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medean semigroups.

Keywords: completely simple semiring, completely Archimedean semiring,
Rees matrix semiring, nil-extension, bi-ideal.

2010 Mathematics Subject Classification: 16A78, 20M07, 20M10.

1. Introduction

In 1984, Galbiati and Veronesi [1] studied completely π-regular semigroups in
which every regular element is completely regular. The semigroups are named
after them as GV-semigroups (semigroup of Galbiati-Veronesi). A GV-semigroup
is characterized as a semilattice of completely Archimedean semigroups. In [8],
Bogdanović and Milić studied nil-extensions of completely simple semigroups.
They proved that a semigroup is a completely Archimedean semigroup if and
only if it is a nil-extension of a completely simple semigroup. Again, a completely
Archimedean semigroup is Archimedean and completely π-regular.
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From an algebraic point of view, semirings provide the most natural gener-
alization of the theory of rings. The properties of semirings and their structural
representations have been studied by many authors, for example, by Pastijn, Guo,
Sen, Shum, Grillet and others. A special class of semirings, namely completely
regular semirings play a very important role in semiring theory. The concept of
completely regular semiring has been first introduced by Sen, Maity and Shum
[4]. The authors have characterized a completely regular semiring as a b-lattice
of completely simple semirings. In [9], Maity and Ghosh obtained that the idea
of GV-semigroups and completely π-regular semigroups coincide when extended
under semirings. The semirings are named as quasi completely regular semirings.
In a quasi completely regular semiring, every additively regular element is com-
pletely regular. Naturally, a quasi completely regular semiring is a generalization
of a completely regular semiring. Again, a quasi completely regular semiring is
characterized as a b-lattice of completely Archimedean semirings. In [10], Maity
and Ghosh proved that a semiring is a completely Archimedean semiring if and
only if it is a nil-extension of a completely simple semiring. In [5], Sen, Maity and
Weinert established that a semiring is a completely simple semiring if and only
if it is isomorphic to a Rees matrix semiring. Thus a semiring is a completely
Archimedean semiring if and only if it is a nil-extension of a Rees matrix semiring.
In this paper, we give structural description of a completely Archimedean semir-
ing using the structure theorem of a Rees matrix semiring. Structure theorem of
a completely Archimedean semiring is an extension of the structure theorem of
completely Archimedean semigroup. Structure theorem of aforesaid semigroup
was given by Milić and Pavlović [11]. The preliminaries and prerequisites we need
for this article are discussed in section 2. In section 3, we discuss our main result.

2. Preliminaries

A semiring (S,+, ·) is a non-empty set S together with two binary operations ‘+’
and ‘·’, respectively called addition and multiplication, such that the semigroup
reducts (S,+) and (S, ·) are connected by ring like distributivity, that is, a(b+c) =
ab + ac and (b + c)a = ba + ca for all a, b, c ∈ S. An element a in a semiring S
is said to be infinite [3] if and only if a + x = a = x + a for all x ∈ S. Infinite
element in a semiring is unique and is denoted by ∞. An infinite element ∞ in
a semiring S having the property that x · ∞ = ∞ = ∞ · x for all x(6= 0) ∈ S
is called strongly infinite [3]. An element a in a semiring (S,+, ·) is said to be
additively regular if there exists an element x ∈ S such that a = a + x+ a. Let
a be an additively regular element in a semiring S. An element y ∈ S satisfying
a + y + a = a and y + a+ y = y is called additive inverse of the element a. An
element a in a semiring (S,+, ·) is called completely regular [4] if there exists an
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element x ∈ S such that a = a+x+a, a+x = x+a and a(a+x) = a+x. We call
a semiring (S,+, ·) completely regular if every element of S is completely regular.
A semiring (S,+, ·) is called a skew-ring if its additive reduct (S,+) is a group.
An element a in a semiring (S,+, ·) is said to be additively quasi regular if there
exists a positive integer n such that na is additively regular. An element a in a
semiring (S,+, ·) is said to be quasi completely regular [9] if there exists a positive
integer n such that na is completely regular. Naturally, a semiring (S,+, ·) is said
to be quasi completely regular if every element of S is quasi completely regular.
An element a in a semigroup (S, ·) is called an idempotent if a2 = a. A semigroup
is said to be a band if its every element is idempotent. A commutative band is
called a semilattice. A semiring (S,+, ·) is said to be a band semilattice (in short
b-lattice) if (S, ·) is a band and (S,+) is a semilattice. A semiring is called an
idempotent semiring if both (S, ·) and (S,+) are bands. An equivalence relation
ρ on a semiring S is said to be a congruence on S if ρ is a congruence on both the
semigroup reducts (S,+) and (S, ·), i.e., for a, b, c ∈ S, a ρ b implies (c+a) ρ (c+b),
(a+ c) ρ (b+ c), ca ρ cb and ac ρ bc. A congruence ρ on a semiring S is called a b-
lattice congruence (idempotent semiring congruence) if S/ρ is a b-lattice (resp. an
idempotent semiring). A semiring S is called a b-lattice (idempotent semiring) Y
of semirings Sα (α ∈ Y ) if S admits a b-lattice congruence (resp. an idempotent
semiring congruence) ρ on S such that Y = S/ρ and each Sα is a ρ-class.

Throughout this paper, we always let E+(S) be the set of all additive idem-
potents of the semiring S. Also we denote the set of all additive inverse elements
of an additively regular element a in a semiring (S,+, ·) by V +(a). As usual,
we denote the Green’s relations on the semiring (S,+, ·) by L , R, D , J and
H and correspondingly, the L -relation, R-relation, D-relation, J -relation and
H -relation on (S,+) are denoted by L +, R+, D+, J + and H +, respectively.
In fact, the relations L +, R+, D+, J + and H + are all congruence relations on
the multiplicative reduct (S, ·). Thus if any one of these happens to be a congru-
ence on (S,+), it will be a congruence on the semiring (S,+, ·). For any a ∈ S,
we let H+

a be the H +-class in S containing a. We further denote the Green’s
relations on a quasi regular semigroup (S, ·) by L ∗,R∗,D∗,J ∗ and H ∗. For
other notations and terminologies not given in this paper, the reader is referred
to [2] and [9].

Definition 2.1 [4]. A completely regular semiring (S,+, ·) is called a completely
simple semiring if any two elements of S are J +-related, i.e., J + = S × S.

Theorem 2.2 [5]. Let R be a skew-ring, (I, ·) and (Λ, ·) are bands, such that
I ∩ Λ = {o}. Let P = (p

λ,i
) be a matrix over R, i ∈ I, λ ∈ Λ and assume

A1. pλ,o = po,i = 0,

A2. pλµ,kj = pλµ,ij − pνµ,ij + pνµ,kj,

A3. pµλ,jk = pµλ,ji − pµν,ji + pµν,jk,
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A4. apλ,i = pλ,ia = 0,

A5. ab+ poµ,io = poµ,io + ab,

A6. ab+ pλo,oj = pλo,oj + ab, for all i, j, k ∈ I, λ, µ, ν ∈ Λ and a, b ∈ R.

Let M consist of the elements of I ×R×Λ and defined operations ‘+’ and ‘·’ on
M by

(i, a, λ) + (j, b, µ) = (i, a+ pλ,j + b, µ)

and
(i, a, λ) · (j, b, µ) = (ij,−pλµ,ij + ab, λµ).

Then (M ,+, ·) is a completely simple semiring. Conversely, every completely
simple semiring is isomorphic to such a semiring.

The semiring constructed in Theorem 2.2 is denoted by M (I,R,Λ;P ) and is
called the Rees matrix semiring.

Corollary 2.3 [5]. Let M (I,R,Λ;P ) be a Rees matrix semiring. Then pλµ,ij =
pλ0,0j + p0µ,i0 holds for all i, j ∈ I; λ, µ ∈ Λ. This yields pλ,i = pλ0,0i + p0λ,i0 and
hence by assumption (A5) and (A6) stated in the above Theorem 2.2, ab+ pλ,i =
pλ,i + ab for all i ∈ I; λ ∈ Λ and a, b ∈ R.

Definition 2.4 [9]. Let (S,+, ·) be an additively quasi regular semiring. Then
the relations L ∗

+

, R∗
+

, J ∗
+

, H ∗
+

and D∗
+

on S are defined by : for a, b ∈ S,

aL ∗
+

b if and only if maL + nb,
aR∗

+

b if and only if maR+ nb,
aJ ∗

+

b if and only if maJ + nb,

H ∗
+

= L ∗
+

∩ R∗
+

and D∗
+

= L ∗
+

oR∗
+

,

where m and n are the smallest positive integers such that ma and nb are respec-
tively additively regular.

Definition 2.5 [9]. A quasi completely regular semiring (S,+, ·) is said to be a
completely Archimedean semiring if any two elements of S are J ∗+-related, i.e.,
J ∗+ = S × S.

Definition 2.6 [9]. Let R be subskew-ring of a semiring S. If for every a ∈ S
there exists a positive integer n such that na ∈ R, then S is said to be a quasi
skew-ring.

Theorem 2.7 [9]. The following conditions on a semiring (S,+, ·) are equivalent.

1. S is a quasi completely regular semiring.

2. Every H ∗
+

-class is a quasi skew-ring.

3. S is (disjoint) union of quasi skew-rings.
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4. S is a b-lattice of completely Archimedean semirings.

5. S is an idempotent semiring of quasi skew-rings.

Definition 2.8 [10]. Let (S,+, ·) be a semiring. A nonempty subset I of S is
said to be a bi-ideal of S if a ∈ I and x ∈ S imply that a+ x, x+ a, ax, xa ∈ I.

Definition 2.9 [10]. Let I be a bi-ideal of a semiring S. We define a relation ρ
I

on S in the following way :

aρ
I
b if and only if either a, b ∈ I or a = b; where a, b ∈ S.

It is easy to verify that ρ
I
is a congruence on S. This congruence is said to be

Rees congruence on S and the quotient semiring S/ρ
I
contains a strongly infinite

element, namely I. This quotient semiring S/ρ
I
is said to be the Rees quotient

semiring and is denoted by S/I. In this case the semiring S is said to be an ideal
extension or simply an extension of I by the semiring S/I. An ideal extension S
of a semiring I is said to be a nil-extension of I if for any a ∈ S there exists a
positive integer n such that na ∈ I.

Theorem 2.10 [10]. A semiring S is a quasi skew-ring if and only if S is a
nil-extension of a skew-ring.

Theorem 2.11 [10]. The following conditions on a semiring are equivalent:

1. S is a completely Archimedean semiring.

2. S is a nil-extension of a completely simple semiring.

3. S is Archimedean and quasi completely regular.

Theorem 2.12 [10]. Let (S,+, ·) be a completely Archimedean semiring. Then
the subskew-rings are given by H+

e = e+ S + e, where e ∈ E+(S).

3. Main results

A semiring (S,+, ·) is a completely Archimedean semiring if and only if it is nil-
extension of a completely simple semiring [10, Theorem 3.19]. In this section we
establish the structure theorem of a completely Archimedean semiring.

Definition 3.1. A partial semiring S is a nonempty set together with two binary
operations ‘+’ and ‘·’ defined for some elements of S, such that for all x, y, z ∈ S

1. if x+ (y + z) and (x+ y) + z exist, then x+ (y + z) = (x+ y) + z;

2. if x · (y · z) and (x · y) · z exist, then x · (y · z) = (x · y) · z;

3. if x · (y + z), (x+ y) · z, (x · y) + (x · z) and (x · z) + (y · z) exist, then
x · (y + z) = (x · y) + (x · z) and (x+ y) · z = (x · z) + (y · z).
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Example 3.2. The set of all irrational numbers with respect to usual addition
and usual multiplication is a partial semiring.

Definition 3.3. Let M (I,R,Λ;P ) be a Rees matrix semiring, where R is a
skew-ring, (I, ·) and (Λ, ·) are bands and Q is a partial semiring, such that (I ×
R × Λ) ∩ Q = ∅. Let ξ : Q → I and η : Q → Λ be two mappings, such that
ξ : q 7→ ξq and η : q 7→ ηq. Also let ϕ : Q× I → R be a mapping, such that for
all q, r ∈ Q; i, j, k ∈ I; λ, µ ∈ Λ the following conditions hold :

(C1) if q + r ∈ Q, then ξq+r = ξq and ηq+r = ηr.

(C2) if q + r ∈ Q, then ϕ(q + r, i) = ϕ(q, ξr) + ϕ(r, i).

(C3) pλ,ξq + ϕ(q, i) − pηq,i does not depend on i ∈ I and is denoted by ψ(q, λ);
λ ∈ Λ.

(C4) if qr ∈ Q, then ξqr = ξqξr and ηqr = ηqηr.

(C5) if qr ∈ Q, then pλ,ξqr + ϕ(qr, i) = pλ,i + ϕ(q, j)ϕ(r, k).

Let S = (I ×R× Λ) ∪Q. Define addition ‘+’ and multiplication ‘·’ on S by

(i, a, λ) + (j, b, µ) = (i, a+ pλ,j + b, µ)(1)

q + (i, a, λ) =
(

ξq, ϕ(q, i) + a, λ
)

(2)

(i, a, λ) + q =
(

i, a+ ψ(q, λ), ηq

)

(3)

if q + r = s ∈ Q then q + r = s ∈ (I ×R× Λ) ∪Q(4)

if q + r 6∈ Q then q + r =
(

ξq, ϕ(q, ξr) + ϕ(r, i) − pηr ,i, ηr

)

(5)

(i, a, λ) · (j, b, µ) = (ij,−pλµ,ij + ab, λµ)(6)

q · (i, a, λ) =
(

ξqi,−pηqλ,ξqi + ϕ(q, i)a, ηqλ
)

(7)

(i, a, λ) · q =
(

iξq,−pληq ,iξq + aϕ(q, i), ληq

)

(8)

if qr = t ∈ Q then qr = t ∈ (I ×R× Λ) ∪Q(9)

if qr 6∈ Q then qr =
(

ξqξr,−pηqηr ,ξqξr + ϕ(q, i)ϕ(r, i), ηqηr

)

(10)

for all q, r, s, t ∈ Q; a, b ∈ R; i, j ∈ I; λ, µ ∈ Λ. We denote the above system by
S = M (I,R,Λ;P,Q,ϕ, ψ, ξ, η).

Theorem 3.4. The system S = M (I,R,Λ;P,Q,ϕ, ψ, ξ, η), as defined in Defi-
nition 3.3, is a semiring.

Proof. We consider the set S and two binary operations ‘+’ and ‘·’ on S as
defined by formulae (1) to (10) in Definition 3.3. The mapping ξ : Q→ I can be
considered as a mapping ξ : Q → T (I). Similarly, considering η : Q → Λ as a
mapping η : Q → T (Λ), where T (I) and T (Λ) are semigroups of all mappings
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of I in I and Λ in Λ, respectively, we may conclude, by [11, Lemma 1.1], (S,+)
is a semigroup. Now by (C3), it follows that the multiplication defined by the
formula (10) is well-defined. To prove (S, ·) is a semigroup we have left to show
that for any q, r, s ∈ Q and (i, a, λ), (j, b, µ), (k, c, ν) ∈ (I ×R× Λ)

(i) q ·
(

(i, a, λ) · (j, b, µ)
)

=
(

q · (i, a, λ)
)

· (j, b, µ)

(ii)
(

(i, a, λ) · q
)

· (j, b, µ) = (i, a, λ) ·
(

q · (j, b, µ)
)

(iii) (i, a, λ) ·
(

(j, b, µ) · q
)

=
(

(i, a, λ) · (j, b, µ)
)

· q

(iv) (q · r) · (i, a, λ) = q ·
(

r · (i, a, λ)
)

for both qr ∈ Q and qr 6∈ Q

(v) (i, a, λ) · (q · r) =
(

(i, a, λ) · q
)

· r for both qr ∈ Q and qr 6∈ Q

(vi)
(

q · (i, a, λ)
)

· r = q ·
(

(i, a, λ) · r
)

(vii) (q · r) · s = q · (r · s)

(viii) (i, a, λ)
(

(j, b, µ) · (k, c, ν)
)

=
(

(i, a, λ) · (j, b, µ)
)

(k, c, ν).

Now,

q ·
(

(i, a, λ) · (j, b, µ)
)

= q(ij,−pλµ,ij + ab, λµ)

=
(

ξqij,−pηqλµ,ξqij + ϕ(q, ij)ab, ηqλµ
)

and
(

q · (i, a, λ)
)

· (j, b, µ) =
(

ξqi,−pηqλ,ξqi + ϕ(q, i)a, ηqλ
)

(j, b, µ)

=
(

ξqij,−pηqλµ,ξqij + ϕ(q, i)ab, ηqλµ
)

.

By using apλ,i = pλ,ia = 0 in (C3), we have ϕ(q, ij)ab = ϕ(q, i)ab. Hence from
the above two (i) follows. Similarly, (ii) and (iii) can be proved easily.

Let q, r ∈ Q, such that qr ∈ Q. Now,

(q · r) · (i, a, λ) =
(

ξqri,−pηqrλ,ξqri + ϕ(qr, i)a, ηqrλ
)

=
(

ξqξri,−pηqηrλ,ξqξri + ϕ(qr, i)a, ηqηrλ
)

.

Let qr 6∈ Q. Then

(q · r) · (i, a, λ) =
(

ξqξr,−pηqηr ,ξqξr + ϕ(q, i)ϕ(r, i), ηqηr

)

(i, a, λ)

=
(

ξqξri,−pηqηrλ,ξqξri + ϕ(q, i)ϕ(r, i)a, ηqηrλ
)

.
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Again,

q ·
(

r · (i, a, λ)
)

= q ·
(

ξri,−pηrλ,ξri + ϕ(r, i)a, ηrλ
)

=
(

ξqξri,−pηqηrλ,ξqξri + ϕ(q, ξri)ϕ(r, i)a, ηqηrλ
)

.

By using apλ,i = pλ,ia = 0 in (C3) and (C5), we have ϕ(qr, i)a = ϕ(q, ξri)ϕ(r, i)a
and ϕ(q, i)ϕ(r, i)a = ϕ(q, ξri)ϕ(r, i)a, respectively. Hence from the above three
we have (q · r) · (i, a, λ) = q ·

(

r · (i, a, λ)
)

for both qr ∈ Q and qr 6∈ Q and (iv)
follows. Similarly, (v) can be proved easily. Also, we can easily prove (vi). As Q
is a partial semiring, so (vii) follows obviously and (viii) follows immediately by
Theorem 2.2. Hence (S, ·) is a semigroup.

Now to prove (S,+, ·) is a semiring we have left to verify distributive prop-
erties which are as follows:

(ix) (i, a, λ)
(

j, b, µ) + (k, c, ν)
)

= (i, a, λ)(j, b, µ) + (i, a, λ)(k, c, ν)

(x)
(

(i, a, λ) + (j, b, µ)
)

(k, c, ν) = (i, a, λ)(k, c, ν) + (j, b, µ)(k, c, ν)

(xi) q
(

(i, a, λ) + (j, b, µ)
)

= q(i, a, λ) + q(j, b, µ)

(xii)
(

q + (i, a, λ)
)

(j, b, µ) = q(j, b, µ) + (i, a, λ)(j, b, µ)

(xiii) (i, a, λ)
(

q + (j, b, µ)
)

= (i, a, λ)q + (i, a, λ)(j, b, µ)

(xiv)
(

(i, a, λ) + q
)

(j, b, µ) = (i, a, λ)(j, b, µ) + q(j, b, µ)

(xv) (i, a, λ)
(

(j, b, µ) + q
)

= (i, a, λ)(j, b, µ) + (i, a, λ)q

(xvi)
(

(i, a, λ) + (j, b, µ)
)

q = (i, a, λ)q + (j, b, µ)q

(xvii) (q + r)(i, a, λ) = q(i, a, λ) + r(i, a, λ) for both q + r ∈ Q and q + r 6∈ Q

(xviii) (i, a, λ)(q + r) = (i, a, λ)q + (i, a, λ)r for both q + r ∈ Q and q + r 6∈ Q

(xix) q
(

r + (i, a, λ)
)

= qr + q(i, a, λ) for both qr ∈ Q and qr 6∈ Q

(xx) q
(

(i, a, λ) + r
)

= q(i, a, λ) + qr for both qr ∈ Q and qr 6∈ Q

(xxi)
(

q + (i, a, λ)
)

r = qr + (i, a, λ)r for both qr ∈ Q and qr 6∈ Q

(xxii)
(

(i, a, λ) + q
)

r = (i, a, λ)r + qr for both qr ∈ Q and qr 6∈ Q

(xxiii) q(r + s) = qr + qs

(xxiv) (q + r)s = qs+ rs.

The cases (ix) and (x) follow immediately by Theorem 2.2.



Completely Archimedean semirings 123

Now,

q
(

(i, a, λ) + (j, b, µ)
)

= q(i, a+ pλ,j + b, µ)

=
(

ξqi,−pηqµ,ξqi + ϕ(q, i)a + ϕ(q, i)b, ηqµ
)

.

On the other hand,

q(i, a, λ) + q(j, b, µ)

=
(

ξqi,−pηqλ,ξpi + ϕ(q, i)a, ηpλ
)

+
(

ξqj,−pηqµ,ξqj + ϕ(q, j)b, ηqµ
)

=
(

ξqi,−pηqλ,ξqi + ϕ(q, i)a + pηqλ,ξqj − pηqµ,ξqj + ϕ(q, j)b, ηqµ
)

=
(

ξqi,−pηqµ,ξqi + ϕ(q, i)a + ϕ(q, i)b, ηqµ
)

[by Corollary 2.3].

Hence (xi) follows immediately. Similarly, (xvi) can be proved easily.
Now,

(

q + (i, a, λ)
)

(j, b, µ) =
(

ξq, ϕ(q, i) + a, λ
)

(j, b, µ)

=
(

ξqj,−pλµ,ξqj + ϕ(q, i)b + ab, λµ
)

.

Again,

q(j, b, µ) + (i, a, λ)(j, b, µ)

=
(

ξqj,−pηqµ,ξqj + ϕ(q, j)b, ηqµ
)

+
(

ij,−pλµ,ij + ab, λµ
)

=
(

ξqj,−pηqµ,ξqj + ϕ(q, j)b + pηqµ,ij − pλµ,ij + ab, λµ
)

=
(

ξqj,−pλµ,ξqj + ϕ(q, j)b + ab, λµ
)

[by Corollary 2.3].

Hence (xii) follows. Similarly, (xiii), (xiv) and (xv) can be proved easily.
Now,

q(i, a, λ) + r(i, a, λ)

=
(

ξqi,−pηqλ,ξqi + ϕ(q, i)a, ηqλ
)

+
(

ξri,−pηrλ,ξri + ϕ(r, i)a, ηrλ
)

=
(

ξqi,−pηqλ,ξqi + ϕ(q, i)a + pηqλ,ξri − pηrλ,ξri + ϕ(r, i)a, ηrλ
)

=
(

ξqi,−pηrλ,ξqi + ϕ(q, i)a + ϕ(r, i)a, ηrλ
)

[by Corollary 2.3].
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Let q + r ∈ Q. Then

(q + r)(i, a, λ) =
(

ξq+ri,−pηq+rλ,ξq+ri + ϕ(q + r, i)a, ηq+rλ
)

=
(

ξqi,−pηrλ,ξqi + ϕ(q, ξr)a+ ϕ(r, i)a, ηrλ
)

[by (C2)].

Let q + r 6∈ Q. Then

(q + r)(i, a, λ) =
(

ξq, ϕ(q, ξr) + ϕ(r, i) − pηr ,i, ηr

)

(i, a, λ)

=
(

ξqi,−pηrλ,ξqi + ϕ(q, ξr)a+ ϕ(r, i)a, ηrλ
)

.

Using (A3), we have ϕ(q, ξr)a = ϕ(q, i)a. Hence from the above three (xvii)
follows. Similarly, (xviii) can be proved easily.

Now,

q
(

r + (i, a, λ)
)

= q
(

ξr, ϕ(r, i) + a, λ
)

=
(

ξqξr,−pηqλ,ξqξr + ϕ(q, ξr)ϕ(r, i) + ϕ(q, ξr)a, ηqλ
)

=
(

ξqξr,−pηqλ,ξqξr + ϕ(q, i)ϕ(r, i) + ϕ(q, i)a, ηqλ
)

.

When qr ∈ Q, then

qr + q(i, a, λ) = qr +
(

ξqi,−pηqλ,ξqi + ϕ(q, i)a, ηqλ
)

=
(

ξqr, ϕ(qr, ξqi)− pηqλ,ξqi + ϕ(q, i)a, ηqλ
)

=
(

ξqr,−pηqλ,ξqi + ϕ(qr, ξqi) + ϕ(q, i)a, ηqλ
)

[by Corollary 2.3]

=
(

ξqr,−pηqλ,ξqr + ϕ(q, i)ϕ(r, i) + ϕ(q, i)a, ηqλ
)

[by (C5)]

=
(

ξqξr,−pηqλ,ξqξr + ϕ(q, i)ϕ(r, i) + ϕ(q, i)a, ηqλ
)

[by (C4)].

Also, when qr 6∈ Q, then

qr + q(i, a, λ)

=
(

ξqξr,−pηqηr ,ξqξr + ϕ(q, i)ϕ(r, i), ηqηr

)

+
(

ξqi,−pηqλ,ξqi + ϕ(q, i)a, ηqλ
)

=
(

ξqξr,−pηqηr ,ξqξr + ϕ(q, i)ϕ(r, i) + pηqηr ,ξqi − pηqλ,ξqi + ϕ(q, i)a, ηqλ
)

=
(

ξqξr,−pηqηr ,ξqξr + pηqηr ,ξqi − pηqλ,ξqi + ϕ(q, i)ϕ(r, i) + ϕ(q, i)a, ηqλ
)

=
(

ξqξr,−pηqλ,ξqξr + ϕ(q, i)ϕ(r, i) + ϕ(q, i)a, ηqλ
)

.
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Hence (xix) follows from above three. Similarly, (xx), (xxi) and (xxii) can be
proved easily. Also (xxiii) and (xxiv) follow obviously as Q is a partial semiring.
Hence (S,+, ·) is a semiring.

Theorem 3.5. A semiring (S,+, ·) is a completely Archimedean semiring if and
only if it is isomorphic to a semiring M (I,R,Λ;P,Q,ϕ, ψ, ξ, η).

Proof. Let (S,+, ·) be a completely Archimedean semiring. By Theorem 2.11,
S is nil-extension of a completely simple semiring. Therefore, there exists a bi-
ideal K of S such that S is a nil-extension of K, where K is a completely simple
semiring. Again by Theorem 2.2, K is isomorphic to a Rees matrix semiring and
let K = M (I,R,Λ;P ). Clearly, (K,+) is a completely simple semigroup. Let
Q = S \K. Then Q is a partial semiring and S = K ∪ Q, that is, S consists of
the elements of (I × R × Λ) ∪ Q. By [11, Theorem 1.1], (S,+) is isomorphic to
the semigroup

(

M (I,R,Λ;P,Q,ϕ, ψ, ξ, η),+
)

, where ξ : Q → T (I) and η : Q →
T (Λ) are two mappings, such that ξ : p 7→ ξp,η : p 7→ ηp and T (I), T (Λ) are
semigroups of all mappings of I in I and Λ in Λ, respectively.

Let e = (i,−pλ,i, λ). Then e ∈ E+(S). Also let q ∈ Q and n be the smallest
positive integer such that nq ∈ H+

f where f ∈ E+(S). As e ∈ E+(S) then

e + e = e. Again, H+
e = {(i, a, λ) : a ∈ R}. Now, qe + qe = qe and so qe is an

additive idempotent. Let q(i,−pλ,i, λ) = (k,−pν,k, ν).
Now,

(

q+(i, a, λ)
)

(i,−pλ,i, λ) =
(

iξq, ϕ(q, i)+a, λ
)

(i,−pλ,i, λ) =
(

iξqi,−pλ,iξqi, λ
)

and

q(i,−pλ,i, λ) + (i, a, λ)(i,−pλ,i, λ) = q(i,−pλ,i, λ) + (i,−pλ,i, λ)

= (k,−pν,k, ν) + (i,−pλ,i, λ)

= (k,−pν,k + pν,i − pλ,i, λ).

Hence k = iξqi. Similarly, from
(

(i, a, λ) + q
)

(i,−pλ,i, λ) = (i, a, λ)(i,−pλ,i, λ) +
q(i,−pλ,i, λ), we have ν = ληqλ.

Hence q(i,−pλ,i, λ) =
(

iξqi,−pληqλ,iξqi, ληqλ
)

and similarly,
(

i,−pλ,i, λ
)

q =
(

iiξq,−pλληq ,iiξq , λληq
)

.

Let q(i, a, λ) = (u, v, w). Now,
(

q + (i,−pλ,i, λ)
)

(i, a, λ) =
(

iξq, ϕ(q, i) − pλ,i, λ
)

(i, a, λ)

=
(

iξqi,−pλ,iξqi + ϕ(q, i)a, λ
)

and
q(i, a, λ) + (i,−pλ,i, λ)(i, a, λ) = (u, v, w) + (i,−pλ,i, λ)

= (u, v + pw,i − pλ,i, λ).
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From the above two we have u = iξqi. Similarly, from
(

(i,−pλ,i, λ) + q
)

(i, a, λ) = (i,−pλ,i, λ)(i, a, λ) + q(i, a, λ),

we have w = ληqλ.
Also from v + pw,i − pλ,i = −pλ,iξqi + ϕ(q, i)a, we have

v = −pλ,iξqi + ϕ(q, i)a + pλ,i − pw,i

= −pλ,iξqi + pλ,i − pληqλ,i + ϕ(q, i)a

= −pληqλ,iξqi + ϕ(q, i)a.

Hence,

q(i, a, λ) =
(

iξqi,−pληqλ,iξqi + ϕ(q, i)a, ληqλ
)

. . . (∗)

and similarly,

(i, a, λ)q =
(

iiξq,−pλληq ,iiξq + aϕ(q, i), λληq

)

. . . (∗∗).

Now,
(

q + (i, a, λ)
)

(j, b, µ) =
(

iξq, ϕ(q, i) + a, λ
)

(j, b, µ)

=
(

iξqj,−pλµ,iξqj + ϕ(q, i)b + ab, λµ
)

.

On the other hand,

q(j, b, µ) + (i, a, λ)(j, b, µ)

=
(

jξqj,−pµηqµ,jξqj + ϕ(q, j)b, µηqµ
)

+ (ij,−pλµ,ij + ab, λµ)

=
(

jξqj,−pµηqµ,jξqj + ϕ(q, j)b + pµηqµ,ij − pλµ,ij + ab, λµ
)

=
(

jξqj,−pµηqµ,jξqj + pµηqµ,ij − pλµ,ij + ϕ(q, j)b + ab, λµ
)

=
(

jξqj,−pλµ,jξqj + ϕ(q, j)b + ab, λµ
)

.

Hence iξqj = jξqj and similarly, jiξq = jjξq , ληqλ = µηqλ, λληq = λµηq.
As I is a band and iξq ∈ I, using above equations, we have for any i, j ∈ I,

iξq = iξqiξq = iξqjξq = jξqjξq = jξq, i.e., ξq is a constant function for all q ∈ Q.
Therefore, ξq represents a unique element of I. Thus without any loss of generality
we can assume ξ as a function from Q to I. Similarly, η can be considered as a
function from Q to Λ.

Using these in [11, Lemma 1.1], (C1)–(C3) and formulae (1) to (5) of the
Definition 3.3 follow automatically. Formula (6) follows immediately by the The-
orem 2.2.
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Now, the equations (*) and (**) become

q · (i, a, λ) =
(

ξqi,−pηqλ,ξqi + ϕ(q, i)a, ηqλ
)

and

(i, a, λ) · q =
(

iξq,−pληq ,iξq + aϕ(q, i), ληq

)

.

Thus the formulae (7) and (8) follow. Now we have that ψ(q, λ); λ ∈ Λ does
not depend on i ∈ I and ψ(q, λ) = pλ,ξq + ϕ(q, i) − pηq ,i. Also ψ(q, λ) = pλ,ξq +
ϕ(q, j) − pηq,j.

Using apλ,i = pλ,ia = 0, from the above two we have for any i, j ∈ I, λ, µ ∈ Λ
and a ∈ R, ψ(q, λ)a = ϕ(q, i)a and ψ(q, λ)a = ϕ(q, j)a. Hence ϕ(q, i)a = ϕ(q, j)a
and similarly, aϕ(q, i) = aϕ(q, j).

Now, for any q, r ∈ Q we have,

(

q + (i, a, λ)
)

r =
(

ξq, ϕ(q, i) + a, λ
)

r

=
(

ξqξr,−pληr ,ξqξr +
(

ϕ(q, i) + a
)

ϕ(r, ξq), ληr

)

=
(

ξqξr,−pληr ,ξqξr + ϕ(q, i)ϕ(r, ξq) + aϕ(r, ξq), ληr

)

.

Let qr ∈ Q. Then

qr + (i, a, λ)r = qr +
(

iξr,−pληr ,iξr + aϕ(r, i), ληr

)

=
(

ξqr, ϕ(qr, iξr)− pληr ,iξr + aϕ(r, i), ληr

)

.

From above two equations we have ξqr = ξqξr.

Also

ϕ(qr, iξr)− pληr ,iξr + aϕ(r, i) = −pληr ,ξqξr + ϕ(q, i)ϕ(r, ξq) + aϕ(r, ξq),

i.e.,

ϕ(qr, iξr)− pληr,iξr = −pληr ,ξqr + ϕ(q, i)ϕ(r, ξq),

i.e.,

ϕ(qr, j) − pµ,j = −pµ,ξqr + ϕ(q, i)ϕ(r, ξq),

i.e.,

pµ,ξqr + ϕ(qr, j) = pµ,j + ϕ(q, i)ϕ(r, k)

[assuming j = iξr, µ = ληr and k = ξq].
Similarly, we have ηqr = ηqηr.
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Let qr 6∈ Q and qr = (k, g, l). Then

qr + (i, a, λ)r = (k, g, l) +
(

iξr,−pληr ,iξr + aϕ(r, i), ληr

)

=
(

k, g + pl,iξr − pληr ,iξr + aϕ(r, i), ληr

)

.

From qr + (i, a, λ)r =
(

q + (i, a, λ)
)

r, we have k = ξqξr. Similarly, l = ηqηr.

Also

g + pl,iξr − pληr ,iξr + aϕ(r, i) = −pληr ,ξqξr + ϕ(q, i)ϕ(r, ξq) + aϕ(r, ξq)

implies
g + pηqηr ,iξr − pληr ,iξr = −pληr ,ξqξr + ϕ(q, i)ϕ(r, i),

i.e.,
g + pηqηr ,iξr − pληr ,iξr = ϕ(q, i)ϕ(r, i) − pληr ,ξqξr ,

i.e.,
g + pηqηr ,iξr − pληr ,iξr + pληr ,ξqξr = ϕ(q, i)ϕ(r, i),

i.e.,
g + pηqηr ,ξqξr = ϕ(q, i)ϕ(r, i),

i.e.,
g = ϕ(q, i)ϕ(r, i) − pηqηr ,ξqξr ,

i.e.,
g = −pηqηr ,ξqξr + ϕ(q, i)ϕ(r, i).

Hence if qr 6∈ Q, then qr =
(

ξqξr,−pηqηr ,ξqξr +ϕ(q, i)ϕ(r, i), ηqηr
)

. Consequently,
S ∼= M (I,R,Λ;P,Q,ϕ, ψ, ξ, η).

Conversely, let S = M (I,R,Λ;P,Q,ϕ, ψ, ξ, η). By Theorem 3.4, it follows
that S is a semiring. Let K = M (I,R,Λ;P ). Then K is a bi-ideal of S and K is
a completely simple semiring. (S,+) is a completely Archimedean semigroup and
is nil-extension of a completely simple semigroup (K,+). Let a ∈ S. Then there
exists a positive integer n such that na ∈ K. Then na is completely regular,
as (K,+, ·) is completely regular semiring. So a is quasi completely regular.
Hence (S,+, ·) is quasi completely regular semiring. For any a, b ∈ S, there exist
positive integers m and n such thatma,nb ∈ K. As (K,+, ·) is completely simple
semiring, it follows that maJ + nb, i.e., aJ ∗

+

b. Hence (S,+, ·) is completely
Archimedean semiring.
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