SPECTRA OF R-VERTEX JOIN AND R-EDGE JOIN OF TWO GRAPHS

Arpita Das and Pratima Panigrahi
Department of Mathematics
Indian Institute of Technology Kharagpur
India, 721302
e-mail: arpita.das1201@gmail.com pratima@maths.iitkgp.ernet.in

Abstract

The R-graph $\mathcal{R}(G)$ of a graph G is the graph obtained from G by introducing a new vertex u_{e} for each $e \in E(G)$ and making u_{e} adjacent to both the end vertices of e. In this paper, we determine the adjacency, Laplacian and signless Laplacian spectra of R-vertex join and R-edge join of a connected regular graph with an arbitrary regular graph in terms of their eigenvalues. Moreover, applying these results we construct some non-regular A-cospectral, L-cospectral and Q-cospectral graphs, and find the number of spanning trees.

Keywords: spectrum, cospectral graphs, R-vertex join, R-edge join.
2010 Mathematics Subject Classification: 05C50.

1. Introduction

All graphs considered in this paper are simple and undirected. Let $G=(V(G)$, $E(G)$) be a graph with vertex set $V(G)$ and edge set $E(G)$. The adjacency matrix of G, denoted by $A(G)$, is an $n \times n$ symmetric matrix such that $A(u, v)=$ 1 if and only if vertex u is adjacent to vertex v and 0 otherwise. If $D(G)$ is the diagonal matrix of vertex degrees of G, then the Laplacian matrix $L(G)$ and signless Laplacian matrix $Q(G)$ are defined as $L(G)=D(G)-A(G)$ and $Q(G)=D(G)+A(G)$ respectively. For a given matrix M of size n, we denote the characteristic polynomial $\operatorname{det}\left(x I_{n}-M\right)$ of M by $f_{M}(x)$. The eigenvalues of $A(G), L(G)$ and $Q(G)$ are denoted by $\lambda_{1}(G) \geq \lambda_{2}(G) \geq \cdots \geq \lambda_{n}(G), 0=$ $\mu_{1}(G) \leq \mu_{2}(G) \leq \cdots \leq \mu_{n}(G)$ and $\nu_{1}(G) \leq \nu_{2}(G) \leq \cdots \leq \nu_{n}(G)$ respectively
and the multiset of these eigenvalues is called as adjacency spectrum, Laplacian spectrum and signless Laplacian spectrum respectively. Two graphs are said to be A-cospectral, L-cospectral and Q-cospectral if they have the same A-spectrum, L-spectrum and Q-spectrum respectively.

Many works have already done on different kinds of graph operations. One of this is join of two graphs. The join [5] of two graphs is their disjoint union together with all the edges that connect all the vertices of the first graph with all the vertices of the second graph. The R-graph $\mathcal{R}(G)[2]$ of a graph G is the graph obtained from G by adding a vertex u_{e} and joining u_{e} to the end vertices of e for each $e \in E(G)$. The set of such new vertices is denoted by $I(G)$ i.e., $I(G)=V(\mathcal{R}(G)) \backslash V(G)$. In this paper we are interested on finding adjacency, Laplacian and signless Laplacian spectrum of some R-joins of graphs, which are defined below.

Definition. Let G_{1} and G_{2} be two vertex-disjoint graphs with number of vertices n_{1} and n_{2}, and edges m_{1} and m_{2}, respectively. Then
(i) The R-vertex join [7] of G_{1} and G_{2}, denoted by $G_{1}\langle\mathrm{v}\rangle G_{2}$, is the graph obtained from $\mathcal{R}\left(G_{1}\right)$ and G_{2} by joining each vertex of $V\left(G_{1}\right)$ with every vertex of $V\left(G_{2}\right)$. The graph $G_{1}\langle\mathrm{v}\rangle G_{2}$ has $n_{1}+n_{2}+m_{1}$ vertices and $3 m_{1}+n_{1} n_{2}+m_{2}$ edges.
(ii) The R-edge join [7] of G_{1} and G_{2}, denoted by $G_{1}\langle\mathrm{e}\rangle G_{2}$, is the graph obtained from $\mathcal{R}\left(G_{1}\right)$ and G_{2} by joining each vertex of $I\left(G_{1}\right)$ with every vertex of $V\left(G_{2}\right)$. The graph $G_{1}\langle\mathrm{e}\rangle G_{2}$ has $n_{1}+n_{2}+m_{1}$ vertices and $m_{1}\left(3+n_{2}\right)+m_{2}$ edges.

In [6], Indulal computed adjacency spectra of subdivision-vertex join and subdivision-edge join for two regular graph in terms of their spectra. In [8], Liu and Zhang generalized the result by determining the A-spectra, L-spectra and Q-spectra of subdivision-vertex and subdivision-edge join for a regular graph and an arbitrary graph and also constructed infinite family of new integral graphs. In [7], Liu et al. formulated the resistance distances and Kirchhoff index of $G_{1}\langle\mathrm{v}\rangle G_{2}$ and $G_{1}\langle\mathrm{e}\rangle G_{2}$ respectively. Motivated by these works, here we determine the adjacency, Laplacian and signless Laplacian spectrum of $G_{1}\langle\mathrm{v}\rangle G_{2}$ and $G_{1}\langle\mathrm{e}\rangle G_{2}$ for a connected regular graph G_{1} and an arbitrary regular graph G_{2} in terms of the corresponding eigenvalues of G_{1} and G_{2}. Some non-regular A-cospectral, L cospectral and Q-cospectral graphs are also exhibited in Example 21 in Section 2.

Our results are based upon Lemma 1 and 2 stated below.
Lemma 1 (Schur Complement [3]). Suppose that the order of all four matrices M, N, P and Q satisfy the rules of operations on matrices. Then we have,

$$
\begin{aligned}
\left|\begin{array}{cc}
M & N \\
P & Q
\end{array}\right| & =|Q|\left|M-N Q^{-1} P\right| \text {, if } Q \text { is a non-singular square matrix, } \\
& =|M|\left|Q-N M^{-1} P\right|, \text { if } M \text { is a non-singular square matrix. }
\end{aligned}
$$

Lemma 2 [8]. Let A be an $n \times n$ real matrix, and $J_{s \times t}$ denote the $s \times t$ matrix with all entries equal to one. Then

$$
\operatorname{det}\left(A+\alpha J_{n \times n}\right)=\operatorname{det}(A)+\alpha \mathbf{1}_{n}^{T} \operatorname{adj}(A) \mathbf{1}_{n},
$$

where α is an real number and $\operatorname{adj}(A)$ is the adjugate matrix of A.
For a graph G with n vertices and m edges, the vertex-edge incidence matrix $R(G)$ [4] is a matrix of order $n \times m$, with entry $r_{i j}=1$ if the $i^{\text {th }}$ vertex is incident to the $j^{\text {th }}$ edge, and 0 otherwise. In particular, if G is an r-regular graph then $R(G) R(G)^{T}=A(G)+r I_{n}$ and $R(G)^{T} R(G)=A(l(G))+2 I_{m}$, where $l(G)$ is the line graph.

Let $t(G)$ denote the number of spanning trees of G. It is well known [2] that if G is a connected graph on n vertices with Laplacian spectrum $0=\mu_{1}(G) \leq$ $\mu_{2}(G) \leq \cdots \leq \mu_{n}(G)$, then $t(G)=\frac{\mu_{2}(G) \cdots \mu_{n}(G)}{n}$.

2. Our results

Throughout the paper for any integer k, I_{k} denotes the identity matrix of size k, $\mathbf{1}_{k}$ denotes the column vector of size k whose all entries are 1 and $J_{n_{1} \times n_{2}}$ denotes $n_{1} \times n_{2}$ matrix whose all entries are 1 .
Definition [1, 9]. The M-coronal $\Gamma_{M}(x)$ of an $n \times n$ matrix M is defined as the sum of the entries of the matrix $\left(x I_{n}-M\right)^{-1}$ (if exists), that is,

$$
\Gamma_{M}(x)=\mathbf{1}_{n}^{T}\left(x I_{n}-M\right)^{-1} \mathbf{1}_{n} .
$$

The following Lemma is straightforward.
Lemma 3 [1]. If M is an $n \times n$ matrix with each row sum equal to a constant t, then $\Gamma_{M}(x)=\frac{n}{x-t}$.

Let G_{i} be a graph with n_{i} vertices and m_{i} edges. Let $V\left(G_{1}\right)=\left\{v_{1}, v_{2}, \ldots\right.$, $\left.v_{n_{1}}\right\}, I\left(G_{1}\right)=\left\{e_{1}, e_{2}, \ldots, e_{m_{1}}\right\}, V\left(G_{2}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n_{2}}\right\}$. Then $V\left(G_{1}\right) \cup I\left(G_{1}\right)$ $\cup V\left(G_{2}\right)$ is a partition of $V\left(G_{1}\langle\mathrm{v}\rangle G_{2}\right)$ and $V\left(G_{1}\langle\mathrm{e}\rangle G_{2}\right)$.

2.1. Spectra of R-vertex join

The degree of the vertices of $G_{1}\langle\mathrm{v}\rangle G_{2}$ are $d_{G_{1}\langle\mathrm{v}\rangle G_{2}}\left(v_{i}\right)=2 d_{G_{1}}\left(v_{i}\right)+n_{2}, d_{G_{1}\langle\mathrm{v}\rangle G_{2}}\left(e_{i}\right)$ $=2$ and $d_{G_{1}\langle\mathrm{v}\rangle G_{2}}\left(u_{i}\right)=d_{G_{2}}\left(u_{i}\right)+n_{1}$.

2.1.1. $\quad A$-spectra of R-vertex join

Let G_{i} be a graph on n_{i} vertices and m_{i} edges. Then the adjacency matrix of $G_{1}\langle\mathrm{v}\rangle G_{2}$ can be written as:

$$
A\left(G_{1}\langle\vee\rangle G_{2}\right)=\left(\begin{array}{ccc}
A\left(G_{1}\right) & R\left(G_{1}\right) & J_{n_{1} \times n_{2}} \\
R\left(G_{1}\right)^{T} & O_{m_{1}} & O_{m_{1} \times n_{2}} \\
J_{n_{2} \times n_{1}} & O_{n_{2} \times m_{1}} & A\left(G_{2}\right)
\end{array}\right) .
$$

Theorem 4. For $i=1,2$, let G_{i} be an r_{i}-regular graph with n_{i} vertices and m_{i} edges. Then the adjacency spectrum of $G_{1}\langle\mathrm{v}\rangle G_{2}$ consists of:
(i) The eigenvalue $\lambda_{j}\left(G_{2}\right)$ for every eigenvalue $\lambda_{j}\left(j=2,3, \ldots, n_{2}\right)$ of $A\left(G_{2}\right)$,
(ii) The eigenvalue 0 with multiplicity $m_{1}-n_{1}$,
(iii) Two roots of the equation $x^{2}-\lambda_{i}\left(G_{1}\right) x-r_{1}-\lambda_{i}\left(G_{1}\right)=0$ for each eigenvalue $\lambda_{i}\left(i=2,3, \ldots, n_{1}\right)$ of $A\left(G_{1}\right)$,
(iv) Three roots of the equation $x^{3}-\left(r_{1}+r_{2}\right) x^{2}-\left(2 r_{1}+n_{1} n_{2}-r_{1} r_{2}\right) x+2 r_{1} r_{2}=0$.

Proof. The adjacency characteristic polynomial of $G_{1}\langle\mathrm{v}\rangle G_{2}$ is

$$
\begin{aligned}
f_{A\left(G_{1}\langle v\rangle G_{2}\right)}(x) & =\operatorname{det}\left(x I_{n_{1}+n_{2}+m_{1}}-A\left(G_{1}\langle\mathrm{v}\rangle G_{2}\right)\right) \\
& =\operatorname{det}\left(\begin{array}{ccc}
x I_{n_{1}}-A\left(G_{1}\right) & -R\left(G_{1}\right) & -J_{n_{1} \times n_{2}} \\
-R\left(G_{1}\right)^{T} & x I_{m_{1}} & O_{m_{1} \times n_{2}} \\
-J_{n_{2} \times n_{1}} & O_{n_{2} \times m_{1}} & x I_{n_{2}}-A\left(G_{2}\right)
\end{array}\right) \\
& =\operatorname{det}\left(x I_{n_{2}}-A\left(G_{2}\right)\right) \operatorname{det}(S)=\prod_{i=1}^{n_{2}}\left\{x-\lambda_{j}\left(G_{2}\right)\right\} \operatorname{det}(S),
\end{aligned}
$$

where

$$
\begin{aligned}
S= & \left(\begin{array}{cc}
x I_{n_{1}}-A\left(G_{1}\right) & -R\left(G_{1}\right) \\
-R\left(G_{1}\right)^{T} & x I_{m_{1}}
\end{array}\right)-\binom{-J_{n_{1} \times n_{2}}}{O_{m_{1} \times n_{2}}}\left(x I_{n_{2}}-A\left(G_{2}\right)\right)^{-1}\left(-J_{n_{2} \times n_{1}} O_{n_{2} \times m_{1}}\right) \\
& =\left(\begin{array}{c}
x I_{n_{1}}-A\left(G_{1}\right)-\Gamma_{A\left(G_{2}\right)}(x) J_{n_{1} \times n_{1}} \\
-R\left(G_{1}\right)^{T} \\
-R\left(G_{1}\right) \\
x I_{m_{1}}
\end{array}\right) .
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{det}(S)= & x^{m_{1}} \operatorname{det}\left(x I_{n_{1}}-A\left(G_{1}\right)-\Gamma_{A\left(G_{2}\right)}(x) J_{n_{1} \times n_{1}}-\frac{1}{x} R\left(G_{1}\right) R\left(G_{1}\right)^{T}\right) \\
= & x^{m_{1}}\left[\operatorname{det}\left(x I_{n_{1}}-A\left(G_{1}\right)-\frac{1}{x} R\left(G_{1}\right) R\left(G_{1}\right)^{T}\right)\right. \\
& \left.-\Gamma_{A\left(G_{2}\right)}(x) \mathbf{1}_{n_{1}}^{T} \operatorname{adj}\left\{x I_{n_{1}}-A\left(G_{1}\right)-\frac{1}{x} R\left(G_{1}\right) R\left(G_{1}\right)^{T}\right\} \mathbf{1}_{n_{1}}\right] \\
= & x^{m_{1}} \operatorname{det}\left(x I_{n_{1}}-A\left(G_{1}\right)-\frac{1}{x} R\left(G_{1}\right) R\left(G_{1}\right)^{T}\right) \\
& {\left[1-\Gamma_{A\left(G_{2}\right)}(x) \mathbf{1}_{n_{1}}^{T}\left\{x I_{n_{1}}-A\left(G_{1}\right)-\frac{1}{x} R\left(G_{1}\right) R\left(G_{1}\right)^{T}\right\}^{-1} \mathbf{1}_{n_{1}}\right] } \\
= & x^{m_{1}} \operatorname{det}\left(x I_{n_{1}}-A\left(G_{1}\right)-\frac{1}{x}\left(r_{1} I_{n_{1}}+A\left(G_{1}\right)\right)\right) \\
& {\left[1-\Gamma_{A\left(G_{2}\right)}(x) \Gamma_{A\left(G_{1}\right)+\frac{1}{x} R\left(G_{1}\right) R\left(G_{1}\right)^{T}}(x)\right] } \\
= & x^{m_{1}} \prod_{i=1}^{n_{1}}\left\{x-\lambda_{i}\left(G_{1}\right)-\frac{1}{x}\left(r_{1}+\lambda_{i}\left(G_{1}\right)\right)\right\}\left[1-\frac{n_{2}}{\left(x-r_{2}\right)} \frac{n_{1}}{\left(x-r_{1}-\frac{2 r_{1}}{x}\right)}\right] .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
f_{A\left(G_{1}\langle v\rangle G_{2}\right)}(x)= & x^{m_{1}} \prod_{j=1}^{n_{2}}\left\{x-\lambda_{j}\left(G_{2}\right)\right\} \prod_{i=1}^{n_{1}}\left\{x-\lambda_{i}\left(G_{1}\right)-\frac{1}{x}\left(r_{1}+\lambda_{i}\left(G_{1}\right)\right)\right\} \\
& {\left[1-\frac{n_{2}}{\left(x-r_{2}\right)} \frac{n_{1}}{\left(x-r_{1}-\frac{2 r_{1}}{x}\right)}\right] } \\
= & x^{m_{1}-n_{1}} \prod_{j=2}^{n_{2}}\left\{x-\lambda_{j}\left(G_{2}\right)\right\} \prod_{i=2}^{n_{1}}\left\{x^{2}-\lambda_{i}\left(G_{1}\right) x-r_{1}-\lambda_{i}\left(G_{1}\right)\right\} \\
& \left\{x^{3}-\left(r_{1}+r_{2}\right) x^{2}-\left(2 r_{1}+n_{1} n_{2}-r_{1} r_{2}\right) x+2 r_{1} r_{2}\right\} .
\end{aligned}
$$

Corollary 5. Let G be an r-regular graph with n vertices and m edges. Then the adjacency spectrum of $G\langle\mathrm{v}\rangle K_{p, q}$ consists of:
(i) The eigenvalue 0 with multiplicity $m-n+p+q-2$.
(ii) Two roots of the equation $x^{2}-\lambda_{i}(G) x-r-\lambda_{i}(G)=0$ for each eigenvalue $\lambda_{i}(i=2,3, \ldots, n)$ of $A(G)$.
(iii) Four roots of the equation $x^{4}-r x^{3}-(p q+p n+q n+2 r) x^{2}+(p q r-2 p q n) x+$ $2 p q r=0$.

Corollary 6. (a) If H_{1} and H_{2} are A-cospectral regular graphs, and H is a regular graph, then $H_{1}\langle\mathrm{v}\rangle H$ and $H_{2}\langle\mathrm{v}\rangle H$; and $H\langle\mathrm{v}\rangle H_{1}$ and $H\langle\mathrm{v}\rangle H_{2}$ are A cospectral.
(b) If F_{1} and F_{2}; and H_{1} and H_{2} are A-cospectral regular graphs, then $F_{1}\langle\mathrm{v}\rangle H_{1}$ and $F_{2}\langle\mathrm{v}\rangle H_{2}$ are A-cospectral.

2.1.2. $\quad L$-spectra of R-vertex join

Let G_{i} be a graph on n_{i} vertices and m_{i} edges. Then the Laplacian matrix of $G_{1}\langle\mathrm{v}\rangle G_{2}$ is given by [7]:

$$
L\left(G_{1}\langle\mathrm{v}\rangle G_{2}\right)=\left(\begin{array}{ccc}
\left(r_{1}+n_{2}\right) I_{n_{1}}+L\left(G_{1}\right) & -R\left(G_{1}\right) & -J_{n_{1} \times n_{2}} \\
-R\left(G_{1}\right)^{T} & 2 I_{m_{1}} & O_{m_{1} \times n_{2}} \\
-J_{n_{2} \times n_{1}} & O_{n_{2} \times m_{1}} & n_{1} I_{n_{2}}+L\left(G_{2}\right)
\end{array}\right)
$$

Theorem 7. For $i=1,2$, let G_{i} be an r_{i}-regular graph with n_{i} vertices and m_{i} edges. Then the Laplacian spectrum of $G_{1}\langle\mathrm{v}\rangle G_{2}$ consists of:
(i) The eigenvalue $n_{1}+\mu_{j}\left(G_{2}\right)$ for every eigenvalue $\mu_{j}\left(j=2,3, \ldots, n_{2}\right)$ of $L\left(G_{2}\right)$.
(ii) The eigenvalue 2 with multiplicity $m_{1}-n_{1}$.
(iii) Two roots of the equation $x^{2}-\left(2+r_{1}+n_{2}+\mu_{i}\left(G_{1}\right)\right) x+2 n_{2}+3 \mu_{i}\left(G_{1}\right)=0$ for each eigenvalue $\mu_{i}\left(i=2,3, \ldots, n_{1}\right)$ of $L\left(G_{1}\right)$.
(iv) Three roots of the equation $x^{3}-\left(2+r_{1}+n_{1}+n_{2}\right) x^{2}-\left(2 n_{1}+2 n_{2}+r_{1} n_{1}\right) x=0$.

Proof. The proof of the theorem is similar to that of Theorem 4.
Corollary 8. For $i=1,2$, let G_{i} be an r_{i}-regular graph with n_{i} vertices and m_{i} edges. Then

$$
t\left(G_{1}\langle\mathrm{v}\rangle G_{2}\right)=\frac{2^{m_{1}-n_{1}} \cdot\left(2 n_{1}+2 n_{2}+r_{1} n_{1}\right) \cdot \prod_{i=2}^{n_{1}}\left(2 n_{2}+3 \mu_{i}\left(G_{1}\right)\right) \cdot \prod_{j=2}^{n_{2}}\left(n_{1}+\mu_{j}\left(G_{2}\right)\right)}{n_{1}+n_{2}+m_{1}} .
$$

Corollary 9. (a) If H_{1} and H_{2} are L-cospectral regular graphs, and H is a regular graph, then $H_{1}\langle\mathrm{v}\rangle H$ and $H_{2}\langle\mathrm{v}\rangle H$; and $H\langle\mathrm{v}\rangle H_{1}$ and $H\langle\mathrm{v}\rangle H_{2}$ are L cospectral.
(b) If F_{1} and F_{2}; and H_{1} and H_{2} are L-cospectral regular graphs, then $F_{1}\langle\mathrm{v}\rangle H_{1}$ and $F_{2}\langle\mathrm{v}\rangle H_{2}$ are L-cospectral.

2.1.3. $\quad Q$-spectra of R-vertex join

Let G_{i} be a graph on n_{i} vertices and m_{i} edges. Then the signless Laplacian matrix of $G_{1}\langle\mathrm{v}\rangle G_{2}$ can be obtained as:

$$
Q\left(G_{1}\langle\mathrm{v}\rangle G_{2}\right)=\left(\begin{array}{ccc}
\left(r_{1}+n_{2}\right) I_{n_{1}}+Q\left(G_{1}\right) & R\left(G_{1}\right) & J_{n_{1} \times n_{2}} \\
R\left(G_{1}\right)^{T} & 2 I_{m_{1}} & O_{m_{1} \times n_{2}} \\
J_{n_{2} \times n_{1}} & O_{n_{2} \times m_{1}} & n_{1} I_{n_{2}}+Q\left(G_{2}\right)
\end{array}\right)
$$

Theorem 10. For $i=1,2$, let G_{i} be an r_{i}-regular graph with n_{i} vertices and m_{i} edges. Then the signless Laplacian spectrum of $G_{1}\langle\mathrm{v}\rangle G_{2}$ consists of:
(i) The eigenvalue $n_{1}+\nu_{j}\left(G_{2}\right)$ for every eigenvalue $\nu_{j}\left(j=1,2, \ldots, n_{2}-1\right)$ of $Q\left(G_{2}\right)$.
(ii) The eigenvalue 2 with multiplicity $m_{1}-n_{1}$.
(iii) Two roots of the equation $x^{2}-\left(2+r_{1}+n_{2}+\nu_{i}\left(G_{1}\right)\right) x+2 r_{1}+2 n_{2}+\nu_{i}\left(G_{1}\right)=0$ for each eigenvalue $\nu_{i}\left(i=1,2, \ldots, n_{1}-1\right)$ of $Q\left(G_{1}\right)$.
(iv) Three roots of the equation $x^{3}-\left(2+3 r_{1}+2 r_{2}+n_{1}+n_{2}\right) x^{2}+\left(4 r_{1}+4 r_{2}+\right.$ $\left.2 n_{1}+2 n_{2}+2 r_{2} n_{2}+3 r_{1} n_{1}+6 r_{1} r_{2}\right) x-8 r_{1} r_{2}-4 r_{1} n_{1}-4 r_{2} n_{2}=0$.

Corollary 11. (a) If H_{1} and H_{2} are Q-cospectral regular graphs, and H is a regular graph, then $H_{1}\langle\mathrm{v}\rangle H$ and $H_{2}\langle\mathrm{v}\rangle H$; and $H\langle\mathrm{v}\rangle H_{1}$ and $H\langle\mathrm{v}\rangle H_{2}$ are Q cospectral.
(b) If F_{1} and F_{2}; and H_{1} and H_{2} are Q-cospectral regular graphs, then $F_{1}\langle\mathrm{v}\rangle H_{1}$ and $F_{2}\langle\mathrm{v}\rangle H_{2}$ are Q-cospectral.

2.2. Spectra of R-edge join

The degree of the vertices of $G_{1}\langle\mathrm{e}\rangle G_{2}$ are $d_{G_{1}\langle\mathrm{e}\rangle G_{2}}\left(v_{i}\right)=2 d_{G_{1}}\left(v_{i}\right), d_{G_{1}\langle\mathrm{e}\rangle G_{2}}\left(e_{i}\right)=$ $2+n_{2}$ and $d_{G_{1}\langle e\rangle G_{2}}\left(u_{i}\right)=d_{G_{2}}\left(u_{i}\right)+m_{1}$.

Lemma 12. For any real numbers $c, d>0$, we have

$$
\left(c I_{n}-d J_{n \times n}\right)^{-1}=\frac{1}{c} I_{n}+\frac{d}{c(c-n d)} J_{n \times n} .
$$

Proof. $\left(c I_{n}-d J_{n \times n}\right)^{-1}=\frac{a d j\left(c I_{n}-d J_{n \times n}\right)}{\operatorname{det}\left(c I_{n}-d J_{n \times n}\right)}=\frac{c^{n-2}(c-n d) I_{n}+c^{n-2} d J_{n \times n}}{c^{n-1}(c-n d)}=\frac{1}{c} I_{n}+$ $\frac{d}{c(c-n d)} J_{n \times n}$.

2.2.1. $\quad A$-spectra of R-edge join

Let G_{i} be a graph on n_{i} vertices and m_{i} edges. Then the adjacency matrix of $G_{1}\langle\mathrm{e}\rangle G_{2}$ can be written as:

$$
A\left(G_{1}\langle\mathrm{e}\rangle G_{2}\right)=\left(\begin{array}{ccc}
A\left(G_{1}\right) & R\left(G_{1}\right) & O_{m_{1} \times n_{2}} \\
R\left(G_{1}\right)^{T} & O_{m_{1}} & J_{n_{1} \times n_{2}} \\
O_{n_{2} \times m_{1}} & J_{n_{2} \times n_{1}} & A\left(G_{2}\right)
\end{array}\right)
$$

Theorem 13. For $i=1,2$, let G_{i} be an r_{i}-regular graph with n_{i} vertices and m_{i} edges. Then the adjacency spectrum of $G_{1}\langle\mathrm{e}\rangle G_{2}$ consists of:
(i) The eigenvalue $\lambda_{j}\left(G_{2}\right)$, for every eigenvalue $\lambda_{j}\left(j=2,3, \ldots, n_{2}\right)$ of $A\left(G_{2}\right)$.
(ii) The eigenvalue 0 with multiplicity $m_{1}-n_{1}$.
(iii) Two roots of the equation $x^{2}-\lambda_{i}\left(G_{1}\right) x-r_{1}-\lambda_{i}\left(G_{1}\right)=0$ for each eigenvalue $\lambda_{i}\left(i=2,3, \ldots, n_{1}\right)$ of $A\left(G_{1}\right)$.
(iv) Three roots of the equation $x^{3}-\left(r_{1}+r_{2}\right) x^{2}-\left(2 r_{1}+m_{1} n_{2}-r_{1} r_{2}\right) x+2 r_{1} r_{2}+$ $r_{1} m_{1} n_{2}=0$.

Proof. The adjacency characteristic polynomial of $G_{1}\langle\mathrm{e}\rangle G_{2}$ is

$$
\begin{aligned}
f_{A\left(G_{1}\langle\mathrm{e}\rangle G_{2}\right)}(x) & =\operatorname{det}\left(x I_{n_{1}+n_{2}+m_{1}}-A\left(G_{1}\langle\mathrm{e}\rangle G_{2}\right)\right) \\
& =\operatorname{det}\left(\begin{array}{ccc}
x I_{n_{1}}-A\left(G_{1}\right) & -R\left(G_{1}\right) & O_{n_{1} \times n_{2}} \\
-R\left(G_{1}\right)^{T} & x I_{m_{1}} & -J_{m_{1} \times n_{2}} \\
O_{n_{2} \times n_{1}} & -J_{n_{2} \times m_{1}} & x I_{n_{2}}-A\left(G_{2}\right)
\end{array}\right) \\
& =\operatorname{det}\left(x I_{n_{2}}-A\left(G_{2}\right)\right) \operatorname{det}(S)=\prod_{j=1}^{n_{2}}\left\{x-\lambda_{j}\left(G_{2}\right)\right\} \operatorname{det}(S)
\end{aligned}
$$

where

$$
\begin{aligned}
& S=\left(\begin{array}{cc}
x I_{n_{1}}-A\left(G_{1}\right) & -R\left(G_{1}\right) \\
-R\left(G_{1}\right)^{T} & x I_{m_{1}}
\end{array}\right)-\binom{O_{n_{1} \times n_{2}}}{-J_{m_{1} \times n_{2}}}\left(x I_{n_{2}}-A\left(G_{2}\right)\right)^{-1}\left(O_{n_{2} \times n_{1}}-J_{n_{2} \times m_{1}}\right) \\
&=\left(\begin{array}{cc}
x I_{n_{1}}-A\left(G_{1}\right) & -R\left(G_{1}\right) \\
-R\left(G_{1}\right)^{T} & x I_{m_{1}}-\Gamma_{A\left(G_{2}\right)}(x) J_{m_{1} \times m_{1}}
\end{array}\right) . \\
& \operatorname{det}(S)=\operatorname{det}\left(x I_{m_{1}}-\Gamma_{A\left(G_{2}\right)}(x) J_{m_{1} \times m_{1}}\right) \\
& \quad \operatorname{det}\left(x I_{n_{1}}-A\left(G_{1}\right)-R\left(G_{1}\right)\left(x I_{m_{1}}-\Gamma_{A\left(G_{2}\right)}(x) J_{m_{1} \times m_{1}}\right)^{-1} R\left(G_{1}\right)^{T}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =x^{m_{1}}\left(1-\Gamma_{A\left(G_{2}\right)}(x) \frac{m_{1}}{x}\right) \operatorname{det}\left[x I_{n_{1}}-A\left(G_{1}\right)\right. \\
& \left.-R\left(G_{1}\right)\left\{\frac{1}{x} I_{m_{1}}+\frac{\Gamma_{A\left(G_{2}\right)}(x)}{x\left(x-m_{1} \Gamma_{A\left(G_{2}\right)}(x)\right)} J_{m_{1} \times m_{1}}\right\} R\left(G_{1}\right)^{T}\right] \\
& =x^{m_{1}}\left(1-\Gamma_{A\left(G_{2}\right)}(x) \frac{m_{1}}{x}\right) \operatorname{det}\left(x I_{n_{1}}-A\left(G_{1}\right)-\frac{1}{x} R\left(G_{1}\right) R\left(G_{1}\right)^{T}\right. \\
& \left.-\frac{\Gamma_{A\left(G_{2}\right)}(x)}{x\left(x-m_{1} \Gamma_{A\left(G_{2}\right)}(x)\right)} R\left(G_{1}\right) J_{m_{1} \times m_{1}} R\left(G_{1}\right)^{T}\right) \\
& =x^{m_{1}}\left(1-\Gamma_{A\left(G_{2}\right)}(x) \frac{m_{1}}{x}\right) \operatorname{det}\left(x I_{n_{1}}-A\left(G_{1}\right)-\frac{1}{x} R\left(G_{1}\right) R\left(G_{1}\right)^{T}\right. \\
& \left.-\frac{\Gamma_{A\left(G_{2}\right)}(x)}{x\left(x-m_{1} \Gamma_{A\left(G_{2}\right)}(x)\right)} r_{1}^{2} J_{n_{1} \times n_{1}}\right) \\
& =x^{m_{1}}\left(1-\Gamma_{A\left(G_{2}\right)}(x) \frac{m_{1}}{x}\right)\left[\operatorname{det}\left(x I_{n_{1}}-A\left(G_{1}\right)-\frac{1}{x} R\left(G_{1}\right) R\left(G_{1}\right)^{T}\right)\right. \\
& \left.-\frac{r_{1}^{2} \Gamma_{A\left(G_{2}\right)}(x)}{x\left(x-m_{1} \Gamma_{A\left(G_{2}\right)}(x)\right)} \mathbf{1}_{n_{1}}^{T} \operatorname{adj}\left(x I_{n_{1}}-A\left(G_{1}\right)-\frac{1}{x} R\left(G_{1}\right) R\left(G_{1}\right)^{T}\right) \mathbf{1}_{n_{1}}\right] \\
& =x^{m_{1}}\left(1-\Gamma_{A\left(G_{2}\right)}(x) \frac{m_{1}}{x}\right) \operatorname{det}\left(x I_{n_{1}}-A\left(G_{1}\right)-\frac{1}{x} R\left(G_{1}\right) R\left(G_{1}\right)^{T}\right) \\
& {\left[1-\frac{r_{1}^{2} \Gamma_{A\left(G_{2}\right)}(x)}{x\left(x-m_{1} \Gamma_{A\left(G_{2}\right)}(x)\right)} \mathbf{1}_{n_{1}}^{T}\left(x I_{n_{1}}-A\left(G_{1}\right)-\frac{1}{x} R\left(G_{1}\right) R\left(G_{1}\right)^{T}\right)^{-1} \mathbf{1}_{n_{1}}\right]} \\
& =x^{m_{1}}\left(1-\Gamma_{A\left(G_{2}\right)}(x) \frac{m_{1}}{x}\right) \operatorname{det}\left(x I_{n_{1}}-A\left(G_{1}\right)-\frac{1}{x}\left(r_{1} I_{n_{1}}+A\left(G_{1}\right)\right)\right) \\
& {\left[1-\frac{r_{1}^{2} \Gamma_{A\left(G_{2}\right)}(x) \Gamma_{A\left(G_{1}\right)+\frac{1}{x} R\left(G_{1}\right) R\left(G_{1}\right)} T^{(x)}}{x\left(x-m_{1} \Gamma_{A\left(G_{2}\right)}(x)\right)}\right]} \\
& =x^{m_{1}}\left(1-\frac{m_{1} n_{2}}{x\left(x-r_{2}\right)}\right) \prod_{i=1}^{n_{1}}\left\{x-\lambda_{i}\left(G_{1}\right)-\frac{1}{x}\left(r_{1}+\lambda_{i}\left(G_{1}\right)\right)\right\} \\
& {\left[1-\frac{r_{1}^{2} n_{1} n_{2}}{x\left(x-r_{2}\right)\left(x-\frac{m_{1} n_{2}}{x-r_{2}}\right)\left(x-r_{1}-\frac{2 r_{1}}{x}\right)}\right]} \\
& =x^{m_{1}-n_{1}}\left(\frac{x^{2}-r_{2} x-m_{1} n_{2}}{x\left(x-r_{2}\right)}\right) \prod_{i=1}^{n_{1}}\left\{x^{2}-\lambda_{i}\left(G_{1}\right) x-r_{1}-\lambda_{i}\left(G_{1}\right)\right\} \\
& {\left[1-\frac{r_{1}^{2} n_{1} n_{2}}{\left(x^{2}-r_{2} x-m_{1} n_{2}\right)\left(x^{2}-r_{1} x-2 r_{1}\right)}\right] .}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& f_{A\left(G_{1}(e) G_{2}\right)}(x) \\
&= x^{m_{1}-n_{1}}\left(\frac{x^{2}-r_{2} x-m_{1} n_{2}}{x\left(x-r_{2}\right)}\right) \prod_{j=1}^{n_{2}}\left\{x-\lambda_{j}\left(G_{2}\right)\right\} \prod_{i=1}^{n_{1}}\left\{x^{2}-\lambda_{i}\left(G_{1}\right) x-r_{1}-\lambda_{i}\left(G_{1}\right)\right\} \\
& {\left[1-\frac{r_{1}^{2} n_{1} n_{2}}{\left(x^{2}-r_{2} x-m_{1} n_{2}\right)\left(x^{2}-r_{1} x-2 r_{1}\right)}\right] } \\
&= x^{m_{1}-n_{1}}\left(\frac{x^{2}-r_{2} x-m_{1} n_{2}}{x\left(x-r_{2}\right)}\right) \prod_{j=1}^{n_{2}}\left\{x-\lambda_{j}\left(G_{2}\right)\right\} \prod_{i=1}^{n_{1}}\left\{x^{2}-\lambda_{i}\left(G_{1}\right) x-r_{1}-\lambda_{i}\left(G_{1}\right)\right\} \\
& {\left[\frac{\left(x^{2}-r_{2} x-m_{1} n_{2}\right)\left(x^{2}-r_{1} x-2 r_{1}\right)-r_{1}^{2} n_{1} n_{2}}{\left(x^{2}-r_{2} x-m_{1} n_{2}\right)\left(x^{2}-r_{1} x-2 r_{1}\right)}\right] } \\
&= x^{m_{1}-n_{1}} \prod_{j=2}^{n_{2}}\left\{x-\lambda_{j}\left(G_{2}\right)\right\} \prod_{i=2}^{n_{1}}\left\{x^{2}-\lambda_{i}\left(G_{1}\right) x-r_{1}-\lambda_{i}\left(G_{1}\right)\right\} \\
&\left\{x^{3}-\left(r_{1}+r_{2}\right) x^{2}-\left(2 r_{1}+m_{1} n_{2}-r_{1} r_{2}\right) x+2 r_{1} r_{2}+r_{1} m_{1} n_{2}\right\} .
\end{aligned}
$$

Corollary 14. Let G be an r-regular graph with n vertices and m edges. Then the adjacency spectrum of $G\langle\mathrm{e}\rangle K_{p, q}$ consists of:
(i) The eigenvalue 0 with multiplicity $m-n+p+q-2$,
(ii) Two roots of the equation $x^{2}-\lambda_{i}(G) x-r-\lambda_{i}(G)=0$ for each eigenvalue $\lambda_{i}(i=2,3, \ldots, n)$ of $A(G)$,
(iii) Four roots of the equation $x^{4}-r x^{3}-(p q+p m+q m+2 r) x^{2}+(p q r+p m r+$ $q m r-2 p q m) x+2 p q r+2 p q r m=0$.

Corollary 15. (a) If H_{1} and H_{2} are A-cospectral regular graphs, and H is a regular graph, then $H_{1}\langle\mathrm{e}\rangle H$ and $H_{2}\langle\mathrm{e}\rangle H$; and $H\langle\mathrm{e}\rangle H_{1}$ and $H\langle\mathrm{e}\rangle H_{2}$ are A cospectral.
(b) If F_{1} and F_{2}; and H_{1} and H_{2} are A-cospectral regular graphs, then $F_{1}\langle\mathrm{e}\rangle H_{1}$ and $F_{2}\langle\mathrm{e}\rangle \mathrm{H}_{2}$ are A-cospectral.

2.2.2. $\quad L$-spectra of R-edge join

Let G_{i} be a graph on n_{i} vertices and m_{i} edges. Then the Laplacian matrix of $G_{1}\langle\mathrm{e}\rangle G_{2}$ is given by [7]:

$$
L\left(G_{1}\langle\mathrm{e}\rangle G_{2}\right)=\left(\begin{array}{ccc}
r_{1} I_{n_{1}}+L\left(G_{1}\right) & -R\left(G_{1}\right) & O_{m_{1} \times n_{2}} \\
-R\left(G_{1}\right)^{T} & \left(2+n_{2}\right) I_{m_{1}} & -J_{n_{1} \times n_{2}} \\
O_{n_{2} \times m_{1}} & -J_{n_{2} \times n_{1}} & m_{1} I_{n_{2}}+L\left(G_{2}\right)
\end{array}\right) .
$$

Theorem 16. For $i=1,2$, let G_{i} be an r_{i}-regular graph with n_{i} vertices and m_{i} edges. Then the Laplacian spectrum of $G_{1}\langle\mathrm{e}\rangle G_{2}$ consists of:
(i) The eigenvalue $m_{1}+\mu_{j}\left(G_{2}\right)$ for every eigenvalue $\mu_{j}\left(j=2,3, \ldots, n_{2}\right)$ of $L\left(G_{2}\right)$,
(ii) The eigenvalue $2+n_{2}$ with multiplicity $m_{1}-n_{1}$,
(iii) Two roots of the equation $x^{2}-\left(2+r_{1}+n_{2}+\mu_{i}\left(G_{1}\right)\right) x+r_{1} n_{2}+3 \mu_{i}\left(G_{1}\right)+$ $n_{2} \mu_{i}\left(G_{1}\right)=0$ for each eigenvalue $\mu_{i}\left(i=2,3, \ldots, n_{1}\right)$ of $L\left(G_{1}\right)$,
(iv) Three roots of the equation $x^{3}-\left(2+r_{1}+m_{1}+n_{2}\right) x^{2}+\left(2 m_{1}+r_{1} n_{2}+\right.$ $\left.r_{1} m_{1}\right) x=0$.

Proof. The proof of the theorem is similar to that of Theorem 13.
Corollary 17. For $i=1,2$, let G_{i} be an r_{i}-regular graph with n_{i} vertices and m_{i} edges. Then
$t\left(G_{1}\langle\mathrm{e}\rangle G_{2}\right)=\frac{\left(2+n_{2}\right)^{m_{1}-n_{1}} \cdot\left(2 m_{1}+r_{1} n_{2}+r_{1} m_{1}\right) \cdot \prod_{i=2}^{n_{1}}\left(r_{1} n_{2}+3 \mu_{i}\left(G_{1}\right)+n_{2} \mu_{i}\left(G_{1}\right)\right) \cdot \prod_{j=2}^{n_{2}}\left(m_{1}+\mu_{j}\left(G_{2}\right)\right)}{n_{1}+n_{2}+m_{1}}$.
Corollary 18. (a) If H_{1} and H_{2} are L-cospectral regular graphs, and H is a regular graph, then $H_{1}\langle\mathrm{e}\rangle H$ and $H_{2}\langle\mathrm{e}\rangle H$; and $H\langle\mathrm{e}\rangle H_{1}$ and $H\langle\mathrm{e}\rangle H_{2}$ are Lcospectral.
(b) If F_{1} and F_{2}; and H_{1} and H_{2} are L-cospectral regular graphs, then $F_{1}\langle\mathrm{e}\rangle H_{1}$ and $\mathrm{F}_{2}\langle\mathrm{e}\rangle \mathrm{H}_{2}$ are L-cospectral.

2.2.3. Q-spectra of R-edge join

Let G_{i} be a graph on n_{i} vertices and m_{i} edges. Then the signless Laplacian matrix of $G_{1}\langle\mathrm{e}\rangle G_{2}$ can be obtained as:

$$
Q\left(G_{1}\langle\mathrm{e}\rangle G_{2}\right)=\left(\begin{array}{ccc}
r_{1} I_{n_{1}}+Q\left(G_{1}\right) & R\left(G_{1}\right) & O_{m_{1} \times n_{2}} \\
R\left(G_{1}\right)^{T} & \left(2+n_{2}\right) I_{m_{1}} & J_{n_{1} \times n_{2}} \\
O_{n_{2} \times m_{1}} & J_{n_{2} \times n_{1}} & m_{1} I_{n_{2}}+Q\left(G_{2}\right)
\end{array}\right)
$$

Theorem 19. For $i=1,2$, let G_{i} be an r_{i}-regular graph with n_{i} vertices and m_{i} edges. Then the signless Laplacian spectrum of $G_{1}\langle\mathrm{e}\rangle G_{2}$ consists of:
(i) The eigenvalue $m_{1}+\nu_{j}\left(G_{2}\right)$ for every eigenvalue $\nu_{j}\left(j=1,2, \ldots, n_{2}-1\right)$ of $Q\left(G_{2}\right)$,
(ii) The eigenvalue $2+n_{2}$ with multiplicity $m_{1}-n_{1}$,
(iii) Two roots of the equation $x^{2}-\left(2+r_{1}+n_{2}+\nu_{i}\left(G_{1}\right)\right) x+2 r_{1}+r_{1} n_{2}+3 \nu_{i}\left(G_{1}\right)+$ $n_{2} \nu_{i}\left(G_{1}\right)=0$ for each eigenvalue $\nu_{i}\left(i=1,2, \ldots, n_{1}-1\right)$ of $Q\left(G_{1}\right)$,
(iv) Three roots of the equation $x^{3}-\left(2+3 r_{1}+2 r_{2}+m_{1}+n_{2}\right) x^{2}+\left(4 r_{1}+4 r_{2}+\right.$ $\left.2 m_{1}+3 r_{1} n_{2}+2 r_{2} n_{2}+3 r_{1} m_{1}+6 r_{1} r_{2}\right) x-4 r_{1} m_{1}-8 r_{1} r_{2}-6 r_{1} r_{2} n_{2}=0$.

Corollary 20. (a) If H_{1} and H_{2} are Q-cospectral regular graphs, and H is a regular graph, then $H_{1}\langle\mathrm{e}\rangle H$ and $H_{2}\langle\mathrm{e}\rangle H$; and $H\langle\mathrm{e}\rangle H_{1}$ and $H\langle\mathrm{e}\rangle H_{2}$ are Q cospectral.
(b) If F_{1} and F_{2}; and H_{1} and H_{2} are Q-cospectral regular graphs, then $F_{1}\langle\mathrm{e}\rangle H_{1}$ and $F_{2}\langle\mathrm{e}\rangle \mathrm{H}_{2}$ are Q-cospectral.

Example 21. Let us consider A-cospectral regular graphs H_{1} and H_{2} [10] as given in Figure 1. These graphs are also L-cospectral and Q-cospectral, because they are regular graphs. In Figure 2 we present R-graphs of H_{1} and H_{2}.

Figure 1. Two A-cospectral regular graphs.

Figure 2. R-graph of H_{1} and H_{2}.

If we consider any regular graph G then $H_{1}\langle\mathrm{v}\rangle G$ and $H_{2}\langle\mathrm{v}\rangle G$ (respectively $H_{1}\langle\mathrm{e}\rangle G$ and $\left.H_{2}\langle\mathrm{e}\rangle G\right)$ are simultaneously A-cospectral, L-cospectral and Q-cospectral. In particular if $G=K_{2}$ with $V\left(K_{2}\right)=\{x, y\}$, then $H_{1}\langle\mathrm{v}\rangle K_{2}$ (respectively $H_{1}\langle\mathrm{e}\rangle K_{2}$) is obtained by making all unfilled (respectively filled) vertices of $\mathcal{R}\left(H_{1}\right)$ with both x and y. Similarly $H_{2}\langle\mathrm{v}\rangle K_{2}$ and $H_{2}\langle\mathrm{e}\rangle K_{2}$ can be obtained.

References

[1] S.Y. Cui and G.X. Tian, The spectrum and the signless Laplacian spectrum of coronae, Linear Algebra Appl. 437 (2012) 1692-1703. doi:10.1016/j.laa.2012.05.019
[2] D. Cvetković, M. Doob and H. Sachs, Spectra of Graphs-Theory and Applications, Third edition (Johann Ambrosius Barth, Heidelberg, 1995).
[3] D. Cvetković, P. Rowlinson and S. Simić, An Introduction to the Theory of Graph Spectra (Cambridge University Press, 2009).
[4] C. Godsil and G. Royle, Algebraic Graph Theory (Springer, New York, 2001).
[5] F. Harary, Graph Theory (Addison-Wesley, Reading, PA, 1969).
[6] G. Indulal, Spectra of two new joins of graphs and infinite families of integral graphs, Kragujevac J. Math. 36 (2012) 133-139.
[7] X. Liu, J. Zhou and C. Bu, Resistance distance and Kirchhoff index of R-vertex join and R-edge join of two graphs, Discrete Appl. Math. 187 (2015) 130-139. doi:10.1016/j.dam.2015.02.021
[8] X. Liu, Z. Zhang, Spectra of subdivision-vertex and subdivision-edge joins of graphs, in: Bull. Malays. Math. Sci. Soc., Sanming Zhou (Ed(s)), (Springer, 2017). doi:10.1007/s40840-017-0466-z
[9] C. McLeman and E. McNicholas, Spectra of coronae, Linear Algebra Appl. 435 (2011) 998-1007. doi:10.1016/j.laa.2011.02.007
[10] E.R. Vandam and W.H. Haemers, Which graphs are determined by their spectrum?, Linear Algebra Appl. 373 (2003) 241-272.
doi:10.1016/S0024-3795(03)00483-X

