/I is a regular ordered Γ-semiring and a + I ∈ M/I. Since
a + I is a regular element, there exist x + I ∈ M/I, α, β ∈ Γ such that a + I =
(a+I)α(x+I)β(a+I). By Theorem 4.7, a+I = (a+I)α(x+I) = (x+I)β(a+I).
Now a + I = (a + I)α(x + I)β(a + I) = (a + I)α(a + I). Therefore a + I is an
idempotent. Hence M/I is an idempotent ordered Γ-semiring.

Conversely suppose that a + I is an α−idempotent of M/I, α ∈ Γ. a+ I =
(a + I)α(a + I) = (a + I)α(a + I)α(a + I). Hence M/I is a regular ordered
Γ-semiring.

Theorem 4.9. Let M/I be a commutative ordered Γ-semiring in which Γ-semigroup

M/I is negatively ordered and if b+ I, c+ I ∈ M/I are α, β idempotents respec-

tively, α, β ∈ Γ, then (b+ I)α(c + I) = (b+ I)β(c+ I).

Proof. Let M/I be a commutative ordered Γ-semiring and b + I, c + I ∈ M/I
be α, β idempotents respectively, α, β ∈ Γ. Then we have

(b+ I)α(b+ I) = b+ I, (c+ I)β(c + I) = c+ I.

Now (b+ I)α(c + I) =
(

(b+ I)α(b+ I)
)

α
(

(c+ I)β(c + I)
)

= (b+ I)α
(

(b+ I)α(c + I)β(c+ I)
)

= (b+ I)α
(

(c+ I)α(b + I)
)

β(c+ I)

=
(

(b+ I)α(c + I)α(b + I)β(c+ I)
)

≤ (b+ I)β(c + I).

Similarly we can prove (b+ I)β(c+ I) ≤ (b+ I)α(c + I).

Hence (b+ I)α(c + I) = (b+ I)β(c + I).

Theorem 4.10. Let M/I be a commutative ordered Γ-semiring in which Γ-
semigroup M/I is negatively ordered and (b + I)α(a + I) + (b + I) = (b + I)
for all b + I, a + I ∈ M/I, α ∈ Γ. If b + I, c + I ∈ M/I are α, β idempotents

respectively, α, β ∈ Γ, a + I ∈ M/I, (a + I) + (b + I) = (a + I) + (c + I) and

(b+ I)α(a+ I) = (c+ I)β(a+ I), then b+ I = c+ I.
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Proof. SupposeM/I is a commutative ordered Γ-semiring and b+I, c+I ∈ M/I
are α, β idempotents respectively, α, β ∈ Γ,

a+ I ∈ M/I, (a+ I) + (b+ I) = (a+ I) + (c+ I)

and (b+ I)α(a + I) = (c+ I)β(a+ I).

We have (b+ I)α(b + I) = (b+ I), (c + I)β(c + I) = c+ I.

By Theorem 4.9, (b+ I)α(c + I) = (b+ I)β(c+ I).

(a+ I) + (b+ I) = (a+ I) + (c+ I)

⇒ (b+ I)α
(

(a+ I) + (b+ I)
)

= (b+ I)α
(

(a+ I) + (c+ I)
)

⇒ (b+ I)α(a + I) + (b+ I) = (b+ I)α(a+ I) + (b+ I)α(c + I)

⇒ (b+ I) = (c+ I)β(a+ I) + (b+ I)β(c + I)

⇒ (b+ I) = (a+ I)β(c + I) + (b+ I)β(c + I)

⇒ (b+ I) =
(

(a+ I) + (b+ I)
)

β(c+ I)

⇒ (b+ I) =
(

(a+ I) + (c+ I)
)

β(c+ I)

⇒ (b+ I) = (a+ I)β(c + I) + (c+ I)β(c + I)

⇒ (b+ I) = (a+ I)β(c + I) + (c+ I)

⇒ (b+ I) = (c+ I).

Hence the theorem.

Theorem 4.11. Let I and J be ideals of an ordered Γ-semiring M with I ⊆ J.
Then following

(i) If 1 + I ∈ J/I then M/I = J/I.

(ii) If a+ I is an invertible element of M/I with a+ I ∈ J/I, then M/I = J/I.

Proof. Let I and J be ideals of an ordered Γ-semiring M with I ⊆ J.

(i) Suppose x+ I ∈ M/I and 1+ I ∈ J/I. Then (x+ I)α(1 + I) ∈ J/I, for all
α ∈ Γ.

⇒ xα1 + I ∈ J/I, for all α ∈ Γ

⇒ x+ I ∈ J/I.

Hence M/I = J/I.

(ii) Since a+I is an invertible, there exist α ∈ Γ, b+I such that (a+I)α(b+I) =
1 + I ⇒ 1 + I ∈ J/I. By (i) M/I = J/I.
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The following proof of the theorem is similar to proof of Theorem 3.20 in [2].

Theorem 4.12. Let M be an ordered Γ-semiring with unity 1 and zero element

0. Then ideal I is a maximal if and only if quotient ordered Γ-semiring M/I is

simple.

Theorem 4.13. Let P be a proper ideal of a commutative ordered Γ-semiring

M with unity. Then P is a maximal ideal if and only if M/P is an ordered field

Γ-semiring.

Proof. Let P be a maximal ideal of a commutative ordered Γ-semiring M with
unity and P 6= a+ P ∈ M/P.

⇒ a /∈ P

⇒ P +MΓa = M, by maximality of P.

There exist r ∈ M,α ∈ Γ, p ∈ P such that p+ rαa = 1

⇒ (r + P )α(a + P ) = 1 + P

⇒ a+ P is invertible.

Hence M/P is an ordered field Γ-semiring.
Conversely suppose that M/P is an ordered field Γ-semiring and P ⊆ J.

Then there exists b ∈ J \P such that P 6= b+P ∈ M/P ⇒ b+P is an invertible
⇒ α ∈ Γ, c+ P ∈ M/P and

(b+ P )α(c + P ) = 1 + P

⇒ bαc + P = 1 + P ∈ J/P

⇒ J/P = M/P, by Theorem 4.17

⇒ J = M.

Hence the theorem.

Theorem 4.14. Let M be an ordered Γ-semiring. If I is an ideal of M and J
is a strongly irreducible ideal of M with I ⊆ J , then J/I is a strongly irreducible

ideal of M/I.

Proof. Let M be an ordered Γ-semiring, I be an ideal of M and J be a strongly
irreducible ideal of M with I ⊆ J. By Theorem 4.3, J/I is an ideal of the quotient
ordered Γ-semiring M/I. Suppose K/I and H/I are ideals of M/I such that
K/I ∩H/I ⊆ J/I ⇒ K ∩H ⊆ J. Since J is a strongly irreducible ideal of M/I.

⇒ K ⊆ J or H ⊆ J

⇒ K/I ⊆ J/I or H/I ⊆ J/I.

Hence J/I is a strongly irreducible ideal of an ordered Γ-semiring M/I.
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Theorem 4.15. Any commutative finite pre-integral quotient ordered Γ-semiring

with unity is a quotient ordered field Γ-semiring.

Proof. LetM/I be a commutative finite pre-integral quotient ordered Γ-semiring
with unity. Suppose M/I = {a1 + I, a2 + I, . . . , an + I}, I 6= a + I ∈ M/I and
α ∈ Γ. Then aαa1+ I, aαa2+ I, . . . , aαan+ I are distinct elements in M/I, since
aαai + I = aαaj + I ⇒ (a+ I)α(ai + I) = (a+ I)α(aj + I) ⇒ ai + I = aj + I.

Since 1+I is an unity, there exists aαak+I ∈ M/I such that aαak+I = 1+I.
Therefore (a+ I)α(ak + I) = 1 + I. Hence the theorem.

Definition 4.16. Let M/I be an ordered Γ-semiring is said to be mono ordered
Γ-semiring. If a + I, c + I ∈ M/I, α ∈ Γ and a + I is α idempotent then
(a+ I)α(c + I) = (a+ I) + (c+ I).

Theorem 4.17. If M/I is a mono regular ordered Γ-semiring in which Γ-semi-

group M/I is negatively ordered and (b + I)α(a + I) + (b + I) = (b + I) for all

b+ I, a+ I ∈ M/I, α ∈ Γ. then M/I is a pre-integral ordered Γ-semiring.

Proof. Let M/I be a mono regular ordered Γ-semiring and a+ I, b+ I, c+ I ∈
M/I and γ ∈ Γ.

Suppose (b+ I)γ(a+ I) = (c+ I)γ(a+ I),

(b+ I)α(b+ I) = (b+ I), (c + I)β(c+ I) = (c+ I), α, β ∈ Γ

⇒
(

(b+ I)α(b + I)
)

γ(a+ I) =
(

(c+ I)β(c+ I)
)

γ(a+ I)

⇒ (b+ I)α
(

(b+ I)γ(a+ I)
)

= (c+ I)β
(

(c+ I)γ(a+ I)
)

⇒ (b+ I) + (b+ I)γ(a+ I) = (c+ I) + (c+ I)γ(a+ I).

Therefore (b+ I) = (c+ I). Hence M/I is a pre-integral ordered Γ-semiring.

Theorem 4.18. Every pre-integral ordered Γ-semiring M/I is an integral ordered

Γ-semiring.

Proof. Let M/I be a pre-integral ordered Γ-semiring. Suppose (a+I)α(b+I) =
I, a+ I, b+ I ∈ M/I, α ∈ Γ and b+ I 6= I.

⇒ (a+ I)α(b + I) = Iα(b+ I)

⇒ a+ I = I, since M/I is a pre-integral ordered Γ-semiring.

Hence the theorem.

Theorem 4.19. Let M be an ordered Γ-semiring with unity 1 and zero element

0. Then P is a prime ideal of an ordered Γ-semiring M if and only if quotient

ordered Γ-semiring M/P is an integral ordered Γ-semiring.
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Proof. SupposeM/P is a quotient integral ordered Γ-semiring, P is a prime ideal
of an ordered Γ-semiring M , a+P, b+P ∈ M/P, α ∈ Γ and (a+P )α(b+P ) = P.

⇒ aαb+ P = P

⇒ aαb ∈ P

⇒ a ∈ P or b ∈ P

⇒ a+ P = P or b+ P = P.

Therefore M/P is a quotient integral ordered Γ-semiring.
Conversely suppose that M/P is a quotient integral ordered Γ-semiring and

aαb ∈ P, a, b ∈ M, α ∈ Γ.

⇒ aαb+ P = P

⇒ (a+ P )α(b+ P ) = P

⇒ a+ P = P or b+ P = P

⇒ a ∈ P or b ∈ P.

Hence P is a prime ideal of an integral ordered Γ-semiring M.

Theorem 4.20. Every ideal in a mono regular ordered Γ-semiring in which Γ-
semigroup M is negatively ordered and bαa+ b = b for all b, a ∈ M , α ∈ Γ, is a

prime ideal.

Proof. Let M be a mono regular ordered Γ-semiring with unity 1 and zero
element 0 and I be an ideal of M. Obviously M/I is a mono regular ordered
Γ-semiring. By Theorem 4.17, M/I is a pre-integral ordered Γ-semiring. By
Theorem 4.18, M/I is an integral ordered Γ-semiring. By Theorem 4.19, I is
a prime ideal of an ordered Γ-semiring M . Hence every ideal of mono regular
ordered Γ-semiring M is a prime ideal.

5. Conclusion

In this paper, we introduced the notion of k-ideal, m − k ideal, prime ideal,
maximal ideal, filter, irreducible ideal, strongly irreducible ideal in ordered Γ-
semirings. We studied the properties of ideals in ordered Γ-semirings and the
relations between them. We characterized m−k ideals using derivation of ordered
Γ-semiring and proved that every ideal in a mono regular ordered Γ-semiring is
a prime ideal and field ordered Γ-semiring is simple.
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