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Abstract

A 1955 result of J. Jakub́ık states that for the prime intervals p and q of a
finite lattice, con(p) ≥ con(q) iff p is congruence-projective to q (via intervals
of arbitrary size). The problem is how to determine whether con(p) ≥ con(q)
involving only prime intervals.

Two recent papers approached this problem in different ways. G. Czédli’s
used trajectories for slim rectangular lattices—a special subclass of slim,
planar, semimodular lattices. I used the concept of prime-projectivity for
arbitrary finite lattices. In this note I show how my approach can be used
to reprove Czédli’s result and generalize it to arbitrary slim, planar, semi-
modular lattices.
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1. Introduction

To describe the congruence lattice, ConL, of a finite lattice L, note that a prime
interval p of L generates a join-irreducible congruence con(p), and conversely.
See the discussion on pages 213 and 214 of LTF (reference [15]). So if we can
determine when con(p) ≥ con(q) holds for the prime intervals p and q of L, then
we know the lattice ConL up to isomorphism.

The following result of Jakub́ık [32] (see Lemma 238 in LTF) accomplishes
this goal, where ⇒ is congruence-projectivity; see Section 2.

http://dx.doi.org/10.7151/dmgaa.1280
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Lemma 1. Let L be a finite lattice and let p and q be prime intervals in L. Then

con(p) ≥ con(q) iff p ⇒ q.

Jakub́ık’s condition is easy to visualize; see Figure 1. Even though p and q are
prime intervals, congruence-projectivity goes through arbitrary large intervals.

Figure 1. Illustrating Jakub́ık’s condition for con(p) ≥ con(q).

A rectangular lattice is a planar semimodular lattice L with exactly two
doubly-irreducible elements on the boundary of L that are complementary and
distinct from 0 and 1, see Grätzer and Knapp [26]. Although rectangular lattices
are very special, from the point of view of congruence lattices they are quite
general. Every finite distributive lattice can be represented as the congruence
lattice of a rectangular lattice, see Grätzer and Knapp [26].

A rectangular lattice is slim if it contains no M3 as a sublattice.

For slim rectangular lattices, Czédli [1] approached the problem of having to
use arbitrary large intervals in the congruence-projectivities through the use of
trajectories.

In a planar semimodular lattice L, two prime intervals of L are consecutive

if they are opposite sides of a 4-cell (a covering C2
2 sublattice with no interior

element). As in Czédli and Schmidt [11], maximal sequences of consecutive prime
intervals form a trajectory, see Section 4. Any prime interval p in a trajectory T

defines the same congruence con(p) = con(T ), but not all prime intervals p with
con(p) = con(T ) are necessarily in T . So Czédli defines a quasi-ordering ≤C of
the trajectories utilizing only prime intervals, see Section 4.

The reflexive and transitive extension of ≤C defines a quasiordering ≤T on
the set of trajectories, which in turn, defines an ordering ≤. For a trajectory T ,
let T̂ denote the equivalence class containing T . By definition, T and T ′ are in
the same equivalence class, T̂ = T̂ ′, iff T ≤C T ′ and T ′ ≤C T . Let T̂raj (L)

denote the set of equivalence classes of trajectories of L. The set T̂raj(L) under
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the ordering ≤T forms an ordered set.

Czédli [1] proves the following result:

Theorem 2 (Trajectory Theorem for Slim Rectangular Lattices). Let L be a slim

rectangular lattice. The ordered set T̂rajL is isomorphic to J(ConL), the ordered

set of join-irreducible congruences of L, under the isomorphism T̂ 7→ con(T̂ ).

Since ≤C deals with prime intervals only, this resolves the problem for slim
rectangular lattices of determining when con(p) ≥ con(q) holds using prime in-
tervals only.

My paper [19] took a more elementary approach. For the prime intervals
p and q, it introduces the concept of prime-perspectivity, involving only the
two prime intervals. Prime-projectivity is the transitive extension of prime-
perspectivity. The Prime-projectivity Lemma in [19] states that con(p) ≥ con(q)
iff p is prime-projective to q, which involves only prime intervals. A stronger
form of this lemma for slim, planar, semimodular lattices, the Swing Lemma,
is also stated in [19] and verified in Grätzer [21]. Czédli applies in [2] the Tra-
jectory Theorem for Slim Rectangular Lattices to prove the Swing Lemma for
rectangular lattices.

In this paper, I show how the Swing Lemma can be used to verify the Tra-
jectory Theorem for Slim Rectangular Lattices and generalize it to slim, planar,
semimodular lattices.

1.1. References

Grätzer and Knapp [23]–[27] started the theory of slim planar semimodular lat-
tices; the work was continued in Czédli and Schmidt [12] and [13]. There has been
a lot of activity in this field, see an overview in Czédli and Grätzer [9] (Chapter 4
of the volume [30], Grätzer and Wehrung eds.) and Grätzer [17] (Chapter 5 of
the volume [30]).

In the Bibliography we list the more recent contributions to this topic that
did not make it into [30].

1.2. Outline

In Section 2, we introduce and illustrate the basic concepts. Then we define the
swing relation and state the Swing Lemma. In Section 3, we analyze the Swing
Lemma, making a number of easy observations and deriving some elementary
consequences. We introduce trajectories in Section 4. The Trajectory Theorem
is proved for slim, planar, semimodular lattices in Section 5.
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1.3. Chronology

This paper was originally written in 2014, a part of a sequence of papers (see
Section 1.1) by Gábor Czédli and myself, studying how congruences spread in
planar semimodular lattices.

The final version was submitted to arXiv in Aug. 2014 (arXiv:1406.0439v3).
It was revised as guided by a detailed referee’s report in Oct. 2014. The revised
version was submitted to Research Gate.

The final version was not submitted for publication until 2018. I believe that
this paper is as relevant today as it was a little over three years ago.

2. The Swing Lemma

2.1. Notation and terminology

We use the concepts and notation of LTF.

For an ideal I, we use the notation I = [0I , 1I ].

We recall that [a, b] ∼ [c, d] denotes perspectivity, [a, b]
up
∼ [c, d] and [a, b]

dn
∼

[c, d] perspectivity up and down, see Figure 2; [a, b] ≈ [c, d] denotes projectivity,
the transitive closure of perspectivity.

Figure 2. Perspectivity: [a, b] ∼ [c, d] ([a, b]
up
∼ [c, d] on the left, [a, b]

dn
∼ [c, d] on the right).

[a, b] ։ [c, d] denotes congruence-perspectivity, [a, b]
up
։ [c, d] and [a, b]

dn
։ [c, d]

denote congruence-perspectivity up and down, see Figure 3; [a, b] ⇒ [c, d] denotes
congruence-projectivity, the transitive closure of congruence-perspectivity.

A planar semimodular lattice is called slim if it contains noM3 as a sublattice
(Grätzer and Knapp [23]–[27] and Czédli and Schmidt [11]). An SPS lattice is a
slim, planar, semimodular lattice.

Let L be an SPS lattice. For an element a ∈ L, the multifork at a is the
set of all prime intervals p with 1p = a, at least three in number. The prime
intervals in the multifork on the left and right are the exterior prime intervals;
the others are the interior prime intervals. We know that if p and q are interior
prime intervals of a multifork, then con(p) = con(q).
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Figure 3. Congruence-perspectivity: [a, b] ։ [c, d] ([a, b]
up
։ [c, d] on the left, [a, b]

dn
։ [c, d]

on the right).

2.2. The swing relation

Let L be an SPS lattice. For the prime intervals p and q of L, we define a binary
relation: p swings to q, in formula, p xq, if p and q are in a multifork and q is
an interior prime interval. See Figure 4 for two examples. Let p xq; if p is an

exterior prime interval of the multifork, we write p
exxq for an external swing and

if p is an interior prime interval of the multifork, we write p
in xq for an interior

swing.

Figure 4. Swing: p to q; two examples: an external swing and an interior swing.

Observation 3. If p
in xq, then q

in xp.

For the following result, see Grätzer [19, Lemma 15], [21], and Czédli [2].

Lemma 4 (Swing Lemma). Let L be an SPS lattice and let p and q be prime

intervals in L. Then conp ≥ conq iff there exists a prime interval r and sequence

of prime intervals

(1) r = r0, r1, . . . , rn = q
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such that p is up perspective to r, and ri is down perspective to or swings to ri+1

for i = 0, . . . , n− 1. In addition, the sequence (1) also satisfies

(2) 1r0 ≥ 1r1 ≥ · · · ≥ 1rn .

See Figure 5 for an illustration with n = 4.

Figure 5. con(p) ≥ con(q) in five steps. Step 1. p is up perspective to r = r0. Step 2.
r0 swings to r1. Step 3. r1 is down perspective to r2. Step 4. r2 swings to r3. Step 5. r3
is down perspective to r4 = q.

Czédli, Grätzer, and Lakser [10] generalizes the Swing Lemma to planar
semimodular lattices.

3. Analyzing the Swing Lemma

We now make a number of elementary observations about the Swing Lemma.

Observation 5. We associate with the sequence (1) of prime intervals, the se-

quence of binary relations ̺1, . . . , ̺n−1 such that

(3) r = r0 ̺1 r1 ̺2 · · · ̺n rn = q,

where each binary relation is one of
dn
∼,

exx,
in xand (here and in the subsequent

discussions) the relations
dn
∼ and

in xare proper, that is, they relate two distinct

prime intervals.
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Observation 6. We can assume that down perspectivities and swings alternate.

Indeed, the relations
dn
∼ and

in xare transitive, so
dn
∼ ◦

dn
∼=

dn
∼ and

in x◦
in x=

in x.

Observation 7. If ̺i =
dn
∼ for i < n, then ̺i+1 =

exx.

Observation 8. Let us assume that down perspectivities and swings alternate,

see Observation 6. Then ̺1 may be an interior swing. All the other swings in (3)
are exterior swings.

The last two observations follow from the fact that there is no down perspec-
tivity to an interior prime interval of a multifork in an SPS lattice.

If p
in xq (as in the second diagram of Figure 4), then conp = conq; neverthe-

less, interior swings play an important role, see the example in Figure 5.
In view of these observations, we derive some simple consequences of the

Swing Lemma.

Corollary 9. Let L be an SPS lattice. If q is an exterior and p is an interior

prime interval of a multifork, then con(q) > con(p).

Proof. We know that con(q) ≥ con(p). Let us assume that con(q) = con(p).
Then con(p) ≥ con(q) and by Observation 5 there is a sequence (3). We must
have p = r, because p is an interior prime interval. If the first step is a swing,
it is to another interior prime interval. So the next step is a down perspectivity.
By (2), none of the ri can reach the height of q for i = 2, . . . , n. This proves the
statement.

Corollary 10. Let p and q be prime intervals in an SPS lattice L. If con(p) =
con(q), then there is a prime interval r such that one of the following two condi-

tions hold (see Figure 6):

(i) p is up perspective to q and q is down perspective to r; in formula,

p
up
∼ r

dn
∼ q.

(ii) p swings interiorly to r and r is down perspective to q; in formula,

p
in xr

dn
∼ q.

Proof. If there are no swings in (1), we get (i).
For the sequence (3), by Corollary 9, there can be no external swings. By Ob-

servation 7, a perspectivity cannot be followed by an interior swing. So we are
left with (ii).
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Figure 6. con(p) = con(q).

Corollary 11. Let L be an SPS lattice. If s is an exterior prime interval and t

is an interior prime interval of a multifork, then con(s) ≻ con(t) in the order of

join-irreducible congruences of L.

Proof. Let s′ denote the other external prime interval. If t is a prime interval
with con(t) > con(p), then we can take a sequence as in (3). We can assume
that t = r. Working our way back from rn = p, the last step cannot be a down
perspectivity, because rn = p is an interior prime interval. So it must be a swing.
If it is an external swing, we get con(t) ≥ con(q) or con(t) ≥ con(q′). This proves
the statement.

4. Trajectories

Let L be an SPS lattice. The prime intervals p and q of L are consecutive, if they
are opposite sides of a 4-cell. A maximal sequence of consecutive prime intervals
form a trajectory, see, for example, the trajectories in Figure 7. This concept
originated in Czédli and Schmidt [12]. See also Czédli and Grätzer [9] for an
overview.

A trajectory is a straight-trajectory, which goes straight up or straight down
or a hat-trajectory, which goes up and then it goes down (at least one step each).
A trajectory does not branch out. Note that the left and right ends of a trajectory
are on the boundary of L. A trajectory T has a top prime interval, top(T ), with
the property that 0top(T ) ≥ 0q and 1top(T ) ≥ 1q for any q ∈ T . A trajectory P

swings to the trajectory Q, in formula P xQ, if there is a p ∈ P and q ∈ Q such
that p swings to q. We define con(T ) = con(p) for any p ∈ P.

Now we state the crucial definition of Czédli [1].
For the trajectories P 6= Q, let P ≤C Q if P is a hat trajectory, 1top(P) ≤

1top(Q), and 0top(P) � 0top(Q), see Figure 8. Slightly changing Czédli’s approach,
we define ≤T as the reflexive and transitive closure of ≤C . (The notation in
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Figure 7. Two trajectories.

Czédli [1] is different.) So for a trajectory P, we can define the closure, P̂, of P:
Q ∈ P̂ iff P ≤C Q and Q ≤C P, equivalently, iff P ≤T Q and Q ≤T P .

Figure 8. P ≤C Q.

Observe that if P,P ′ ∈ T̂ , then P ≤C Q iff P ′ ≤C Q; similarly, if Q,Q′ ∈ T̂ ,
then P ≤C Q iff P ≤C Q′. It follows that, by a slight abuse of terminology, we
can use ≤T as an ordering on T̂rajL.

For a trajectory T , we can define con(T̂ ) = con(T ). Indeed, let P,Q ∈ T̂ .
Then P ≤C Q and Q ≤C P, therefore, 1top(P) ≤ 1top(Q) and 1top(Q) ≤ 1top(P),
and so 1top(P) = 1top(Q). Hence, top(P) and top(Q) are interior edges of the
multifork at 1top(P) = 1top(Q) and so con(top(P)) = con(top(Q)), from which
con(P) = con(Q) follows.
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5. The Trajectory Theorem for SPS Lattices

We have seen that T̂rajL is an ordered set under the ordering ≤T and that all
the prime intervals p in a trajectory P ∈ T̂ generate the same join-irreducible
congruence con(p) of L. The join-irreducible congruences of L form an ordered
set J(ConL). It is the main result of Czédli [1] that these two ordered sets are
isomorphic.

Theorem 12 (Trajectory Theorem for SPS Lattices). Let L be an SPS lattice.

Then the ordered set T̂rajL is isomorphic to the ordered set J(ConL) under the

isomorphism T̂ 7→ con(T̂ ).

Proof. First, we prove that

(4) P ≤T Q implies that con(P) ≤ con(Q).

Since ≤T is the reflexive and transitive closure of ≤C , it is sufficient to prove
(4) for P ≤C Q. So assume the following: P 6= Q, P is a hat trajectory,
1top(P) ≤ 1top(Q), and 0top(P) � 0top(Q), see Figure 8. Then

0top(Q) ≡ 1top(Q) (mod conQ),

so
0top(Q) ∧ 1top(Q) ≡ 1top(Q) ∧ 1top(Q) = 1top(Q) (mod conQ).

Let 0top(Q) ∧ 1top(Q) ≤ a ≺ 1top(Q). We conclude that

con(Q) = con(top(Q)) ≥ con
(
[a, 1top(Q)]

)
≥ con(top(Q)) = con(P),

verifying (4).
Let a = 0top(Q) ∧ 1top(P), and remember that P is a hat trajectory by def-

inition. Since a < 1top(P), there is a prime interval r in the multifork with top
1top(P) such that a ≤ 0r. Hence, top(Q) is down-congruence perspective to r, and
we have con(Q) ≥ con(r). Since top(P) is an interior prime interval of our mul-
tifork, it follows that con(r) ≥ con(top(P)) = con(P). Thus, con(Q) ≥ con(P),
verifying (4).

Second, we prove the converse of (4):

(5) con(P) ≤ con(Q) implies that P ≤T Q.

Let r = top(P) and q = top(Q). By the Swing Lemma and Observation 5,
we get the sequence (3) of binary relations. Note that

(a) trajectories are closed with respect to up and down perspectivities;

(b) the equivalence class P̂ of a trajectory P is closed with respect to interior
swings;



Congruences and trajectories in planar semimodular lattices 141

(c) whenever ri−1 externally swings to ri, then ri is the top of a hat trajec-
tory Ri and (denoting the trajectory of ri−1 by Ri−1), we clearly have that
Ri−1 ≥C Ri.

This completes the proof of (5).
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[23] G. Grätzer and E. Knapp, Notes on planar semimodular lattices, I. Construction,
Acta Sci. Math. (Szeged) 73 (2007), 445–462.

[24] G. Grätzer and E. Knapp, A note on planar semimodular lattices, Algebra Univer-
salis 58 (2008) 497–499.
doi:10.1007/s00012-008-2089-6

[25] G. Grätzer and E. Knapp, Notes on planar semimodular lattices, II. Congruences,
Acta Sci. Math. (Szeged) 74 (2008) 37–47.

[26] G. Grätzer and E. Knapp, Notes on planar semimodular lattices, III. Rectangular
lattices, Acta Sci. Math. (Szeged) 75 (2009) 29–48.

[27] G. Grätzer and E. Knapp, Notes on planar semimodular lattices, IV. The size of a

minimal congruence lattice representation with rectangular lattices, Acta Sci. Math.
(Szeged) 76 (2010), 3–26.

[28] G. Grätzer, H. Lakser and E.T. Schmidt, Congruence lattices of finite semimodular

lattices, Canad. Math. Bull. 41 (1998), 290–297.
doi:10.4153/CMB-1998-041-7

[29] G. Grätzer and E.T. Schmidt, Ideals and congruence relations in lattices, Acta Math.
Acad. Sci. Hungar. 9 (1958) 137–175.
doi:10.1007/BF02023870

[30] G. Grätzer and F. Wehrung eds., Lattice Theory: Special Topics and Applications,
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