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1. INTRODUCTION

In 1984, Galbiati and Veronesi [1] studied completely m-regular semigroups in
which every regular element is completely regular. The semigroups are named
after them as GV-semigroups (semigroup of Galbiati-Veronesi). A GV-semigroup
is characterized as a semilattice of completely Archimedean semigroups. In [8],
Bogdanovi¢ and Mili¢ studied nil-extensions of completely simple semigroups.
They proved that a semigroup is a completely Archimedean semigroup if and
only if it is a nil-extension of a completely simple semigroup. Again, a completely

Archimedean semigroup is Archimedean and completely 7-regular.
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From an algebraic point of view, semirings provide the most natural gener-
alization of the theory of rings. The properties of semirings and their structural
representations have been studied by many authors, for example, by Pastijn, Guo,
Sen, Shum, Grillet and others. A special class of semirings, namely completely
regular semirings play a very important role in semiring theory. The concept of
completely regular semiring has been first introduced by Sen, Maity and Shum
[4]. The authors have characterized a completely regular semiring as a b-lattice
of completely simple semirings. In [9], Maity and Ghosh obtained that the idea
of GV-semigroups and completely 7-regular semigroups coincide when extended
under semirings. The semirings are named as quasi completely regular semirings.
In a quasi completely regular semiring, every additively regular element is com-
pletely regular. Naturally, a quasi completely regular semiring is a generalization
of a completely regular semiring. Again, a quasi completely regular semiring is
characterized as a b-lattice of completely Archimedean semirings. In [10], Maity
and Ghosh proved that a semiring is a completely Archimedean semiring if and
only if it is a nil-extension of a completely simple semiring. In [5], Sen, Maity and
Weinert established that a semiring is a completely simple semiring if and only
if it is isomorphic to a Rees matrix semiring. Thus a semiring is a completely
Archimedean semiring if and only if it is a nil-extension of a Rees matrix semiring.
In this paper, we give structural description of a completely Archimedean semir-
ing using the structure theorem of a Rees matrix semiring. Structure theorem of
a completely Archimedean semiring is an extension of the structure theorem of
completely Archimedean semigroup. Structure theorem of aforesaid semigroup
was given by Mili¢ and Pavlovié¢ [11]. The preliminaries and prerequisites we need
for this article are discussed in section 2. In section 3, we discuss our main result.

2. PRELIMINARIES

A semiring (S, +,-) is a non-empty set S together with two binary operations ‘+’
and ‘-, respectively called addition and multiplication, such that the semigroup
reducts (S, +) and (.5, -) are connected by ring like distributivity, that is, a(b+c) =
ab + ac and (b + ¢)a = ba + ca for all a,b,c € S. An element @ in a semiring S
is said to be infinite [3] if and only if a + 2 = a = x + a for all z € S. Infinite
element in a semiring is unique and is denoted by co. An infinite element oo in
a semiring S having the property that x - co = co = oo - z for all z(# 0) € S
is called strongly infinite [3]. An element a in a semiring (S, +,-) is said to be
additively regular if there exists an element x € S such that a = a + x + a. Let
a be an additively regular element in a semiring S. An element y € S satisfying
a+y+a=aandy+a+y=yis called additive inverse of the element a. An
element a in a semiring (S, +,-) is called completely regular [4] if there exists an
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element « € S such that a = a+x+a, a+2z =z +a and a(a+2z) = a+z. We call
a semiring (S, +, -) completely regular if every element of S is completely regular.
A semiring (S, 4+, ) is called a skew-ring if its additive reduct (S, +) is a group.
An element a in a semiring (S, 4+, -) is said to be additively quasi regular if there
exists a positive integer n such that na is additively regular. An element a in a
semiring (5, +, -) is said to be quasi completely reqular [9] if there exists a positive
integer n such that na is completely regular. Naturally, a semiring (S, +, -) is said
to be quasi completely reqular if every element of S is quasi completely regular.
An element a in a semigroup (S, -) is called an idempotent if a®> = a. A semigroup
is said to be a band if its every element is idempotent. A commutative band is
called a semilattice. A semiring (S, +,-) is said to be a band semilattice (in short
b-lattice) if (S,-) is a band and (S, +) is a semilattice. A semiring is called an
idempotent semiring if both (S,-) and (S,+) are bands. An equivalence relation
p on a semiring S is said to be a congruence on S if p is a congruence on both the
semigroup reducts (S, +) and (S, -), i.e., for a,b,c € S, a pbimplies (c+a) p (c+D),
(a+c)p(b+c), capch and acpbe. A congruence p on a semiring S is called a b-
lattice congruence (idempotent semiring congruence) if S/p is a b-lattice (resp. an
idempotent semiring). A semiring S is called a b-lattice (idempotent semiring) Y
of semirings S, (o € V) if S admits a b-lattice congruence (resp. an idempotent
semiring congruence) p on S such that Y = S/p and each S, is a p-class.

Throughout this paper, we always let E1(S) be the set of all additive idem-
potents of the semiring .S. Also we denote the set of all additive inverse elements
of an additively regular element a in a semiring (S,+,-) by V*(a). As usual,
we denote the Green’s relations on the semiring (S, +,:) by £, #Z, 2, # and
¢ and correspondingly, the .Z-relation, Z-relation, Z-relation, ¢ -relation and
JC-relation on (S, +) are denoted by £+, Z*, 2, 7+ and AT, respectively.
In fact, the relations £+, Z1, 27, 71 and s are all congruence relations on
the multiplicative reduct (.S, -). Thus if any one of these happens to be a congru-
ence on (S,+), it will be a congruence on the semiring (S,+,-). For any a € S,
we let H be the ##T-class in S containing a. We further denote the Green’s
relations on a quasi regular semigroup (5,-) by £*, %%, 2%, #* and J*. For
other notations and terminologies not given in this paper, the reader is referred
to [2] and [9].

Definition 2.1 [4]. A completely regular semiring (S, +, -) is called a completely
simple semiring if any two elements of S are _# *-related, i.e., #T =5 x S.
Theorem 2.2 [5]. Let R be a skew-ring, (I,-) and (A,-) are bands, such that
INA={o}. Let P = (p,,) be a matriz over R, i € I, X € A and assume

Al Px,o = Poyji = O;

A2. Pap,kj = Papyij — Pop,ij + Pop,kj;

A3. Pux,jk = PuX,ji — Puv,ji +p,uz/,jk;
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Ad. apy; =pria =0,
A5. ab+ Pop,io = Popyio + ab;
A6. ab + Pxrooj = Prooj +ab, for alli,j,k € I, \,u,v € A and a,b € R.

Let M consist of the elements of I x R x A and defined operations “+’ and “’ on
M by
(i,a,A) + (4, b, 1) = (i, a +prj + b, 1)

and
(i7 a, )‘) : (37 ba M) = (Zja —Pp,ij + aba )\,U)

Then (M ,+,-) is a completely simple semiring. Conversely, every completely
simple semiring is isomorphic to such a semiring.

The semiring constructed in Theorem 2.2 is denoted by .# (I, R,A; P) and is
called the Rees matrixz semiring.

Corollary 2.3 [5]. Let .# (I, R,\; P) be a Rees matriz semiring. Then px,q; =
Px0,0j + Pou,io holds for all i,5 € I; A\, ;v € A. This yields py; = Pro,0i + Pox,io and
hence by assumption (A5) and (A6) stated in the above Theorem 2.2, ab+py; =
pai+ab forallicI; e A and a,b € R.

Definition 2.4 [9]. Let (S,+,-) be an additively quasi regular semiring. Then
the relations $*+, %*+, /*+, 2" and 2*" on S are defined by : for a,b € S,

a.*" b if and only if ma.Z* nb,
aZ*" b if and only if ma 2 nb,
a/¢*+ b if and only if ma ¢ nb,
2 = 2Nt and ¢ = L o,
where m and n are the smallest positive integers such that ma and nb are respec-
tively additively regular.

Definition 2.5 [9]. A quasi completely regular semiring (S, +, ) is said to be a
completely Archimedean semiring if any two elements of S are _#**-related, i.e.,

It =5xS8.

Definition 2.6 [9]. Let R be subskew-ring of a semiring S. If for every a € S
there exists a positive integer n such that na € R, then S is said to be a quasi
skew-ring.
Theorem 2.7 [9]. The following conditions on a semiring (S,+,-) are equivalent.
1. S is a quasi completely reqular semiring.
2. Every A" _class is a quasi skew-ring.

3. S is (disjoint) union of quasi skew-rings.
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4. S is a b-lattice of completely Archimedean semirings.

5. S is an idempotent semiring of quasi skew-rings.

Definition 2.8 [10]. Let (S,+,-) be a semiring. A nonempty subset I of S is
said to be a bi-ideal of S if @ € I and € S imply that a + z, x + a, ax, xa € 1.

Definition 2.9 [10]. Let I be a bi-ideal of a semiring S. We define a relation p,
on S in the following way :

ap,b if and only if either a,b € I or a = b; where a,b € S.

It is easy to verify that p, is a congruence on S. This congruence is said to be
Rees congruence on S and the quotient semiring S/p, contains a strongly infinite
element, namely I. This quotient semiring S/p, is said to be the Rees quotient
semiring and is denoted by S/I. In this case the semiring S is said to be an ideal
extension or simply an extension of I by the semiring S/I. An ideal extension S
of a semiring [ is said to be a nil-extension of I if for any a € S there exists a
positive integer n such that na € 1.

Theorem 2.10 [10]. A semiring S is a quasi skew-ring if and only if S is a
nil-extension of a skew-ring.

Theorem 2.11 [10]. The following conditions on a semiring are equivalent:
1. S is a completely Archimedean semiring.
2. S is a nil-extension of a completely simple semiring.

3. S is Archimedean and quasi completely reqular.

Theorem 2.12 [10]. Let (S,+,-) be a completely Archimedean semiring. Then
the subskew-rings are given by HY = e+ S + e, where e € E1(S).

3. MAIN RESULTS

A semiring (S, +, ) is a completely Archimedean semiring if and only if it is nil-
extension of a completely simple semiring [10, Theorem 3.19]. In this section we
establish the structure theorem of a completely Archimedean semiring.

Definition 3.1. A partial semiring S is a nonempty set together with two binary
operations ‘4’ and ‘-’ defined for some elements of S, such that for all x,y,z € S
1. if 2+ (y+ 2) and (x + y) + 2 exist, then z + (y + 2) = (v + y) + 2;
2. ifx-(y-2)and (z-y) -z exist, then z- (y- 2) = (z-y) - 2;
. ifx-(y+2),(x+y) 2z (x-y)+ (z-2) and (z-2) + (y - 2) exist, then
z-(y+z)=(-y) +(r-2)and (x+y)- 2= (r-2)+(y-2)
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Example 3.2. The set of all irrational numbers with respect to usual addition
and usual multiplication is a partial semiring.

Definition 3.3. Let .#(I,R,A; P) be a Rees matrix semiring, where R is a

skew-ring, (I,-) and (A, -) are bands and @ is a partial semiring, such that (I x

RxA)NQ=0. Let £: Q@ - I and n : Q@ — A be two mappings, such that

§:q— & and n:q~ ng Alsolet ¢ : Q x I — R be a mapping, such that for

all g,7 € Q; 1,4,k € I; A\, u € A the following conditions hold :

(C1) if g+ r €@, then Egtr = &g and g = 1y

(C2) if ¢ +r € Q, then p(q +1,9) = p(q,&) + (1, 1).

(C3) pae, +(q,1) — py,: does not depend on i € I and is denoted by (g, \);
A €A

(04) if qr € Qa then §q7’ = §q§r and Ngr = Ng"r-
(C5) if gr € Q, then pye,, +@(qr,i) = pri + ©(q,7)e(r, k).
Let S = (I x R x A)UQ. Define addition ‘+’ and multiplication ‘-’ on S by

(1) (1,0, A) + (5,0, ) = (i,a+ prj +b,p)

2) 0+ (i,0,0) = (€9, +a,2)

(3) (iya,\) +a = (i.a+ (g, \)m,)

(4) ifg+r=se€Qtheng+r =se€ (I xRxA)UQ

(5) ifqtrgQ then 41 = (&,0(0.6) + 9(ri) — Py

(6) (i,a,A) - (4,0, n) = (i, —pa,ij + ab, Ap)

(7) 0+ (1.0, 0) = (& —Prrgyi + (0, )a,m )

(8) (0, 0) - = (igs —Pang.ic, + ap(a: 1), M

9) if gr=te@ then qr =t (I xRxA)UQ

(10) if gr ¢ Q then qr = (&8, —Pryngee + (a0 0), 10,

for all ¢,r,s,t € Q; a,b € R;i,j € I; \,u € A. We denote the above system by
S = %(I7R7A;P7Q7(707¢7£777)'

Theorem 3.4. The system S = #(I,R,\; P,Q,p,v,&,m), as defined in Defi-
nition 3.3, is a semiring.

Proof. We consider the set S and two binary operations ‘4’ and ‘-’ on S as
defined by formulae (1) to (10) in Definition 3.3. The mapping & : Q@ — I can be
considered as a mapping £ : Q — 7 (I). Similarly, considering n: Q — A as a
mapping 1 : Q — 7 (A), where Z(I) and .7 (A) are semigroups of all mappings
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of I 'in I and A in A, respectively, we may conclude, by [11, Lemma 1.1], (S, +)
is a semigroup. Now by (C3), it follows that the multiplication defined by the
formula (10) is well-defined. To prove (S,-) is a semigroup we have left to show
that for any ¢,r,s € Q and (i,a,\), (4,0, 1), (k,c,v) € (I x R x A)

M) a- (6o - Gobw) = (a- G, A)) - (Gibop)
iya,\) - (j,bu q) (za)\ j,b,u)>'q
q-r)-(i,a,\) (r zaA)forbothqrEQandqr%Q

=q-
(i,a,\) - (qg-r) = <(z a,)\)'q> -1 for both gr € Q and qr € Q

(v)

(vi) (q (i, a, )\)) r=q- ((i,a, ) -7")

(vii)) (¢-7)-s=q-(r-s)

(vil)) (5,0, (b ) - (s ) = (G, A) - (7,6, ) ) (s, 0).
Now,

0+ ((isa,\) - Giaby ) = alig, —pavuss + ab, M)
::@ﬂﬁ—prmwf+¢@JﬁahmMu>

and

<q : (ia a, )‘)> : (]7 b7 :u) = <£qza “PngA&qi + 90(% )a 77q)\> (]7 ba M)
:<@wrmww@q+w@JMh%MO-
By using apy; = px;a = 0 in (C3), we have ¢(q,ij)ab = ¢(q,7)ab. Hence from

the above two (i) follows. Similarly, (ii) and (iii) can be proved easily.
Let g, € @, such that ¢gr € Q). Now,

(q ) T') : (Za a, )‘) = (gqria _pnqr)\,ﬁqri + SO(q7"7 i)a7 77qr)\>
= (gqui7 _pnan)\7fq£ri + SO(q'I", i)a, ”7(1”77‘>\> .
Let gr ¢ Q). Then
(q-r)- (i,a,A) = <£q£r, “Prgnr e t o(q,i)p(r, i), 77q77r) (i,a, )

= (&, —Pugmoreatss + 2(@, D90, ), 1)
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Again,

q- (?“ (i, a, A)) =q- <§ri,—PmA,sm + w(ni)a,mk)
= <§q§ri, —PngmeAggeri T 2(q,&r1) (1, 1) a, 77q77r>\) -

By using apy; = pxia = 0 in (C3) and (C5), we have ¢(qr,i)a = ¢(q,&r1)¢(r,i)a
and p(g,1)p(r,i)a = v(q,&9)p(r, i)a, respectively. Hence from the above three
we have (q-7)- (i,a,\) = ¢q- (r - (i, a, )\)) for both gr € @ and gr ¢ @ and (iv)
follows. Similarly, (v) can be proved easily. Also, we can easily prove (vi). As @
is a partial semiring, so (vii) follows obviously and (viii) follows immediately by
Theorem 2.2. Hence (5, ) is a semigroup.

Now to prove (S,+,-) is a semiring we have left to verify distributive prop-
erties which are as follows:

(ix) (5, 2) (5., 12) + (s e,0) ) = (5,0, A) (i by ) + (0 A) (ks )
(x (za)\ j,b,u))(k‘,c,y) (i,a, \)(k, ¢, v) + (4, b, ) (K, ¢, )
(xi q((zaA J,bu) q(i,a,\) + q(4,b, 1)

Xn( zaA)J,b,u):q(y,b,u)Jr(i,a,)\)(}bu)

(i) (1,0,0) (q+ (5,6, 42) ) = (50, g + (i, @, \)(j b, 1)

(xiv (za)\ +q>(y,bu) (4,a, M) (4,0, 1) + q(4. b, 1)

(xv) (i,a, A (J,bﬂ +q)=(za>\ (4, b, ) + (4,0, \)q
vi ((MM J,bﬂ))q:(zaA)qu(J,bu)

(g + r)(i,a,\) = q(i,a,\) + r(i,a,\) for both g+r € Q@ and ¢+ € Q
(t,a,\) (¢ +7) = (i,a,\)q + (i,a,\)r for both g+r € Q and ¢+ € Q

xix) q(r+ (i,a ) qr + q(i,a, \) for both gr € Q and qr ¢ Q

(xvm

XX

(z a, \) —|—r> = q(i,a, \) + qr for both gr € Q and gr € Q
(xxi

q+ za)\>r:qr+(i,a,)\)rforbothqrEQandqrgZQ

XXll

(xxiil) g(r+s)=qr+gs

)
)
)
)
)
)
)
xvi)
<xvn>
)
)
)
)
)
)
)

q
(za)\ —|—q>r—(zaA)r+qrf0rbothqr€@andqr¢@
q
(¢+

(xxiv T)s = qs+Ts.

The cases (ix) and (x) follow immediately by Theorem 2.2.
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Now,
Q<(i, a,\) + (4,b, u)) = q(i,a+px;+ b, p)
= (&ﬂ', —Praptqi T (0, 9)a + (g, )b, nqu)-
On the other hand,
q(i,a, A) +q(4, b, 1)
= <§qia —DPngagpi T w(q,i)ampA> + (qua —Pngptai + (25 5)bs nqﬂ)
= (&4t P + (0,08 + Pueys — Pryncys +9(0,3)b. 1)
= (&ﬂ', —Praptai + (a0, 9)a + ¢(q, )b, W) [by Corollary 2.3].

Hence (xi) follows immediately. Similarly, (xvi) can be proved easily.
Now,

(a+ G20.0) G:b ) = (& 0(0:9) + 0, 2) (b0
= (§q]} —Paueqs T ©(q,1)b 4 ab, )\M)-
Again,
q(3,0, 1) + (i, a, ) (4, b, )
= <§qj7 —Pnougei + (0, 9)b, W) + (m —Pauij + ab, )\u)
= <§qj, —Pnapéai T (25 5)0 + Prgpij — Papij + ab, AM)
= <§qj7 —Pangqi T ¢(q,7)b + ab, )\u) [by Corollary 2.3].

Hence (xii) follows. Similarly, (xiii), (xiv) and (xv) can be proved easily.
Now,

q(i,a, A) +7(i,a,A)

(ng', —Pphggi T P(q,7)a, 77(1)‘) + <£ri, —Dnoagri T p(r,i)a, 777)\)

(ﬁqi, —Pngrggi T (@ 8)a + Py g — Pporgi + o1, 0)a, 777)\)

(€4t —Proreyi + #la,i)a + p(r,D)a,neA) - [by Corollary 2.3).

123



124 S.K. MAITY AND R. CHATTERJEE

Let g+ r € Q. Then
(q + T)(i7 a, )‘) = (§q+ri7 TPngr N Eqtri + go(q +r, i)a, 77q+7’)\>
= (§qi, —Pnagqgi T 0@ 60)a + o(r,i)a, nrA) [by (C2)].

Let ¢+ r ¢ Q. Then

(g +7)(i,a,\) (Sq, ©(q,&r) +@(r, 1) — P, is m) (i,a,\)
= (gqi, —DPneA&qi + go(q, gT)a + 90(7" i)a’ 777“>‘> .

Using (A3), we have ¢(q,&)a = ¢(g,i)a. Hence from the above three (xvii)
follows. Similarly, (xviii) can be proved easily.
Now,

q(r + (4, a, A)) = q(&w(m’) +a, A)
= (§q§r7 —Porgatr (0 &) 0(r, 1) + 0(g,&r)a, nqA)
= (€& —Prrses +9(0.D9(13) + 9la, Do mg ).
When gr € @, then
gr +q(i,a,\) = qr + (§qz’, —Pp\ggi T 0(q,7)a, nq)\)
= (ﬁqr, @(ar, §qt) — Pgrgqi + (a5 9)a, 77q)\>
= (§qm —Pugrgqi +o(ar, §gt) + w(q,i)aqu) [by Corollary 2.3]
= (€ —Prrger + 900 D00 0) + la Da ) by (C5)]
= (&b —Prrtats + 900 () + 9(g,D)a,ngA)  [by (C4))
Also, when qr ¢ @, then
qr +q(i,a,\)

= (ﬁqﬁn —Pngnr£aér + w(q,i)w(r,i),nqm> + (ﬁqi, —PrhEqi T w(q,i)a,nqk)

§q§7”7 _pnan,ﬁqﬁr + SO(Q7 Z)W(ﬁ Z) + pnqnhﬁqi - pnq)\,gqi + QO(q, i)a7 77q)‘)

4&rs —Pugnea&r T Prgne i — Prghggi T 0(0: (1, 1) + ¢(g, i)a, 77q)‘)

(
(¢
(ﬁqﬁn —Pngrgaer (0, 0)(r,4) + ¢(g, i)a, 77q)\>-
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Hence (xix) follows from above three. Similarly, (xx), (xxi) and (xxii) can be
proved easily. Also (xxiii) and (xxiv) follow obviously as @ is a partial semiring.
Hence (S, +,-) is a semiring,. ]

Theorem 3.5. A semiring (S,+,-) is a completely Archimedean semiring if and
only if it is isomorphic to a semiring A (I, R, \; P,Q, p,1,&,n).

Proof. Let (S,+,-) be a completely Archimedean semiring. By Theorem 2.11,
S is nil-extension of a completely simple semiring. Therefore, there exists a bi-
ideal K of .S such that S is a nil-extension of K, where K is a completely simple
semiring. Again by Theorem 2.2, K is isomorphic to a Rees matrix semiring and
let K = .#(I,R,A\;P). Clearly, (K,+) is a completely simple semigroup. Let
@ = S\ K. Then @ is a partial semiring and S = K U Q, that is, S consists of
the elements of (I x R x A) U Q. By [11, Theorem 1.1], (S, +) is isomorphic to
the semigroup (///(I,R,A; P,Q,go,w,f,n),—i—), where £ : Q — 7 ([) and n: Q —
T (A) are two mappings, such that & : p — &p,n : p — 1, and (1), T (A) are
semigroups of all mappings of I in I and A in A, respectively.

Let e = (i, —px, A). Then e € ET(S). Also let ¢ € Q and n be the smallest
positive integer such that ng € HJJ{ where f € ET(S). As e € ET(S) then
e+e=-e. Again, HI = {(i,a,)\) : a € R}. Now, ge + ge = ge and so ge is an
additive idempotent. Let q(i, —px;, A) = (k, =pur, V).

Now, (q+(Z, a, )‘)) (Za —PXi» )‘) = (Z§Q7 SO((L Z)—l-(l, )‘) (27 —DPi» )‘) = (qul, —PXigqis )\)
and
(i, =pxis A) + (6,0, A) (6, =pai, A) = q(i, —pai, A) + (i, —pai, A)
= (kv —Pvk, V) + (ia —PXis )‘)
= (kv —Puvk T Puvi — Pxi )‘)

Hence k = i&,i. Similarly, from ((z, a, \) + q) (4, =prir A) = (4,0, ) (i, —pri, A) +
q(i,—pxi, ), we have v = AngA.
Hence q(i, —pxi, A) = (iﬁqi, —Dng\itqis )\nq)\) and similarly,

(Z', —DXis )‘)q = (”gqy —DPXng,ii&qs >\)\77q) .
Let q(i,a,\) = (u,v,w). Now,
(q + (Z7 _p)\,i7 )‘)) (Za a, )‘) = <i§Q7 SO(Q7 Z) - p)\,i7 )‘> (Z7 a, )‘)
= <Z£q27 —DXjigqi + gD(q, i)a7 )\>

and
Q(Za a, )‘) + (Z7 _p)\,i7 )‘)(17 a, )‘) - (U, v, w) + (Z7 _p)\,i7 )‘)

= (U, U+ Pw,i — Prir A)-
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From the above two we have u = i{,i. Similarly, from

<(,L’ —Pxis )‘) + q) (,L, a, )‘) = (Za —PXis )‘)(’L’ a, )‘) + q(’L, a, )‘),

we have w = AngA.
Also from v + pui — Pri = —Prie,i + (¢, 1)a, we have

V= —Pricyi T 9(q,9)a + Pri — Duw,i
= —Pxiggi T Pri — Pangri + 0(q,1)a
= —Panghicgi + 0(q,1)a.
Hence,
q(i,a,\) = <z’§qz‘, —Panghit,i + 0(q,1)a, )\nq)\) (%)
and similarly,
(,L'7 a, A)q = <“£q7 _p)\Anq,iigq + aSO(qa Z)a )\M?q) s (**)
Now,
(a+ (:0.0) (i) = (i€, 0(0,3) +a, 1) (b, 1)
= (quja —Papic,i + ©(q,1)b + ab, AM)-
On the other hand,

q(3,b, 1) + (3,0, A) (4, b, )

(jﬁqj, ~Dpngusicai T 2(a, 5)b, Amqﬂ) + (i, —paw,ij + ab, M)

(jﬁqj, —Ppngpices + (@ I+ Pungusij — Pawi + ab, AM)

(]qu? ~Ppmgpites + Pungnsii — Pais + (¢, 7)b + ab, AN)
— (€0 ~Poiens + (@ 3)b + ab, A ).

Hence ;7 = j&,J and similarly, ji, = jj&q, AngA = ungA, Ang = Aun,.

As I is a band and i§, € I, using above equations, we have for any 7,5 € I,
1&g = 1£q1&q = 1£47&q = J€qI1&q = J&q, 1-€., &, is a constant function for all ¢ € Q.
Therefore, £, represents a unique element of /. Thus without any loss of generality
we can assume £ as a function from @ to I. Similarly,  can be considered as a
function from @ to A.

Using these in [11, Lemma 1.1], (C1)—(C3) and formulae (1) to (5) of the
Definition 3.3 follow automatically. Formula (6) follows immediately by the The-
orem 2.2.
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Now, the equations (*) and (**) become

q- (iv a, )‘) = (gqiv “Png\&qi + SO(% i)a7 77q)‘)

and
(i,a,A) - q = (ifqa —DAng,itq T ap(q, 1), )\77q>-

Thus the formulae (7) and (8) follow. Now we have that ¥(g,A); A € A does
not depend on i € I and ¥(q, ) = pre, + ©(q,1) — Pp,i- Also (g, A) = prg, +

©(4,4) = Png.j-
Using apy,; = paia = 0, from the above two we have for any i,7 € I, A, u € A

and a € R, (g, \a = ¢(q,i)a and ¥(q, \)a = (g, j)a. Hence ¢(g,)a = ¢(q, j)a
and similarly, ap(q,i) = ap(q, j).
Now, for any ¢,r € () we have,

(4 Goa ) r = (& 0(a,1) +a,\)r
= (ﬁqﬁr, —Dan ot + (0(050) + a) (1, &), Am)
= (ﬁq&, —Paneaer T 0(00)p(r,&q) + ap(r,&q), Am>.
Let gr € Q. Then
ar+ (1,0, N = ar + (i, ~pay, ie, + ap(r,i), An,)
= (ﬁqr, ©(qr,i&r) — Pan,.ie, + ap(r, i), Anr)-

From above two equations we have £ = §4§;.
Also

©(qr,i&r) — Pan,ie, + ap(r,1) = —pan, .6, T (0, 9)p(1, &) + ap(r, &y),

ie.,
@(qryi&e) — Panyier = —Pane £ + 0(0:9) (1, &),
ie.,
<P(C]7"aj) — Pu,j = _pu,gqr + SO(Q7 Z)SO(Ta gq)a
i.e.,

Py +0(ar,J) = puy + 0(q,1)0(r, k)

[assuming j = i&,, p = An, and k = ;.
Similarly, we have 74, = 141,
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Let gr ¢ Q and gr = (k,g,1). Then
qr + (,L, a, A)T = (k?g’ l) + <i£T7 —DPxn,i&, + a’SO(Ta Z)a )‘777“)
= <k, g+ Drie, — P, e, + ap(r, 1), )‘777")-

From gr + (i,a,\)r = <q + (i, a, )\))7‘, we have k = £,&,. Similarly, [ = n,n,.
Also

g+ DPlig, — Panyiér + GSO(T7 Z) = _p)\nr,ﬁqﬁr + Qo(qa Z)@(Ta fq) + G,QO(T, fq)

implies
9+ Pogneier = Doy iey = ~Panp&o&r T 9(¢,0)p(19),
ie.,
9+ Pogneige = Ponpier = P(00)0(758) = Pan, g6
ie.,
9+ Pognpsier — Panpite + Ponegotr = 9(a:0) (1, 1),
ie.,
9+ Pugne gaer = ©(a, 1) (1, 7),
ie.,
9= 0(q:0)p(r, 1) — Ppyny 460
ie.,

9= _pnan,iqﬁr + Sp(q7 Z)QO(T, Z)

Hence if ¢r € Q, then qr = (qur, ~Pngne et + (0, 9) (1, ), nan). Consequently,
S= M1 R,NPQ,p,0,8m).

Conversely, let S = .#(I,R,\; P,Q,p,9,&,n). By Theorem 3.4, it follows
that S is a semiring. Let K = .# (I, R, A; P). Then K is a bi-ideal of S and K is
a completely simple semiring. (5, +) is a completely Archimedean semigroup and
is nil-extension of a completely simple semigroup (K, +). Let a € S. Then there
exists a positive integer n such that na € K. Then na is completely regular,
as (K,+,-) is completely regular semiring. So a is quasi completely regular.
Hence (S,+, ) is quasi completely regular semiring. For any a,b € S, there exist
positive integers m and n such that ma,nb € K. As (K, +,-) is completely simple
semiring, it follows that ma #* nb, ie., a/*+ b. Hence (S,+,-) is completely
Archimedean semiring. [
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