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Abstract

A generalized hypersubstitution of type τ = (ni)i∈I is a mapping σ which
maps every operation symbol fi to the term σ(fi) and may not preserve ar-
ity. It is the main tool to study strong hyperidentities that are used to
classify varieties into collections called strong hypervarieties. Each gener-
alized hypersubstitution can be extended to a mapping σ̂ on the set of all
terms of type τ . A binary operation on HypG(τ), the set of all generalized
hypersubstitutions of type τ , can be defined by using this extension. The
set HypG(τ) together with such a binary operation forms a monoid, where
a hypersubstitution σid, which maps fi to fi(x1, . . . , xni

) for every i ∈ I,
is the neutral element of this monoid. A weak projection generalized hy-
persubstitution of type τ is a generalized hypersubstitution of type τ which
maps at least one of the operation symbols to a variable. In semigroup the-
ory, the various types of its elements are widely considered. In this paper,
we present the characterizations of idempotent weak projection generalized
hypersubstitutions of type (m,n) and give some sufficient conditions for a
weak projection generalized hypersubstitution of type (m,n) to be regular,
where m,n ≥ 1.

Keywords: idempotent, regular, generalized hypersubstitution, weak pro-
jection generalized hypersubstitution.
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1. Introduction

Let n be a natural number. Let Xn = {x1, . . . , xn} be an n-element set. The set
Xn is called an alphabet and its elements are called variables. Let {fi : i ∈ I}
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be the set of operation symbols, indexed by a nonempty set I. The sets Xn and
{fi : i ∈ I} have to be disjoint. To every operation symbol fi, we assign a natural
number ni ≥ 1, called the arity of fi. As in the definition of algebra, the sequence
τ = (ni)i∈I of all arities is called the type. The classes of algebras are described
by logical expressions. This formal language is built up by variables from an
n-element set. With these notations for operation symbols and variables, we can
define the terms of type τ , (see [5, 6, 7]).

Let n ≥ 1, the n-ary terms of type τ are inductively defined as follows:

(i) every variable xi ∈ Xn is an n-ary term of type τ ;

(ii) if t1, . . . , tni
are n-ary terms of type τ and fi is an ni-ary operation symbol,

then fi(t1, . . . , tni
) is an n-ary term of type τ .

The set Wτ (Xn) = Wτ ({x1, . . . , xn}) of all n-ary terms of type τ is the
smallest set which contains x1, . . . , xn and is closed under finite application of
(ii). We denote the set of all terms of type τ by

Wτ (X) :=
⋃

n≥1

Wτ (Xn).

Terms can be visualized by tree diagrams, where the vertices are labelled
by operation symbols and the leaves are labelled by variables (see [2]). Trees
have many applications in mathematics, computer science, linguistic and in other
fields. For instance, the following tree corresponds to the term:

f(f(x1, x2), f(f(x1, x2), f(x1, x2)))

In universal algebra, identities are used to classify algebras of the same type
into varieties, and hyperidentities are use to classify varieties of the same type into
hypervarieties. The concept of hypersubstitutions was introduced by Denecke,
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Lau, Pöschel and Schweigert [3] as a way of making precise the concept of hyper-
identity and hypervarieties. In [11], Leeratanavalee and Denecke generalized the
concepts of hypersubstitutions and hyperidentities to the concepts of generalized
hypersubstitutions and strong hyperidentities, respectively. They used the gen-
eralized superpositions to study the concept of generalized hypersubstitutions.
A generalized superposition of terms is a mapping Sk : (Wτ (X))k+1 → Wτ (X)
which is defined by the following steps.

(i) If t = xj ∈ Xk where 1 ≤ j ≤ k, then Sk(xj , t1, . . . , tk) := tj .

(ii) If t = xj ∈ X rXk where j > k, then Sk(xj , t1, . . . , tk) := xj .

(iii) If t = fi(s1, . . . , sni
) and assume that Sk(sj, t1, . . . , tk) are already defined

for all 1 ≤ j ≤ ni, then

Sk(fi(s1, . . . , sni
),t1, . . . , tk) := fi(S

k(s1, t1, . . . , tk), . . . , S
k(sni

, t1, . . . , tk)).

A generalized hypersubstitution of type τ is a mapping σ : {fi : i ∈ I} → Wτ (X)
which maps each operation symbol of type τ to a term of the same type which
may not preserve arity. We denote the set of all generalized hypersubstitutions
of type τ by HypG(τ).

The generalized hypersubstitution σ can be extended to a mapping σ̂ :
Wτ (X) → Wτ (X) on the set of all terms of type τ inductively defined as fol-
lows:

(i) σ̂[x] := x for any variable x ∈ X;

(ii) σ̂[fi(t1, . . . , tni
)] := Sni(σ(fi), σ̂[t1], . . . , σ̂[tni

]) for every ni-ary operation
symbol fi and assume that σ̂[tj ] is already defined for all 1 ≤ j ≤ ni.

In [11], the authors defined a binary operation ◦G on HypG(τ) by σ1 ◦G σ2 :=
σ̂1 ◦σ2 where ◦ is usual composition, and showed that the structure HypG(τ) :=
(HypG(τ); ◦G, σid) is a monoid where σid is an identity hypersubstitution. More-
over, if Hyp(τ) denotes the set of all arity-preserving hypersubstitutions of type
τ , then Hyp(τ) forms a submonoid of HypG(τ) under ◦G.

In 2000, Leeratanavalee and Denecke used generalized hypersubstitutions as
a tool to study strong hyperidentities and used such strong hyperidentities to
classify varieties into collections called strong hypervarieties. An identity s ≈ t

of a variety V is called a strong hyperidentity if the equation σ̂[s] ≈ σ̂[t] holds
in V for every generalized hypersubstitution σ ∈ HypG(τ). If M := (M ; ◦G, σid)
is a submonoid of HypG(τ), then s ≈ t is called an M -strong hyperidentity if
σ̂[s] ≈ σ̂[t] are identities for every σ ∈ M . A variety V is called M -strongly
solid if every identity satisfied in V is an M -strong hyperidentity, and in case of
M = HypG(τ), we will say V is a strongly solid variety. The set of all strongly
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solid varieties of type τ forms a complete sublattice of the lattice of all varieties
of type τ , (see [8, 9, 10, 11]). Moreover, they used the extensions of generalized
hypersubstitutions to define tree transformations. It turns out that the algebraic
properties of the set of tree transformations are described by algebraic properties
of the set of all generalized hypersubstitutions [4].

These results suggest the importance of studying the particular monoid of
generalized hypersubstitutions and its submonoids in both specific choices of τ
and in general. In [5], Denecke and Wismath studied M -hyperidentities and
M -solid varieties based on submonoids M of the monoid Hyp(τ). They de-
fined a number of natural such monoids based on various properties of hypersub-
stitutions. Later in [9], Leetatanavalee extended these concepts to generalized
hypersubstitutions. A number of fairly natural examples of submonoids of the
monoid HypG(τ) of all generalized hypersubstitutions of a given type τ were
given, (see [9]).

In semigroup theory, it is of interest to consider various types of its elements,
including regular, idempotent, completely regular, etc. In [14], the authors char-
acterized idempotent elements of HypG(2) and determined the order of each
generalized hypersubstitution of this type. All regular elements of the monoid
of all generalized hypersubstitutions of type (2) were studied by Puninagool and
Leeratanavalee [10]. The generalized results were also given in [15], in fact, the
idempotent and regular elements of HypG(n) were determined.

In 2007, Puninagool and Leeratanavalee [13] continued in this vein, by study-
ing the semigroup properties of the submonoid pre-generalized hypersubstitutions
ofHypG(2, 2). Indeed, they characterized idempotent elements of pre-generalized
hypersubstitutions with a specific type (2, 2). Later in 2016, Lekkoksung and
Jampachon gave a generalization of the results of this paper in [12] by consid-
ering idempotent elements of pre-generalized hypersubstitutions of type (m,n)
where m,n ≥ 1.

The idempotent elements of the set of all weak projection generalized hyper-
substitutions of type (2, 2) were characterized in [10] by Leeratanavalee. In the
present paper, we generalize the results of the paper given by Leeratanavalee,
(see [10]). In fact, we extend his results to the type (m,n), where m,n ≥ 1.
Moreover, we give some sufficient conditions for a weak projection generalized
hypersubstitution of type (m,n) to be regular.

2. Weak projection generalized hypersubstitutions of type (m,n)

In this section we provide the definitions of projection generalized hypersub-
stitutions, weak projection generalized hypersubstitutions and pre-generalized
hypersubstitutions of type (m,n).
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Definition. Let f and g be operation symbols of arity m and n, respectively.
We denote the generalized hypersubstitution σ with σ(f) = t1 and σ(g) = t2 by
σt1,t2 .

(i) A generalized hypersubstitution σ of type (m,n) is called a projection gen-

eralized hypersubstitution if the terms σ(f) and σ(g) are variables. We de-
note the set of all projection generalized hypersubstitutions of type (m,n)
by PG(m,n).

(ii) A generalized hypersubstitution σ of type (m,n) is called a weak projection

generalized hypersubstitution if the term σ(f) or σ(g) is a variable. We
denote the set of all projection generalized hypersubstitutions of type (m,n)
by WPG(m,n).

(iii) A generalized hypersubstitution σ of type (m,n) is called a pre-generalized

hypersubstitution if the terms σ(f) and σ(g) are not variables. We de-
note the set of all pre-generalized hypersubstitutions of type (m,n) by
PreG(m,n). That is, PreG(m,n) := HypG(m,n)rWPG(m,n).

Throughout this paper, we let f and g be operation symbols of arity m and
n, respectively.

In [9], the author showed that PG(τ) ∪ {σid} and WPG(τ) ∪ {σid} are sub-
monoids of HypG(τ), moreover, PG(τ) ∪ {σid} forms a submonoid of WPG(τ) ∪
{σid}. It is easy to see that every projection generalized hypersubstitution is
idempotent and σid is also idempotent, (see [9]).

3. Idempotent weak projection hypersubstitutions

For any semigroup S, an element e of S is idempotent if ee = e. This element is
called an idempotent element of S, (see [1]). The concept of idempotent elements
plays an important role in many branches of mathematics, for example, in semi-
group theory and semiring theory. In this section, we give some sufficient and
necessary conditions for elements of WPG(m,n) r PG(m,n) to be idempotent.
Firstly, we present some notions which are used to prove our results.

Let F be a variable over the two-element alphabet {f, g}. For an arbitrary
non-variable term t of type (m,n), we define semigroup words P i(t), where i ∈ N,
over {f, g} by the following steps. For t1, . . . , tj ∈ W(m,n)(X), where j ∈ {m,n},

(i) if t = F (t1, . . . , tj) where F has arity j and j < i, then P i(t) = F ,

(ii) if t = F (t1, . . . , xi, . . . , tj) where F has arity j and xi ∈ X, 1 ≤ i ≤ j, then
P i(t) = F ,
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(iii) if t = F (t1, . . . , ti, . . . , tj) where F has arity j and ti ∈ W(m,n)(X) r X,
1 ≤ i ≤ j, then P i(t) = F (P i(ti)).

Instead of F1(F2(· · ·Fn) · · · ) we will use F1F2 · · ·Fn · · · for the semigroup words
P i(t).

Let t = F (t1, . . . , tj) where F has arity j ∈ {m,n} and i ≤ max{m,n}, we
define M i(t) by

(i) if ti ∈ X, then M i(t) = ti,

(ii) if ti = F ′(s1. . . . , sk) where F
′ has arity k ∈ {m,n} and assume that M i(si)

are already defined, then M i(t) = M i(si).

For example, let f and g be operation symbols of type 3 and 2, respectively, and
t = f(x4, x3, f(x1, x2, g(x1, f(x1, x1, x2)))). This term t can be visualized by the
tree:

Then

P 1(t) = f , P 3(t) = ffg,
P 4(t) = f , P 1(f(x1, x2, g(x1, f(x1, x1, x2)))) = f ,
P 3(f(x1, x2, g(x1, f(x1, x1, x2)))) = fg, P 1(g(x1, f(x1, x1, x2))) = g,
P 2(g(x1, f(x1, x1, x2))) = gf , P 3(g(x1, f(x1, x1, x2))) = g,

and

M1(t) = x4, M2(t) = x3, M3(t) is not define,
M2(g(x1, f(x1, x1, x2))) = x1, M3(f(x1, x1, x2)) = x2.
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For i ≥ 1 and t ∈ W(m,n)(X), we denote:

var(t) := the set of all variables occurring in the term t,
op(t) := the number of all operation symbols occurring in the term t,

ops(P i(t)) := the set of all operation symbols occurring in the semigroup
word P i(t),

firstop(t) := the first operation symbol (from the left) occurring in
the term t.

The following proposition is a characterization of idempotent elements of
generalized hypersubstitutions of type (m,n).

Proposition 1. Let σt1,t2 be a generalized hypersubstitution of type (m,n). Then
the following statements are equivalent:

(i) σt1,t2 is idempotent;

(ii) σ̂t1,t2 [t1] = t1 and σ̂t1,t2 [t2] = t2.

Proof. (i) ⇒ (ii): By the assumption,

σ̂t1,t2 [t1] = σ̂t1,t2 [σt1,t2(f)] = (σt1,t2 ◦G σt1,t2)(f) = σt1,t2(f) = t1.

Similarly, we obtain σ̂t1,t2 [t2] = t2.

(ii) ⇒ (i): By our hypothesis, we obtain

(σt1,t2 ◦G σt1,t2)(f) = σ̂t1,t2 [σt1,t2(f)] = σ̂t1,t2 [t1] = t1 = σt1,t2(f).

Similarly, (σt1,t2 ◦G σt1,t2)(g) = σt1,t2(g). Hence, σt1,t2 is idempotent.

We will give the exact forms of the terms t1 and t2 that a weak projection
generalized hypersubstitution σt1,t2 is idempotent.

Lemma 2. Let σt1,t2 ∈ WPG(m,n)rPG(m,n) be idempotent. Then we have the

following.

(i) If t1 ∈ X and op(t2) = 1, then the operation symbol occurring in t2 is g.

(ii) If t2 ∈ X and op(t1) = 1, then the operation symbol occurring in t1 is f .

Proof. (i) Since op(t2) = 1, the term t2 begins with the operation symbol f or
g. If t2 = f(x1, . . . , xm) where x1, . . . , xm ∈ X, then σ̂t1,t2 [t2] is a variable, this
is a contradiction. Thus, t2 = g(x1, . . . , xn) where x1. . . . , xn ∈ X.

(ii) This is similar to (i).

Next, we give sufficient and necessary conditions for elements of WPG(m,n)r
PG(m,n) to be idempotent, where there is only one operation symbol occurring
in one of these terms.
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Proposition 3. Let σt1,t2 ∈ WPG(m,n)rPG(m,n), t1 ∈ X, t2 ∈ W(m,n)(X)rX

and t2 = g(s1, . . . , sn) where op(t2) = 1. Then the following statements are

equivalent:

(i) σt1,t2 is idempotent;

(ii) if xj ∈ var(t2) where 1 ≤ j ≤ n, then sj = xj .

Proof. (i) ⇒ (ii): Assume that σt1,t2 is idempotent. Let xj ∈ var(t2) where
1 ≤ j ≤ n. Suppose that sj = xl where j 6= l. By the assumption, we consider

σ̂t1,t2 [t2] = Sn(σt1,t2(g), σ̂t1,t2 [s1], . . . , σ̂t1,t2 [sj−1], xl, σ̂t1,t2 [sj+1], . . . , σ̂t1,t2 [sn])

= Sn(t2, σ̂t1,t2 [s1], . . . , σ̂t1,t2 [sj−1], xl, σ̂t1,t2 [sj+1], . . . , σ̂t1,t2 [sn]).

Thus, we replace xj in the term t2 by xl. It follows that σ̂t1,t2 [t2] 6= t2. This is a
contradiction. Thus, sj = xj.

(ii) ⇒ (i): It is clear that σ̂t1,t2 [t1] = t1. We now consider σ̂t1,t2 [t2] =
σ̂t1,t2 [g(s1, . . . , sn)] = Sn(t2, σ̂t1,t2 [s1], . . . , σ̂t1,t2 [sn]). Then, if xj ∈ var(t2) where
1 ≤ j ≤ n, we replace xj in the term t2 by σ̂t1,t2 [sj] = xj. Hence, σ̂t1,t2 [t2] = t2.

Similarly, we obtain the following result.

Proposition 4. Let σt1,t2 ∈ WPG(m,n)rPG(m,n), t2 ∈ X, t1 ∈ W(m,n)(X)rX

and t1 = f(s1, . . . , sm) where op(t1) = 1. Then the following statements are

equivalent:

(i) σt1,t2 is idempotent;

(ii) if xj ∈ var(t1) where 1 ≤ j ≤ m, then sj = xj.

Next, we present sufficient and necessary conditions for σt1,t2 ∈ WPG(m,n)r
PG(m,n) to be idempotent, where the number of operation symbols occurring in
one of these terms is more than one.

Proposition 5. Let σt1,t2 ∈ WPG(m,n) r PG(m,n), where t1, t2 ∈ W(m,n)(X),
t1 = xi ∈ Xm, op(t2) > 1 and P i(t2) = F1 · · ·Fk where Fl ∈ {f, g}, 1 ≤ l ≤ k.

Then the following statements are equivalent:

(1) σt1,t2 is idempotent;

(2) in P i(t2) there exists the smallest positive integer l ∈ {1, . . . , k} such that

Fl = g with the subterm t′2 of t2 where t′2 = g(s1, . . . , sn) such that sp ∈
W(m,n)(X) and 1 ≤ p ≤ n, and the following conditions are satisfied:

(i) if xj ∈ var(t2) and sj ∈ X where 1 ≤ j ≤ n, then sj = xj ;
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(ii) if xj ∈ var(t2) and sj ∈ W(m,n)(X) r X where 1 ≤ j ≤ n, then

ops(P i(sj)) = {f} and M i(sj) = xj .

Proof. (1) ⇒ (2): Since P i(t2) = F1 · · ·Fk where Fl ∈ {f, g} for 1 ≤ l ≤ k, then
there must exist q ∈ {1, . . . , k} such that Fq = g since otherwise σ̂t1,t2 [t2] ∈ X,
which is a contradiction. Let q ∈ {1, . . . , k} be the smallest positive inte-
ger such that Fq = g with the subterm t′2 of t2 where t′2 = g(s1, . . . , sn) and
s1, . . . , sn ∈ W(m,n)(X). Now, ops(F1 · · ·Fq−1) = {f} or F1 = Fq = g. Since
σt1,t2 is idempotent, we have that

t2 = σ̂t1,t2 [t2]

= σ̂t1,t2 [t
′
2]

= σ̂t1,t2 [g(s1, . . . , sn)]

= Sn(σt1,t2(g), σ̂t1,t2 [s1], . . . , σ̂t1,t2 [sn])

= Sn(t2, σ̂t1,t2 [s1], . . . , σ̂t1,t2 [sn]).

From the last equality, Sn(t2, σ̂t1,t2 [s1], . . . , σ̂t1,t2 [sn]) = t2, we consider the fol-
lowing cases.

(i) If xj ∈ var(t2) and sj ∈ X where 1 ≤ j ≤ n, then we replace xj in the
term t2 by σ̂t1,t2 [sj ]. Since σ̂t1,t2 [t2] = t2, we have that σ̂t1,t2 [sj] = xj . Thus,
sj = xj.

(ii) If xj ∈ var(t2) and sj ∈ W(m,n)(X) r X where 1 ≤ j ≤ n, then sj =
f(r1, . . . , rm) or sj = g(r′1, . . . , r

′
n), where r1, . . . , rm, r′1, . . . , r

′
n ∈ W(m,n)(X).

Suppose that sj = g(r′1, . . . , r
′
n), where r′1, . . . , r

′
n ∈ W(m,n)(X). Then, we

have that

t2 = σ̂t1,t2 [t2]

= σ̂t1,t2 [t
′
2]

= σ̂t1,t2 [g(s1, . . . , sj , . . . , sn)]

= Sn(σt1,t2(g), σ̂t1 ,t2 [s1], . . . , σ̂t1,t2 [sj], . . . , σ̂t1,t2 [sn])

= Sn(t2, σ̂t1,t2 [s1], . . . , σ̂t1,t2 [sj], . . . , σ̂t1,t2 [sn]).

Since xj ∈ var(t2), we replace xj in the term t2 by σ̂t1,t2 [sj]. We see that the
term Sn(t2, σ̂t1,t2 [s1], . . . , σ̂t1,t2 [sj ], . . . , σ̂t1,t2 [sn]) is longer than the term t2 since
sj = g(r′1, . . . , r

′
n) is a subterm of t′2. Hence, σ̂t1,t2 [t2] 6= t2, this is a contradic-

tion. Thus, sj = f(r1, . . . , rm) where r1, . . . , rm ∈ W(m,n)(X). Next, we show
that ops(P i(sj)) = {f}. Suppose that ops(P i(sj)) 6= {f}. By the definition of
P i(t), we have that ops(P i(sj)) 6= ∅. Thus, there is P i(sj) = F1 · · ·Fk for some
k ∈ N such that Fq = g for some 1 ≤ q ≤ k. Let l be the smallest positive
integer such that Fl = g with the subterm t′3 of sj where t′3 = g(s′1, . . . , s

′
n) and
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s′1, . . . , s
′
n ∈ W(m,n)(X). Now, ops(F1 · · ·Fq−1) = {f} or F1 = Fq = g. Since

σt1,t2 is idempotent, we have that

t2 = σ̂t1,t2 [t2]

= σ̂t1,t2 [t
′
2]

= σ̂t1,t2 [g(s1, . . . , sj , . . . , sn)]

= Sn(σt1,t2(g), σ̂t1 ,t2 [s1], . . . , σ̂t1,t2 [sj], . . . , σ̂t1,t2 [sn])

= Sn(t2, σ̂t1,t2 [s1], . . . , σ̂t1,t2 [sj], . . . , σ̂t1,t2 [sn]).

Since xj ∈ var(t2), we replace xj in the term t2 by σ̂t1,t2 [sj]. We see that the
term Sn(t2, σ̂t1,t2 [s1], . . . , σ̂t1,t2 [sj ], . . . , σ̂t1,t2 [sn]) is longer than the term t2 since
t′3 = g(s′1, . . . , s

′
n) is a subterm of sj . Hence, σ̂t1,t2 [t2] 6= t2, this is a contradiction.

Thus, ops(P i(sj)) = {f}. Finally, we assume thatM i(sj) = xl where l 6= j. Since
ops(P i(sj)) = {f}, then we have that

t2 = σ̂t1,t2 [t2]

= σ̂t1,t2 [t
′
2]

= Sn(σt1,t2(g), σ̂t1,t2 [s1], . . . , σ̂t1,t2 [sj−1],

Sn(σt1,t2(f), σ̂t1,t2 [r1], . . . , σ̂t1,t2 [ri−1], xl, σ̂t1,t2 [ri+1], . . . , σ̂t1,t2 [rm]),

σ̂t1,t2 [sj+1], . . . , σ̂t1,t2 [sn])

= Sn(t2, σ̂t1,t2 [s1], . . . , σ̂t1,t2 [sj−1], xl, σ̂t1,t2 [sj+1], . . . , σ̂t1,t2 [sn]).

Since xj ∈ var(t2), we replace xj in the term t2 by xl. This is a contradiction
since σ̂t1,t2 [t2] = t2. Therefore, M

i(sj) = xj.

(2) ⇒ (1): In P i(t2), let l be the smallest positive integer such that Fl = g

where 1 ≤ l ≤ k with the subterm t′3 of t2 where t′3 = g(s̄1, . . . , s̄n). Then
ops(F1 · · ·Fq−1) = {f} or F1 = Fq = g and

σ̂t1,t2 [t2] = σ̂t1,t2 [t
′
3]

= Sn(σt1,t2(g), σ̂t1,t2 [s̄1], . . . , σ̂t1,t2 [s̄n])

= Sn(t2, σ̂t1,t2 [s̄1], . . . , σ̂t1,t2 [s̄n]).

We consider these two cases.

(i) If xj ∈ var(t2) and s̄j ∈ X where 1 ≤ j ≤ n, then we replace xj in the term
t2 by xj.

(ii) If xj ∈ var(t2) where 1 ≤ j ≤ n and sj ∈ W(m,n)(X) rX, then we replace
xj in the term t2 by xj since ops(P i(sj)) = {f} and M i(sj) = xj .

It follows that Sn(t2, σ̂t1,t2 [s̄1], . . . , σ̂t1,t2 [s̄n]) = t2. Thus, σt1,t2 is idempotent.
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On the other hand, we obtain the following proposition.

Proposition 6. Let σt1,t2 ∈ WPG(m,n) r PG(m,n), where t1, t2 ∈ W(m,n)(X),
t2 = xi ∈ Xn, op(t1) > 1 and P i(t1) = F1 · · ·Fk where Fl ∈ {f, g}, 1 ≤ l ≤ k.

Then the following statements are equivalent:

(1) σt1,t2 is idempotent;

(2) in P i(t1) there exists the smallest positive integer l ∈ {1, . . . , k} such that

Fl = f with the subterm t′1 of t1 where t′1 = f(s1, . . . , sm) such that sp ∈
W(m,n)(X) and 1 ≤ p ≤ m, and the following conditions are satisfied:

(i) if xj ∈ var(t1) and sj ∈ X where 1 ≤ j ≤ m, then sj = xj ;

(ii) if xj ∈ var(t1) and sj ∈ W(m,n)(X) r X where 1 ≤ j ≤ m, then

ops(P i(sj)) = {g} and M i(sj) = xj.

Lemma 7. Let σt1,t2 ∈ WPG(m,n) r PG(m,n), where t1, t2 ∈ W(m,n)(X). If

t1 = xi ∈ X rXm, op(t2) > 1 and σt1,t2 is idempotent, then firstop(t2) = g.

Proof. Suppose that firstop(t2) = f . Then t2 = f(s1, . . . , sm) where s1, . . . , sm ∈
W(m,n)(X) and they are not all variables. Consider

t2 = σ̂t1,t2 [t2]

= Sm(σt1,t2(f), σ̂t1,t2 [s1], . . . , σ̂t1,t2 [sm])

= Sm(xi, σ̂t1,t2 [s1], . . . , σ̂t1,t2 [sm])

= xi.

This is a contradiction. Thus, firstop(t2) = g.

Proposition 8. Let σt1,t2 ∈ WPG(m,n) r PG(m,n), where t1, t2 ∈ W(m,n)(X).
Let t1 = xi ∈ X r Xm and op(t2) > 1. Then the following statements are

equivalent:

(1) σt1,t2 is idempotent;

(2) t2 = g(s1, . . . , sn) where sr ∈ W(m,n)(X), 1 ≤ r ≤ n, and if xj ∈ var(t2)
where 1 ≤ j ≤ n, then sj ∈ X and sj = xj .

Proof. (1) ⇒ (2): By Lemma 7, we have that t2 = g(s1, . . . , sn) where sr ∈
W(m,n)(X) and 1 ≤ r ≤ n. Assume that xj ∈ var(t2) where 1 ≤ j ≤ n. Let
sj 6∈ X. Then either sj = f(s′1, . . . , s

′
m) or sj = g(s′′1 , . . . , s

′′
n) where s′k, s

′′
l ∈

W(m,n)(X), 1 ≤ k ≤ m and 1 ≤ l ≤ n.
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• If sj = f(s′1, . . . , s
′
m) where s′k ∈ W(m,n)(X) and 1 ≤ k ≤ m, then we consider

σ̂t1,t2 [t2] = Sn(σt1,t2(g), σ̂t1 ,t2 [s1], . . . , σ̂t1,t2 [sj ], . . . , σ̂t1,t2 [sn])

= Sn(t2, σ̂t1,t2 [s1], . . . , S
m(σt1,t2(f), σ̂t1,t2 [s

′
1], . . . , σ̂t1,t2 [s

′
m]),

. . . , σ̂t1,t2 [sn])

= Sn(t2, σ̂t1,t2 [s1], . . . , σ̂t1,t2 [sj−1], xi, σ̂t1,t2 [sj+1], . . . , σ̂t1,t2 [sn]).

Since xj ∈ var(t2), then we replace xj in the term t2 by xi. It follows that
σ̂t1,t2 [t2] 6= t2.

• If sj = g(s′′1 , . . . , s
′′
n) where s′′l ∈ W(m,n)(X) and 1 ≤ l ≤ n, then we consider

σ̂t1,t2 [t2] = Sn(σt1,t2(g), σ̂t1 ,t2 [s1], . . . , σ̂t1,t2 [sj ], . . . , σ̂t1,t2 [sn])

= Sn(t2, σ̂t1,t2 [s1], . . . , σ̂t1,t2 [sj−1],

Sn(σt1,t2(g), σ̂t1 ,t2 [s
′′
1], . . . , σ̂t1,t2 [s

′′
n]), σ̂t1,t2 [sj+1], . . . , σ̂t1,t2 [sn]).

Since xj ∈ var(t1), we replace xj in the term t2 by

t = Sn(σt1,t2(g), σ̂t1,t2 [s
′′
1 ], . . . , σ̂t1,t2 [s

′′
n]).

After replacing, the term

Sn(t2, σ̂t1,t2 [s1], . . . , σ̂t1,t2 [sj−1], t, σ̂t1,t2 [sj+1], . . . , σ̂t1,t2 [sn])

must be longer than the term t2. Thus, σ̂t1,t2 [t2] 6= t2.

Altogether, we have sj ∈ X. If sj = xl where l 6= j, then we consider

σ̂t1,t2 [t2] = Sn(σt1,t2(g), σ̂t1,t2 [s1], . . . , σ̂t1,t2 [sj], . . . , σ̂t1,t2 [sn])

= Sn(t2, σ̂t1,t2 [s1], . . . , σ̂t1,t2 [sj−1], xl, σ̂t1,t2 [sj+1], . . . , σ̂t1,t2 [sn]).

Since xj ∈ var(t2), we replace xj in the term t2 by xl. This implies that σ̂t1,t2 [t2] 6=
t2. This is a contradiction. Therefore, xj = sj.

(2) ⇒ (1): It is clear that σ̂t1,t2 [t1] = t1. We now consider σ̂t1,t2 [t2] =
σ̂t1,t2 [g(s1, . . . , sn)] = Sn(t2, σ̂t1,t2 [s1], . . . , σ̂t1,t2 [sn]). If xj ∈ var(t2) where 1 ≤
j ≤ n, we replace xj in the term t2 by σ̂t1,t2 [sj ] = xj. Hence, σ̂t1,t2 [t2] = t2.

Similarly, we obtain the following lemma and proposition.

Lemma 9. Let σt1,t2 ∈ WPG(m,n) r PG(m,n), where t1, t2 ∈ W(m,n)(X). If

t2 = xi ∈ X rXn, op(t1) > 1 and σt1,t2 is idempotent, then firstop(t1) = f .
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Proposition 10. Let σt1,t2 ∈ WPG(m,n)rPG(m,n), where t1, t2 ∈ W(m,n)(X).
Let t2 = xi ∈ X r Xn and op(t1) > 1. Then the following statements are

equivalent:

1. σt1,t2 is idempotent;

2. t1 = f(s1, . . . , sm) where sr ∈ W(m,n)(X), 1 ≤ r ≤ m, and if xj ∈ var(t1)
where 1 ≤ j ≤ m, then sj ∈ X and sj = xj .

4. Regular elements of weak projection hypersubstitutions

An element a of a semigroup S is regular [1] if there is x ∈ S such that a = axa. In
this section, we give some sufficient conditions for a weak projection generalized
hypersubstitution of type (m,n) to be regular.

Proposition 11. Let σt1,t2 be a weak projection generalized hypersubstitution of

type (m,n). Then the following statements hold.

(i) If t1 ∈ X and op(t2) = 1, then σt1,t2 is regular.

(ii) If t2 ∈ X and op(t1) = 1, then σt1,t2 is regular.

Proof. We prove only (i). For (ii) can be proved using similar arguments. As-
sume that t1 ∈ X and op(t2) = 1. If t2 = f(s1, . . . , sm) and xj ∈ var(t2),
1 ≤ j ≤ m, then we put t4 = t1 and t3 = g(s̄1, . . . , s̄n) where s̄j = sk if xj = sk
for 1 ≤ j, k ≤ m and s̄j′ = xj′ if xj′ 6∈ var(t2) for 1 ≤ j′ ≤ n. By simple
calculation, we obtain σt1,t2 ◦G σt3,t4 ◦G σt1,t2 = σt1,t2 . If t2 = g(s1, . . . , sn) and
xj ∈ var(t2), 1 ≤ j ≤ n, then we put t3 = t1 and t4 = g(s̄1, . . . , s̄n) where s̄j = xk
if xj = sk for 1 ≤ j, k ≤ n and s̄j′ = xj′ if xj′ 6∈ var(t2) for 1 ≤ j′ ≤ n. By simple
calculation, we obtain σt1,t2 ◦G σt3,t4 ◦G σt1,t2 = σt1,t2 . That is, σt1,t2 is regular.

Proposition 12. Let σt1,t2 be a weak projection generalized hypersubstitution

of type (m,n) where t1 = x ∈ X, op(t2) > 1 and t2 = g(s1, . . . , sn) for sp ∈
W(m,n)(X), 1 ≤ p ≤ n. Then σt1,t2 is regular if one of the following conditions

are satisfied:

(i) if xj ∈ var(t2), 1 ≤ j ≤ n, then sk = xj for some 1 ≤ k ≤ n;

(ii) if xj ∈ var(t2) where 1 ≤ j ≤ n, then ops(P fix(sk)) = {f} and Mfix(sk) = xj
for some 1 ≤ k ≤ n and fix ∈ N.

Proof. To find σt3,t4 ∈ WPG(m,n) such that σt1,t2 ◦G σt3,t4 ◦G σt1,t2 = σt1,t2 . It
is clear that (σt1,t2 ◦G σt3,t4 ◦G σt1,t2)(f) = σt1,t2(f) for all σt3,t4 ∈ WPG(m,n)
since t1 is a variable. Thus, we have to find σt3,t4 ∈ WPG(m,n) such that
(σt1,t2 ◦G σt3,t4 ◦G σt1,t2)(g) = σt1,t2(g). By assumption, we put t3 = xfix and
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t4 = g(s̄1, . . . , s̄n) where s̄j = xk and s̄j′ = xj′ if xj′ 6∈ var(t2), 1 ≤ j′ ≤ n. It
follows that

(σt1,t2 ◦G σt3,t4 ◦G σt1,t2)(g) = σ̂t1,t2 [σ̂t3,t4 [t2]] = σ̂t1,t2 [g(x1, . . . , xn)] = t2.

Therefore, σt1,t2 is a regular.

Proposition 13. Let σt1,t2 be a weak projection generalized hypersubstitution

of type (m,n) where t1 = x ∈ X, op(t2) > 1 and t2 = f(s1, . . . , sm) for sp ∈
W(m,n)(X), 1 ≤ p ≤ m. Then σt1,t2 is regular if one of the following conditions

are satisfied:

(i) if xj ∈ var(t2), 1 ≤ j ≤ n, then sk = xj for some 1 ≤ k ≤ m;

(ii) if xj ∈ var(t2) where 1 ≤ j ≤ m, then ops(P fix(sk)) = {g} and Mfix(sk) =
xj for some 1 ≤ k ≤ m and fix ∈ N.

Similarly, we obtain the following propositions.

Proposition 14. Let σt1,t2 be a weak projection generalized hypersubstitution

of type (m,n) where t2 = x ∈ X, op(t1) > 1 and t1 = f(s1, . . . , sm) for sp ∈
W(m,n)(X), 1 ≤ p ≤ m. Then σt1,t2 is regular if one of the following conditions

are satisfied:

(i) if xj ∈ var(t1), 1 ≤ j ≤ m, then sk = xj for some 1 ≤ k ≤ m;

(ii) if xj ∈ var(t1) where 1 ≤ j ≤ m, then ops(P fix(sk)) = {g} and Mfix(sk) =
xj for some 1 ≤ k ≤ m and fix ∈ N.

Proof. The proof is similar to Proposition 12 by choosing t3 = f(s̄1, . . . , s̄m)
where s̄j = xk and s̄j′ = xj′ if xj′ 6∈ var(t2), 1 ≤ j′ ≤ m and t4 = fix.

Proposition 15. Let σt1,t2 be a weak projection generalized hypersubstitution

of type (m,n) where t2 = x ∈ X, op(t1) > 1 and t1 = g(s1, . . . , sn) for sp ∈
W(m,n)(X), 1 ≤ p ≤ n. Then σt1,t2 is regular if one of the following conditions

are satisfied:

(i) if xj ∈ var(t1), 1 ≤ j ≤ n, then sk = xj for some 1 ≤ k ≤ n;

(ii) if xj ∈ var(t1) where 1 ≤ j ≤ n, then ops(P fix(sk)) = {f} and Mfix(sk) = xj
for some 1 ≤ k ≤ n and fix ∈ N.
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5. Conclusion and open problems

The theory of strong hyperidentities and strong hypervarieties is based on the
monoid HypG(τ) of a fixed type τ . Moreover, the algebraic properties of the
monoidHypG(τ) of a fixed type τ can be used to describe the algebraic properties
of tree transformations, (see [4, 11]). Theses reasons demonstrate the importance
of studying the monoid properties ofHypG(τ) and its submonoids. For our future
research, we will determine all maximal idempotent submonoids of the monoid of
weak projection generalized hypersubstitutions of type (m,n), where m,n ≥ 1.
We pose the following open problems.

1. Give the characterization of a weak projection generalized hypersubstitu-
tions of type (m,n) being regular.

2. Determine Green’s relations on HypG(m,n).
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