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Abstract

Let h(x) be a non constant polynomial with rational coefficients. Our
aim is to introduce the h(x)-Chebyshev polynomials of the first and second
kind Tn and Un. We show that they are in a Q-vectorial subspace En(x) of
Q [x] of dimension n. We establish that the polynomial sequences (hkTn−k)k
and (hkUn−k)k, (0 ≤ k ≤ n− 1) are two bases of En(x) for which Tn and Un

admit remarkable integer coordinates.
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1. Introduction

The nth Chebyshev polynomials of the first and the second kind are respectively
defined by the following second order recurrences

Tn = 2xTn−1 − Tn−2 with T0 = 1 and T1 = x,

Un = 2xUn−1 − Un−2 with U0 = 1 and U1 = 2x.

For n ≥ 1, the explicit expressions of Tn and Un are given (see for instance
[4, 3]) by the following identities

http://dx.doi.org/10.7151/dmgaa.1278


80 M. Abchiche and H. Belbachir

Tn =

⌊n/2⌋
∑

k=0

(−1)k2n−2k−1 n

n− k

(

n− k

k

)

xn−2k,(1)

Un =

⌊n/2⌋
∑

k=0

(−1)k2n−2k

(

n− k

k

)

xn−2k.(2)

The Chebyshev polynomials of the first and the second kind admit respec-
tively the following exponential generating functions, see Cesarano [8] (we also
find in it the ordinary generating functions and some other generalizations, see
also [6]),

∑

n≥0

Tn (x)
tn

n!
= exp (tx) cos

(

t
√

1− x2
)

,

∑

n≥0

Un−1 (x)
tn

n!
=

exp (tx)√
1− x2

sin
(

t
√

1− x2
)

.

In [7], the integral representations of Chebyshev polynomials of the first and
second kind in terms of bivariate Hermite polynomials Hn (x, y) are established
(for the used version of Hermite polynomials see for instance Appell and Kampé
de Fériet [1]). Cesarano propose [6] a new extension of Chebyshev polynomials
via the integral representation as follows, for a real parameter α and the variables
x, y,

Un (x, y, α) =
1

n!

∫ ∞

0
exp (−αt) tnHn (2x,−y/t) dt,

Tn (x, y, α) =
1

2 (n− 1)!

∫ ∞

0
exp (−αt) tn−1Hn (2x,−y/t) dt,

where

Hn (x, y) =

⌊n/2⌋
∑

k=0

n!

(n− k)!

(

n− k

k

)

xn−2kyk.

Identities (1) and (2) give the decomposition of Tn and Un in the canonical basis
of En [x] (with dimension ⌊n/2⌋+1) of polynomials having the same parity with n
and of order≤ n.Our aim is to extend the results of Belbachir and Bencherif [2] by
considering a non constant polynomial h(x) instead of 2x. We were led, at the be-
ginning, to consider separately the situation h(x) = ax as a specific distinct case.
As an example, we establish that for (n ≥ 2, 1 ≤ k ≤ ⌊n/2⌋ , 0 ≤ l ≤ ⌊(n− 1)/2⌋)
the family Bn =

(

hn−2k, xhn−2l−1
)

is a basis in all situations, excluding the case
where h(x) = ax. This work is not a generalization of Belbachir and Bencherif
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work [2], but a complementary situation and an extension to the case h(x) 6= ax.
We have just to notice that all the results we give are independent of the degree
of h.

2. The generalized Chebyshev polynomials

We define, for every integer n, the h(x)-Chebyshev polynomials of the first and
second kind respectively by the recurrence sequences

Tn = h(x)Tn−1 − Tn−2 (T0 = 1 and T1 = x),(3)

Un = h(x)Un−1 − Un−2 (U0 = 1 and U1 = 2x).(4)

where h(x) is a non constant polynomial with rational coefficients.

The generating series of (Tn)n and (Un)n are given by

gTn
(t) =

1− t(h(x)− x)

1− h(x)t+ t2
and gUn

(t) =
1− t(h(x) − 2x)

1− h(x)t+ t2
.

According to these expressions, we establish the following result

Theorem 1. For every integer n ≥ 1,

Tn =

⌊n/2⌋
∑

k=0

(−1)k
k

n− k

(

n− k

k

)

h(x)n−2k +

⌊(n−1)/2⌋
∑

k=0

(−1)k
n− 2k

n− k

(

n− k

k

)

xh(x)n−2k−1,

(5)

Un =

⌊n/2⌋
∑

k=0

(−1)k
k

n− k

(

n− k

k

)

h(x)n−2k + 2

⌊(n−1)/2⌋
∑

k=0

(−1)k
n− 2k

n− k

(

n− k

k

)

xh(x)n−2k−1.

(6)

Proof. We have 1
1−ht+t2

=
∑

m≥0 t
m(h−t)m =

∑

m≥0

∑m
k=0

(m
k

)

(−1)khm−ktm+k.

Taking m+ k = n, we obtain 1
1−ht+t2

=
∑

n≥0

∑⌊n/2⌋
k=0

(

n−k
k

)

(−1)khn−2ktn. It fol-

lows that 1 +
∑

n≥1 Tnt
n = 1 +

∑

n≥1 St
n, where S =

∑⌊n/2⌋
k=0 (−1)k

(n−k
k

)

hn−2k −
∑⌊(n−1)/2⌋

k=0 (−1)k
(n−k−1

k

)

hn−2k +
∑⌊(n−1)/2⌋

k=0 (−1)k
(n−k−1

k

)

xhn−2k−1. Using the

equality
(n−k−1

k

)

= n−2k
n−k

(n−k
k

)

, we obtain S =
∑⌊n/2⌋

k=0 (−1)k k
n−k

(n−k
k

)

hn−2k

+
∑⌊(n−1)/2⌋

k=0 (−1)k n−2k
n−k

(

n−k
k

)

xhn−2k−1.

Similarly, we obtain formula (6).

Remark 2. For h(x) = 2x, we have for each n ≥ 1.
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Tn =

⌊n/2⌋
∑

k=0

(−1)k2n−2k−1 n

n− k

(

n− k

k

)

xn−2k,(7)

Un =

⌊n/2⌋
∑

k=0

(−1)k2n−2k

(

n− k

k

)

xn−2k.(8)

These identities are well known for Chebyshev polynomials of the first and second
kind (see for instance [4]).

3. Determining an adequate basis

The aim of this section is to establish that for h(x) not equal to ax, the family
of polynomials Bn bellow constitutes a basis of the vectorial space En(x).

Let B1 = {x} and Bn =
(

hn−2k, xhn−2l−1
)

(n ≥ 2) , with 1 ≤ k ≤ ⌊n/2⌋
and 0 ≤ l ≤ ⌊(n− 1)/2⌋ . For every n ≥ 1, the polynomials Tn and Un are in the
Q-vectorial subspace En(x) of Q [x] generated by the family Bn.

Theorem 3. The family Bn is a basis of En(x).

Proof. For n = 2m (m ≥ 2) (the case n = 2 is trivial), B2m = {1, xh, h2, xh3, . . . ,
h2m−2, xh2m−1}. From the fact that the degree, with respect to x, of xh2m−1

is strictly greater than degrees of h2m−1 and xh2m−k (k ≥ 2) , the polynomial
xh2m−1 can not be written as linear combination of 1, xh, . . . , h2m−2.

Now, for ai ∈ Q, (0 ≤ i ≤ 2m− 3) , suppose that

(9) h2m−2 = a2m−3xh
2m−3 + a2m−4h

2m−4 + · · ·+ a1xh+ a0.

The degree of h2m−2 is strictly greater than the degree of xh2m−3 except
when d◦h = 1 for which the two degrees are equal. Then, if d◦h > 1, relation
(9) is not possible. If d◦h = 1 then h(x) = ax + b with a and b in Q-{0} . By
identification according to (9) we obtain a contradiction. Then B2m is a basis of
E2m(x).

The same approach holds for n odd.

The first values of polynomials Tn and Un over the basis Bn are
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T1 = x,

T2 = xh− 1,

T3 = xh2 − h− x,

T4 = xh3 − h2 − 2xh+ 1,

T5 = xh4 − h3 − 3xh2 + 2h+ x,

T6 = xh5 − h4 − 4xh3 + 3h2 + 3xh− 1,

U1 = 2x,

U2 = 2xh− 1,

U3 = 2xh2 − h− 2x,

U4 = 2xh3 − h2 − 4xh+ 1,

U5 = 2xh4 − h3 − 6xh2 + 2h+ 2x,

U6 = 2xh5 − h4 − 8xh3 + 3h2 + 6xh− 1.

4. Two other bases

In this section, we establish that Tn = (hkTn−k)0≤k≤n−1 and Un =
(hkUn−k)0≤k≤n−1 for n ≥ 1, are two bases of En(x). Notice that Tn and Un are
families of En(x).

Theorem 4. For any n ≥ 1, Tn and Un are bases of En(x).

This result follows from the following lemma.

Lemma 5. For any n ≥ 1,

detBn
(Tn) =

{

1 for n even,

(−1)⌊n/2⌋ for n odd,

detBn
(Un) =

{

2⌊n/2⌋ for n even,

(−1)⌊n/2⌋.2⌊n/2⌋+1 for n odd.

Proof. For any integer m ≥ 1 and for 1 ≤ k ≤ 2m+1, set V
(m)
k := hk−1T2m+1−k

and W
(m)
k := hk−1U2m+1−k. We have V

(m)
k+1 −V

(m)
k = V

(m−1)
k and W

(m)
k+1−W

(m)
k =

W
(m−1)
k .

Let ∆m := detB2m

(

V
(m)
1 , V

(m)
2 , . . . , V

(m)
2m

)

and Dm := detB2m

(

W
(m)
1 ,W

(m)
2 ,

. . . ,W
(m)
2m

)

. We have
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∆m = detB2m

(

V
(m)
1 , V

(m)
2 − V

(m)
1 , . . . , V

(m)
2m − V

(m)
2m−1

)

= detB2m

(

V
(m)
1 , V

(m−1)
1 , V

(m−1)
2 , . . . , V

(m−1)
2m−1

)

.

Set d◦hTn the degree of Tn with respect to h according to the basis Bn. It

follows that d◦hT0 = 0 and d◦hTn = n − 1 (n ≥ 1) . Then d◦hV
(m)
k = 2m − 1

(1 ≤ k ≤ 2m) . We have d◦hV
(m−1)
k = 2m− 3 (1 ≤ k ≤ 2m− 2) and d◦hV

(m−1)
2m−1 =

2m− 2. The dominant coefficient of V
(m)
1 , V

(m−1)
2m−1 and V

(m−1)
k (1 ≤ k ≤ 2m− 2)

are equal to 1. It follows that ∆m = (−1)1+2m−1 detB2(m−1)

(

V
(m−1)
1 , V

(m−1)
2 , . . . ,

V
(m−1)
2(m−1)

)

= ∆m−1 = · · · = ∆1 = 1. Similarly

Dm = detB2m

(

W
(m)
1 ,W

(m)
2 , . . . ,W

(m)
2m

)

= detB2m

(

W
(m)
1 ,W

(m−1)
1 ,W

(m−1)
2 , . . . ,W

(m−1)
2m−1

)

.

Since d◦hW
(m)
k = 2m−1 (1 ≤ k ≤ 2m) , d◦hW

(m−1)
k = 2m−3 (1 ≤ k ≤ 2m− 2)

and d◦hW
(m−1)
2m−1 = 2m−2 with dominant coefficient ofW

(m)
1 andW

(m−1)
k (1 ≤ k ≤

2m−2) are equal to 2 and the dominant coefficient of W
(m−1)
2m−1 is equal to 1. Then

Dm = 2(−1)2mDm−1 = 2Dm−1 = · · · = 2m.

Taking n = 2m+ 1, we have

detB2m+1(T2m+1, hT2m, . . . , h2mT1)

= (−1)2m.(−1)m.detB2m(T2m, hT2m−1, . . . , h
2m−1T1)

= (−1)m detB2m(T2m, hT2m−1, . . . , h
2m−1T1)

= (−1)m detB2m(V
(m)
1 , V

(m)
2 , . . . , V

(m)
2m )

= (−1)m∆m

= (−1)m,

and

detB2m+1(U2m+1, hU2m, . . . , h2mU1)

= 2(−1)2m+2.(−1)m.detB2m(U2m, hU2m−1, . . . , h
2m−1U1)

= 2(−1)m detB2m(U2m, hU2m−1, . . . , h
2m−1U1)

= 2(−1)mDm

= (−1)m2m+1.
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5. Expressions of Tn and Un in the bases Tn and Un

In this section we give the decomposition of Tn and Un in each of the bases Tn

and Un respectively. There are height possibilities:

1. T2n over T2n : T2n is T2n;

2. U2n over U2n : U2n is U2n;

3. T2n+1 over T2n+1 : T2n+1 is T2n+1;

4. U2n+1 over U2n+1 : U2n+1 is U2n+1;

5. T2n over U2n, i.e., expressing T2n in terms of U2n, hU2n−1, h2U2n−2,
. . . , h2n−2U2, h

2n−1U1;

6. U2n over T2n, i.e., expressing U2n in terms of T2n, hT2n−1, h2T2n−2,
. . . , h2n−2T2, h

2n−1T1;

7. T2n+1 over U2n+1, i.e., expressing T2n+1 in terms of U2n+1, hU2n, h
2U2n−1,

. . . , h2n−1U2, h
2nU1;

8. U2n+1 over T2n+1, i.e., expressing U2n+1 in terms of T2n+1, hT2n, h
2T2n−1,

. . . , h2n−1T2, h
2nT1.

The first four situations are obvious. The remaining situations are established
below.

Theorem 6. For every integer n ≥ 1,

2T2n = 2U2n +

2n−1
∑

j=1

(−1)j+1α2n−1,jh
jU2n−j ,(10)

2T2n+1 = U2n+1 +

2n
∑

j=1

(−1)j+1α2n,jh
jU2n+1−j .(11)

Theorem 7. For every integer n ≥ 1,

U2n = T2n +
1

2

2n−1
∑

j=1

(−1)j−1

[(

2n − 1

j

)

+ α2n−2,j−1

]

hjT2n−j,(12)

U2n+1 = 2T2n+1 +

2n
∑

j=1

(−1)jα2n,jh
jT2n+1−j,(13)

where (αn,j)n is the sequence given by αn,j =
∑n

k=j(−1)k
(k
j

)

(0 ≤ j ≤ n) with
the first values
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n\j 0 1 2 3 4 5 6
1 0 −1
2 1 1 1
3 0 −2 −2 −1
4 1 2 4 3 1
5 0 −3 −6 −7 −4 −1
6 1 3 9 13 11 5 1

We need the following proposition to establish Theorems 6 and 7.

Proposition 8. For every integers n and j, the following holds

1. αn+1,j + αn,j−1 = αn−1,j + αn−1,j−1,

2. α2n,j−1 + α2n−2,j−2 + α2n−2,j−1 =
( 2n
j−1

)

,

3. −α2n+2,j + α2n,j−1 + α2n,j +
1
2α2n,j−2 = −1

2

(2n+1
j−1

)

.

Proof. 1. αn+1,j + αn,j−1 − αn−1,j − αn−1,j−1 = (−1)n
(

n
j

)

+ (−1)n
(

n
j−1

)

+

(−1)n+1
(n+1

j

)

= 0.

2. α2n,j−1 + α2n−2,j−2 + α2n,j−1

= 2
∑2n−2

k=j−1(−1)k
( k
j−1

)

−
(2n−1
j−1

)

+
( 2n
j−1

)

+
∑2n−2

k=j−2(−1)k
( k
j−2

)

=
∑2n−2

k=j−1(−1)k
( k
j−1

)

+
∑2n−2

k=j−1(−1)k
(k+1
j−1

)

−
(2n−1
j−1

)

+
( 2n
j−1

)

+ (−1)j
(j−2
j−2

)

= (−1)j−1
(j−1
j−1

)

+
(2n−1
j−1

)

−
(2n−1
j−1

)

+
( 2n
j−1

)

+ (−1)j
(j−2
j−2

)

=
( 2n
j−1

)

.

3. − α2n+2,j + α2n,j−1 + α2n,j +
1
2α2n,j−2

=
(2n+1

j

)

−
(2n+2

j

)

+ 1
2(−1)j

(j−2
j−2

)

+ 1
2

∑2n
k=j−1(−1)k

( k
j−1

)

+ 1
2

∑2n
k=j−1(−1)k

(k+1
j−1

)

=
(2n+1

j

)

−
(2n+2

j

)

+ 1
2(−1)j

(j−2
j−2

)

+ 1
2(−1)j−1

(j−1
j−1

)

+ 1
2

(2n+1
j−1

)

= −1
2

(2n+1
j−1

)

.

Using Theorem 6, we get

2T1 = U1,

2T2 = 2U2 − hU1,

2T3 = U3 + hU2 − h2U1,

2T4 = 2U4 − 2hU3 + 2h2U2 − h3U1,

2T5 = U5 + 2hU4 − 4h2U3 + 3h3U2 − h4U1,

2T6 = 2U6 − 3hU5 + 6h2U4 − 7h3U3 + 4h4U2 − h5U1,

2T7 = U7 + 3hU6 − 9h2U5 + 13h3U4 − 11h4U3 + 5h5U2 − h6U1,
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and from Theorem 7, we get

U1 = 2T2,

U2 = T2 + hT1,

U3 = 2T3 − hT2 + h2T1,

U4 = T4 + 2hT3 − 2h2T2 + h3T1,

U5 = 2T5 − 2hT4 + 4h2T3 − 3h3T2 + h4T1,

U6 = T6 + 3hT5 − 6h2T4 + 7h3T3 − 4h4T2 + h5T1,

U7 = 2T7 − 3hT6 + 9h2T5 − 13h3T4 + 11h4T3 − 5h5T2 + h6T1.

6. Proof of Theorems

The proofs of the two theorems are essentially based on the induction approach
and on the proposition above.

Proof of Theorem 6. The precedent tables show the validity of the first terms.
We have

2T2n+2 = hU2n+1 +

2n
∑

j=1

(−1)j+1α2n,jh
j+1U2n+1−j − 2U2n −

2n−1
∑

j=1

(−1)j+1α2n−1,jh
jU2n−j.

Set j + 1 = j′ in the first summation and using relation (4), we get

2T2n+2 = 2U2n+2 − hU2n+1 − α2n,2nh
2n+1U1 + α2n,2n−1h

2nU2 + α2n−1,1hU2n+1

− α2n−1,2n−1h
2nU2 +

2n−1
∑

j=2

(−1)jhjU2n+2−j [α2n,j−1 − α2n−1,j − α2n−1,j−1] ,

Using αn,1 = 1
4 (−1)n(2n + 1) − 1

4 , αn,n = (−1)n, αn,n−1 = (−1)nn + (−1)n−1, one
deduces

2T2n+2 = 2U2n+2 +

2n+1
∑

j=1

(−1)j+1α2n+1,jh
jU2n+2−j .

Formula (10) is proved. Let us establish (11), we have

2T2n+3 = 2hU2n+2 +

2n+1
∑

j=1

(−1)j+1α2n+1,jh
j+1U2n+2−j − U2n+1

−
2n
∑

j=1

(−1)j+1α2n,jh
jU2n+1−j

= U2n+3 + hU2n+2 − α2n+1,2nh
2n+1U2 + α2n+1,2n+1h

2n+2U1 + α2n,1hU2n+2
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+ α2n,2nh
2n+1U2 +

2n
∑

j=2

(−1)j+1 [−α2n+1,j−1 + α2n,j + α2n,j−1]h
jU2n+3−j .

= U2n+3 +

2n+2
∑

j=1

(−1)j+1α2n+2,jh
jU2n+3−j .

Proof of Theorem 7. Suppose, by induction, that relations (12) and (13) are
true until order n. Then, we have

U2n+2

= 2hT2n+1 +

2n
∑

j=1

(−1)jα2n,jh
j+1T2n+1−j − T2n − 1

2

2n−1
∑

j=1

(−1)j−1

[(

2n− 1

j

)

+ α2n−2,j−1

]

hjT2n−j

= T2n+2 + hT2n+1 + α2n,2nh
2n+1T1 − α2n,2n−1h

2nT2 −
1

2

[(

2n− 1

2n− 1

)

+ α2n−2,2n−2

]

h2nT2 +
1

2

[(

2n− 1

1

)

+ α2n−2,0

]

hT2n+1 +

2n−1
∑

j=2

(−1)j−1

[

α2n,j−1 +
1

2

((

2n− 1

j − 1

)

+ α2n−2,j−2 +

(

2n− 1

j

)

+ α2n−2,j−1

)]

hjT2n+2−j

= T2n+2 +
1

2

2n+1
∑

j=1

(−1)j−1

[(

2n+ 1

j

)

+ α2n,j−1

]

hjT2n+2−j .

Analogously, we obtain

U2n+3

= hT2n+2 +
1

2

2n+1
∑

j=1

(−1)j−1

[(

2n+ 1

j

)

+ α2n,j−1

]

hj+1T2n+2−j − 2T2n+1

−
2n
∑

j=1

(−1)jα2n,jh
jT2n+1−j

= 2T2n+3 − hT2n+2 +
1

2

[(

2n+ 1

2n+ 1

)

+ α2n,2n

]

h2n+2T1 −
1

2

[(

2n+ 1

2n

)

+ α2n,2n−1

]

h2n+1T2 − α2n,2nh
2n+1T2 − α2n,1hT2n+2 +

2n
∑

j=2

(−1)jhjT2n+3−j

[

1

2

((

2n+ 1

j − 1

)

− α2n,j−2

)

+ α2n,j−1 + α2n,j

]

= 2T2n+3 +

2n+2
∑

j=1

(−1)jα2n+2,jh
jT2n+3−j .
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Some perspectives. The extension given here is related to two papers written
by Belbachir and Bencherif [4, 3]. As a first perspective, as suggested by Professor
Andreas Philippou in a private communication, it is interesting to establish the
same results for the multivariate Fibonacci and Lucas polynomials. The second
one is to see how can be extend the results given by Prodinger [10] and by
Belbachir and Benmezai [5] to the q-analog situation.
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