CODES OVER HYPERFIELDS

Surdive Atamewoue Tsafack
Department of Mathematics
University of Yaounde 1, Cameroon
e-mail: surdive@yahoo.fr
Selestin Ndjeya
Department of Mathematics
Higher Teacher Training College
University of Yaounde 1, Cameroon
e-mail: ndjeyas@yahoo.fr
\section*{Lutz Strüngmann}
Faculty of Computer Sciences
Institute for Mathematical Biology
Mannheim University of Applied Sciences
68163 Mannheim, Germany
e-mail: l.struengmann@hs-mannheim.de

AND

Celestin Lele

Department of Mathematics
University of Dschang, Cameroon
e-mail: celestinlele@yahoo.com

Abstract

In this paper, we define linear codes and cyclic codes over a finite Krasner hyperfield and we characterize these codes by their generator matrices and parity check matrices. We also demonstrate that codes over finite Krasner hyperfields are more interesting for code theory than codes over classical finite fields.

Keywords: hypervector space, hyperring, hyperfield, linear code.
2010 Mathematics Subject Classification: 20N20, 54B20, 94B05.

1. Introduction

In [10], Marty introduced the notion of an algebraic hyperstructure. Later, many authors have extended the works of Marty to hyperrings, hyperfields and in particular to the well known Krasner hyperfield [8]. In [3], Davvaz and Koushky used a Krasner hyperfield K to construct the hyperring of polynomials over K and they stated and proved some exciting properties of the hyperring of polynomials. In [1], Ameri and Dehghan treated the notion of hypervector space over a field, on which only the external composition is a hyperoperation; they stated and proved some interesting facts about the hypervector space. In [11], Sanjay Roy and Samanta introduced the notion of hypervector spaces over hyperfields, where both external and internal compositions are both hyperoperations.

Recently, Davvaz and Musavi [5] defined a hypervector space over a Krasner hyperfield and established some connections between the hypervector space and some interesting codes. They also defined linear codes and cyclic codes over hyperfields.

In this paper, we introduce the notion of distance and weight on a hypervector space over a finite Krasner hyperfield. We also define a generator and a parity check matrix of a hyperlinear code over a finite Krasner hyperfield and obtain some of their crucial properties. We also compute the number of code words of a linear code over such finite Krasner hyperfield and we show that in addition to the fact that the Singleton bound is respected, they have many more code words than the classical codes with the same parameters.

Our work is organized as follows: In section 2 we present some basic notions about algebraic hyperstructures and Krasner hyperfields that we will use in the sequel. We also investigate some properties of hypervector spaces of finite dimension and of polynomial hyperrings. In section 3 we develop the notion of linear codes and cyclic codes over a finite Krasner hyperfield and we characterize them by their generator matrix and their parity check matrix. We also define the distance for these codes.

Our main results on the importance of hyperfields in code theory are stated and proved, e.g. it is shown that the Singleton bound is respected.

2. Preliminaries

In this section, we recall the preliminary definitions and results that are required in the sequel (for references see $[1,2,4,8]$). Let H be a non-empty set and $\mathcal{P}^{*}(H)$ be the set of all non-empty subsets of H. Then, a map $\star: H \times H \longrightarrow \mathcal{P}^{*}(H)$, where $(x, y) \mapsto x \star y \subseteq H$ is called a hyperoperation and the couple (H, \star) is called a hypergroupoid. For any two non-empty subsets A and B of H and $x \in H$, we define $A \star B=\bigcup_{a \in A, b \in B} a \star b, A \star x=A \star\{x\}$ and $x \star B=\{x\} \star B$. A
hypergroupoid (H, \star) is called a semihypergroup if $(a \star b) \star c=a \star(b \star c)$, for all $a, b, c \in H$. A hypergroupoid (H, \star) is called a quasihypergroup if for all $a \in H$, we have $a \star H=H \star a=H$. A hypergroupoid (H, \star) which is both a semihypergroup and a quasihypergroup is called a hypergroup.

Definition. A canonical hypergroup is an algebraic structure $(R,+)$) (where + is a hyperoperation) such that the followings axioms holds:
(i) for any $x, y, z \in R, x+(y+z)=(x+y)+z$,
(ii) for any $x, y \in R, x+y=y+x$,
(iii) there exists $0 \in R$ such that $0+x=x$ for every $x \in R$, where 0 is called additive identity,
(iv) for every $x \in R$, there exists a unique element $x^{\prime} \in R$ such that $0 \in x+x^{\prime}$, (we shall write $-x$ for x^{\prime} and we call it the opposite of x)
(v) for every $x, y, z \in R, z \in x+y$ implies $y \in-x+z$ and $x \in-y+z$.

Definition. A Krasner hyperring is an algebraic structure $(R,+, \cdot)$ where + is a hyperoperation satisfying the following axioms:
(i) $(R,+)$ is a canonical hypergroup with 0 as additive identity,
(ii) (R, \cdot) is a semigroup having 0 as a bilaterally absorbing element, i.e., $x \cdot 0=$ $0 \cdot x=0$,
(iii) the multiplication is distributive with respect to the hyperoperation " + ".

A Krasner hyperring $(R,+, \cdot)$ is called commutative (with unit element) if (R, \cdot) is a commutative semigroup (with unit). A commutative Krasner hyperring with unit is called a Krasner hyperfield if ($R \backslash\{0\}, \cdot, 1$) is a group.

We now give an example of a finite hyperfield with two elements 0 and 1 , that we name F_{2} and which will be used it in the sequel.

Example 1. Let $F_{2}=\{0,1\}$ be the finite set with two elements. Then F_{2} becomes a Krasner hyperfield with the following hyperoperation "+" and binary operation "."

+	0	1
0	$\{0\}$	$\{1\}$
1	$\{1\}$	$\{0,1\}$

and

\cdot	0	1
0	0	0
1	0	1

A Krasner hyperring R is called a hyperdomain if R is a commutative hyperring with unit element and $a \cdot b=0$ implies that $a=0$ or $b=0$ for all $a, b \in R$. Let $(R,+, \cdot)$ be a hyperring and A be a non-empty subset of R. Then, A is said to be a subhyperring of R if $(A,+, \cdot)$ is itself a hyperring. The subhyperring A of R is normal in R if and only if $x+A-x \subseteq A$ for all $x \in R$. A subhyperring A of
a hyperring R is a left (right) hyperideal of R if $r \cdot a \in A(a \cdot r \in A)$ for all $r \in R$, $a \in A$. Also, A is called a hyperideal if A is both a left and a right hyperideal. Let A and B be non-empty subsets of a hyperring R. The sum $A+B$ is defined by $A+B=\{x \mid x \in a+b$ for some $a \in A, b \in B\}$ and the product $A \cdot B$ is defined by $A \cdot B=\left\{x \mid x \in \sum_{i=1}^{n} a_{i} \cdot b_{i}\right.$, with $\left.a_{i} \in A, b_{i} \in B, n \in \mathbb{N}^{*}\right\}$. It is easy to see, that if A and B are hyperideals of R, then $A+B$ and $A \cdot B$ are also hyperideals of R.

Definition. An additive-multiplicative hyperring is an algebraic structure $(R,+, \cdot)$ (where + and \cdot are both hyperoperations) which satisfies the following axioms:
(i) $(R,+)$ is a canonical hypergroup with 0 as additive identity,
(ii) (R, \cdot) is a semihypergroup having 0 as a bilaterally absorbing element, i.e., $x \cdot 0=0 \cdot x=0$,
(iii) the hypermultiplication "." is distributive with respect to the hyperoperation " + ",
(iv) for all $x, y \in R$, we have $x \cdot(-y)=(-x) \cdot y=-(x \cdot y)$.

An additive-multiplicative hyperring $(R,+, \cdot)$ is called commutative if (R, \cdot) is a commutative semihypergroup and R is called a hyperring with multiplicative identity if there exists $e \in R$ such that $x \cdot e=x=e \cdot x$ for every $x \in R$. We fix the notation 1 for the multiplicative identity.

We give an example of an additive-multiplicative hyperring.
Example 2. Let $F_{4}=\{0,1,2,3\}$ be a set with the hyperoperations as follows:

+	0	1	2	3
0	0	1	2	3
1	0	2	$\{1,2\}$	F_{4}
2	1	$\{1,2\}$	F_{4}	$\{2,3\}$
3	2	F_{4}	$\{2,3\}$	$\{1,2,3\}$

and

.	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	F_{4}	2
3	0	3	2	F_{4}

Then $\left(F_{4},+, \cdot\right)$ is a commutative additive-multiplicative hyperring with multiplicative unit 1.

We close this section with the following definition
Definition. A non-empty subset A of an additive-multiplicative hyperring R is a left (right) hyperideal if,
(i) for every $a, b \in A$ implies $a-b \subseteq A$,
(ii) for every $a \in A, r \in R$ implies $r \cdot a \subseteq A(a \cdot r \subseteq A)$.

2.1. Hypervector spaces over hyperfields

We will give some properties related to the hypervector space which will allow us to characterize linear codes over a Krasner hyperfield.

From now on, and for the rest of this paper, by F we mean a Krasner hyperfield.

Definition. Let F be a Krasner hyperfield. A commutative hypergroup $(V,+)$ together with a map $: F \times V \longrightarrow V$, is called a hypervector space over F if for all $a, b \in F$ and $x, y \in V$, the following conditions hold:
(i) $a \cdot(x+y)=a \cdot x+a \cdot y$ (right distributive law),
(ii) $(a+b) \cdot x=a \cdot x+b \cdot x$ (left distributive law),
(iii) $a \cdot(b \cdot x)=(a b) \cdot x$ (associative law),
(iv) $a \cdot(-x)=(-a) \cdot x=-(a \cdot x)$,
(v) $x=1 \cdot x$.

Let us give an example next.
Example 3. If F is a Krasner hyperring, then for $n \in \mathbb{N}, F^{n}$ is a hypervector space over F where the composition of elements is as follows:
$x+y=\left\{z \in F^{n} ; z_{i} \in x_{i}+y_{i}, i=1 \ldots n\right\}$ and $a \cdot x=\left(a \cdot x_{1}, a \cdot x_{2}, \ldots, a \cdot x_{n}\right)$ for any $x, y \in F^{n}$ and $a \in F$.

Definition. Let $(V,+, \cdot, 1)$ be a hypervector space over F. A subset $A \subseteq V$ is called a subhypervector space of V if:
(i) $A \neq 0$,
(ii) for all $x, y \in A$, then $x-y \subseteq A$,
(iii) for all $a \in F$, for all $x \in A$, then $a \cdot x \in A$.

Definition. A subset S of a hypervector space V over F, is called linearly independent if for every $x_{1}, x_{2}, \ldots, x_{n}$ in S and for every $a_{1}, a_{2}, \ldots, a_{n}$ in F, such that $(n \in \mathbb{N} \backslash\{0,1\}) 0 \in a_{1} \cdot x_{1}+a_{2} \cdot x_{2}+\cdots+a_{n} \cdot x_{n}$ implies that $a_{1}=a_{2}=\cdots=$ $a_{n}=0$. A subset S of V is called linearly dependent if it is not linearly independent.

If S is a nonempty subset of V, the set $\langle S\rangle$ define by $\langle S\rangle=\bigcup\left\{\sum_{i=1}^{n} a_{i} \cdot x_{i} \mid x_{i} \in\right.$ $\left.S, a_{i} \in F, n \in \mathbb{N} \backslash\{0,1\}\right\} \cup l(S)$ where $l(S)=\{a \cdot x \mid a \in F, x \in S\}$, is the smallest subhypervector space of V containing S.

Definition. Let V be a hypervector space over F. A vector $x \in V$ is said to be a linear combination of the vectors $x_{1}, x_{2}, \ldots, x_{n} \in V$ if there exist $a_{1}, a_{2}, \ldots, a_{n} \in$ F such that $x \in a_{1} \cdot x_{1}+a_{2} \cdot x_{2}+\cdots+a_{n} \cdot x_{n}$.

Definition. Let V be a hypervector space over F and S be a subset of $V . S$ is said to be a basis for V if,
(i) S is linearly independent,
(ii) every element of V can be expressed as a finite linear combination of elements from S.

As in the case of classical vector spaces, the dimension of a hypervector space is the number of elements in a basis. It is not hard to see that this number is independent of the chosen basis.

Example 4. Let \mathbb{F}_{2} be the finite field with two elements. Let the set $B=$ $\{101,110\}$ be a basis of a vector subspace of \mathbb{F}_{2}^{3} and for a subhypervector space of F_{2}^{3}. On the space \mathbb{F}_{2}^{3}, the subspace generated by B is the dimension 2 and it have 4 elements: $000,101,110,011$. On the hypervector space F_{2}^{3}, the subhypervector space generated by B is the dimension 2 and it have 5 elements: $000,101,110,011,111$.

2.2. Polynomial hyperring

We recall the definition of a polynomial over the Krasner hyperfield F. Assume that for all $a, b \in F, a \cdot(-b)=(-a) \cdot b=-(a \cdot b)$. We denote by $F[x]$ the set of all polynomials in the variable x over F. Let $f(x)=\sum_{i=0}^{n} a_{i} x^{i}$ and $g(x)=\sum_{i=0}^{m} b_{i} x^{i}$ be any two elements of $F[x]$. Let us define the set $\mathcal{P}^{*}(F)[x]=\left\{\sum_{k=0}^{n} A_{k} x^{k}\right.$; where $\left.A_{k} \in \mathcal{P}^{*}(F), n \in \mathbb{N}\right\}$, the hypersum and hypermultiplication of $f(x)$ and $g(x)$ are defined as follows:

- $+: F[x] \times F[x] \longrightarrow \mathcal{P}^{*}(F)[x]$ $(f(x), g(x)) \longmapsto(f+g)(x)=\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x+\cdots+\left(a_{M}+b_{M}\right) x^{M}$, where $M=\max \{n, m\}$.
- $: F[x] \times F[x] \longrightarrow \mathcal{P}^{*}(F)[x]$ $(f(x), g(x)) \longmapsto(f \cdot g)(x)=\sum_{k=0}^{m+n}\left(\sum_{l+j=k} a_{l} \cdot b_{j}\right) x^{k}$, if $\operatorname{deg}(f) \geq 1$ and $\operatorname{deg}(g) \geq 1$.
If $\operatorname{deg}(f)<1$ or $\operatorname{deg}(g)<1$, then the hypermultiplication is reduced to : : $F[x] \times F[x] \longrightarrow F[x]$

$$
\left(f(x), g(x) \longmapsto(f \cdot g)(x)=\sum_{k=0}^{m+n}\left(\sum_{l+j=k} a_{l} \cdot b_{j}\right) x^{k} .\right.
$$

We recall the crucial result from [7]:
Theorem $5[7]$. The algebraic structure $(F[x],+, \cdot)$ is an additive-multiplication hyperring.

3. Linear codes and cyclic codes over finite hyperfields

In this section we shall study the concept of linear codes and cyclic codes over the finite Krasner hyperfield F_{2} from Example 1. We first recall some basics from code theory. Let A be an alphabet. The Hamming distance $d_{H}(x, y)$ between two vectors $x, y \in A^{n}$ is defined to be the number of coordinates in which x differs from y. For a classical code $\mathcal{C} \subseteq A^{n}$ containing at least two words, the minimum distance of a code \mathcal{C}, denoted by $d(\mathcal{C})$, is $d(\mathcal{C})=\min \left\{d_{H}(x, y) \mid x, y \in \mathcal{C}\right.$ and $x \neq y\}$.

If A^{n} is a vector space, then $\mathcal{C} \subseteq A^{n}$ is a linear code if \mathcal{C} is a sub-vector space. In this latter case, we compute for a code word $x \in \mathcal{C}, w_{H}(x)$ the number of nonzero coordinates in x also called Hamming weight of x. We denote by $k=\operatorname{dim}(\mathcal{C})$ the dimension of \mathcal{C} and the code \mathcal{C} is called an (n, k, d)-code which can be represented by his generator matrix (see [6] for more details).

For $n \in \mathbb{N} \backslash\{0,1\}$ it is clear that, F_{2}^{n} is a hypervector space over F_{2}.
Definition. A linear code C of length n over F_{2} is a subhypervector space over F_{2} of the hypervector space F_{2}^{n}.

Here is an example:

Example 6.

(1) For $n=3, F_{2}^{3}$ is a linear code of length 3 over F_{2}.
(2) $C=\{0000000,1011111,0111010,1100101,1101101,1110111,1001101$, $0010010,0101000,1111111\}$ is a linear code of length 7 over F_{2}.
Definition. Let $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ be two vectors in $F_{2}^{n}(n \geq$ 2). The inner product of the vectors x and y in F_{2}^{n} is defined by $x \cdot y^{t}=\sum_{i=1}^{n} x_{i} \cdot y_{i}$ (where y^{t} mean the transpose of y).

Definition. Let C be a linear code of length $n(n \geq 2)$ over F_{2}. The dual of C is defined by $C^{\perp}:=\left\{y \in F_{2}^{n} \mid 0 \in x \cdot y^{t}, \forall x \in C\right\}$. The code C is self-dual if $C=C^{\perp}$.

Remark 7. In the previous Definition 3 if $n=1$, then $C^{\perp}=\left\{y \in F_{2} \mid 0=\right.$ $\left.x \cdot y^{t}, \forall x \in C\right\}$.

Here is an example of a dual code.
Example 8. Let $C=\{000,101,011,110,111\}$ be a linear code of length 3 over F_{2}. It's easy to check that the dual of C is defined by $C^{\perp}=\{000,111\}$.

Definition. A cyclic code C of length n over F_{2} is a linear code which is invariant by the shift map s, define by $s\left(\left(a_{0}, \ldots, a_{n-1}\right)\right)=\left(a_{n-1}, a_{0}, \ldots, a_{n-2}\right)$, i.e., for all $\left(a_{0}, \ldots, a_{n-1}\right) \in C$, we have $s\left(\left(a_{0}, \ldots, a_{n-1}\right)\right) \in C$.

Example 9. $C=\{000,101,110,011,111\}$ is a cyclic code of length 3 over F_{2}. In fact $s(000)=000, s(101)=110, s(110)=011, s(011)=101, s(111)=111$.

The polynomial $f(x)=a_{0}+a_{1} x^{1}+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1}$ of degree at most $n-1$ over F_{2} may be considered as the sequence $a=\left(a_{0}, a_{1}, a_{2}, \ldots, a_{n-1}\right)$ of length n in F_{2}^{n}. In fact, there is a correspondence between F_{2}^{n} and the residue class hyperring $\frac{F_{2}[x]}{\left(x^{n}-1\right)}$ (see [6] for more details).

$$
\begin{aligned}
& \phi: F_{2}^{n} \longrightarrow \frac{F_{2}[x]}{\left(x^{n}-1\right)} \\
& c=\left(c_{0}, c_{1}, c_{2}, \ldots, c_{n-1}\right) \longmapsto c_{0}+c_{1} x^{1}+c_{2} x^{2}+\cdots+c_{n-1} x^{n-1}
\end{aligned}
$$

Using Theorem 3.7 in [5], the multiplication of x by any element of $\frac{F_{2}[x]}{\left(x^{n}-1\right)}$ is equivalent to applying the shift map s to the corresponding element of F_{2}^{n}, so we can use the polynomial to define a cyclic code (see Proposition 22).

Metric distance

We are now going to define a distance relation on linear codes over the finite hyperfield F_{2}, which will allow us to detect if there is an error in a received word.

Definition. Let $n \in \mathbb{N}^{*}$. The mapping

$$
\begin{aligned}
& d_{H}: F_{2}^{n} \times F_{2}^{n} \longrightarrow \mathbb{N} \\
& (x, y) \longmapsto d_{H}(x, y)=\operatorname{card}\left\{i \in \mathbb{N} \mid x_{i} \neq y_{i}\right\}
\end{aligned}
$$

is a distance on F_{2}^{n}, called the Hamming distance.
Remark 10. If $x \in F_{2}^{n}$, then we write $x=\left(\left\{x_{1}\right\}, \ldots,\left\{x_{n}\right\}\right)$ that now belongs to the cartesian product $\left(\mathcal{P}^{*}\left(F_{2}\right)\right)^{n}$. Hence we can compute $w_{H}(x)=\operatorname{card}\{i \in$ $\left.\mathbb{N} \mid 0 \notin x_{i}\right\}=d_{H}(0, x)$.

The following map denoted by w_{H} on the cartesian product $\left(\mathcal{P}^{*}\left(F_{2}\right)\right)^{n}$:

$$
\begin{aligned}
& w_{H}:\left(\mathcal{P}^{*}\left(F_{2}\right)\right)^{n} \longrightarrow \mathbb{N} \\
& a=\left(a_{1}, \ldots, a_{n}\right) \longmapsto \operatorname{card}\left\{i \in \mathbb{N} \mid 0 \notin a_{i}\right\} .
\end{aligned}
$$

is the Hamming weight on the hypervector space F_{2}^{n}.
We can easily verify that for all $x, y \in F_{2}^{n}$, we have $d_{H}(x, y)=w_{H}(x-y)$ (as in the classical case). If C is a linear code over F_{2}, we call the integer number $d=\min \left\{w_{H}(x) \mid x \in C\right\}$ the minimal distance of the code C.

To obtain a linear code of length n over F_{2} as a subhypervector space of F_{2}^{n}, it is sufficient to have a basis of the linear code. This basis can often be represented by a $k \times n$ matrix over F_{2} (where k is the dimension of the code). Let $\mathcal{M}\left(F_{2}\right)$ be the set of all matrices over F_{2} with.

Definition. Let C be a linear code over F_{2}. Any matrix from $\mathcal{M}\left(F_{2}\right)$ where the rows form a basis of the code C is called a generator matrix of \mathcal{C}.

Definition. Let $x=\left(x_{1}, \ldots, x_{n}\right)$ be a vector of F_{2}^{n} and $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ be an element of the cartesian product $\left(\mathcal{P}^{*}\left(F_{2}\right)\right)^{n}$. We say that x belongs to y if $x_{i} \in y_{i}$ for any $i=1 \ldots n$.

Remark 11. If G is a generator matrix of the linear code C of length n and dimension k, the product $a \cdot G$ (where $a \in F_{2}^{k}$) is the vector which belongs to $\left(\mathcal{P}^{*}\left(F_{2}\right)\right)^{n}$ and is defined as:

$$
\left(a_{1}, \ldots, a_{k}\right) \cdot\left(\begin{array}{ccc}
g_{11} & \cdots & g_{1 n} \\
\vdots & \ddots & \vdots \\
g_{k 1} & \cdots & g_{k n}
\end{array}\right)=\left(\sum_{i=1}^{k} a_{i} \cdot g_{i 1}, \ldots, \sum_{i=1}^{k} a_{i} \cdot g_{i n}\right) .
$$

Proposition 12. Let $G \in \mathcal{M}_{k \times n}\left(F_{2}\right)$ be a generator matrix of the linear code C over F_{2}, then $C=\left\{c \in a \cdot G \mid a \in F_{2}^{k}\right\}$.

Proof. Since C is a $[n, k]$-linear code over F_{2}, the rows of $G \in \mathcal{M}_{k \times n}\left(F_{2}\right)$ form a basis of C. Thus C consists of all linear combinations of the rows of G, therefore $C=\left\{c \in a \cdot G \mid a \in F_{2}^{k}\right\}$.

Since the dual code C^{\perp} of C over F_{2} is also linear, C^{\perp} has a generator matrix as well.

Definition. Given a linear $[n, k]$-code over F_{2}, we call a generator matrix for C^{\perp} a parity check matrix for C.

Here and until the end of this paper, we will denoted by G the generator matrix and by H the parity check matrix of the linear code C over F_{2}.

Example 13. Let $G=\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right)$ be a generator matrix of the linear code C from Example 8. Then the parity check matrix of C is $H=\left(\begin{array}{lll}1 & 1 & 1\end{array}\right)$.

Theorem 14. Let C be a linear code of length $n(n \geq 2)$ and dimension k over F_{2}. Then $H \in \mathcal{M}_{(n-k) \times n}\left(F_{2}\right)$ and $0 \in G \cdot H^{t}$ (where H^{t} mean the transpose of H).

Proof. Assume that $G=\left(\begin{array}{c}g_{1} \\ \vdots \\ g_{k}\end{array}\right)$ and $H=\left(\begin{array}{c}h_{1} \\ \vdots \\ h_{n-k}\end{array}\right)$, where $g_{i} \in F_{2}^{n}$ and $h_{j} \in F_{2}^{n}$ (for $i=1 \cdots k$ and $j=1 \cdots n-k$).

Then $G \cdot H^{t}=\left(\begin{array}{cccc}g_{1} \cdot h_{1}^{t} & g_{1} \cdot h_{2}^{t} & \cdots & g_{1} \cdot h_{n-k}^{t} \\ g_{2} \cdot h_{1}^{t} & g_{2} \cdot h_{2}^{t} & \cdots & g_{2} \cdot h_{n-k}^{t} \\ \vdots & \vdots & \vdots & \vdots \\ g_{k} \cdot h_{1}^{t} & g_{k} \cdot h_{2}^{t} & \cdots & g_{k} \cdot h_{n-k}^{t}\end{array}\right)$. Thus, by the definition of $C^{\perp}, 0 \in G \cdot H^{t}$.

We now give some examples of hyperlinear codes over F_{2}.
Example 15. Let F_{2}^{3} be a hypervector space over F_{2} and C be a subhypervector space of F_{2}^{3}, with dimensional $k=2$. Then C is a linear code of length $n=3$ and dimension $k=2$ over F_{2}.
(1) Let $G_{1}=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right)$ be a generator matrix of the linear code $C=\{000,010,101,111\}$ over $F_{2} . G_{1}$ is also a generator matrix of a linear code $C^{\prime}=\{000,010,101,111\}$ of length 3 and dimension 2 over the finite field \mathbb{F}_{2}. These two codes C and C^{\prime} have the same parameters and $\operatorname{card}(C)=\operatorname{card}\left(C^{\prime}\right)$.
(2) Let $G_{2}=\left(\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 1\end{array}\right)$ be another generator matrix of the linear code C over $F_{2} . G_{2}$ is also a generator matrix of a linear code $C^{\prime \prime}$ of length 3 and dimension 2 over the finite field \mathbb{F}_{2}. Here we have $C=\{000,110,101,011,111\}$, $C^{\prime \prime}=\{000,110,101,011\}$ and these two codes have the same parameters but $\operatorname{card}(C)>\operatorname{card}\left(C^{\prime \prime}\right)$.
(3) Let $G_{\text {min }}=\left(\begin{array}{cc}I d_{k} & I d_{n-k} \\ \cdot & 0\end{array}\right)$ where $I d_{k}$ is the $k \times k$-identity matrix). $G_{\text {min }}$ is a generator matrix of a linear code $C_{\text {min }}$ of length n and dimension k over F_{2} (with $n-k \leq k$). The linear code $C_{\min }$ over F_{2} generated by $G_{\min }$ has the minimal number of code words, $\operatorname{card}\left(C_{\text {min }}\right)=2^{k}$.
(4) Let $G_{\text {max }}=\left(\begin{array}{ll}I d_{k} & \mathbf{1}_{n-k}\end{array}\right)$ (where $I d_{k}$ is the identity matrix and $\mathbf{1}_{n-k}$ is the matrix such that every element is equal to 1). $G_{\max }$ is a generator matrix of a hyperlinear code $C_{\text {max }}$ of length n and dimension $k>2$ over F_{2}. The linear code $C_{\max }$ over F_{2} generated by $G_{\max }$ has the maximal number of code words, $\operatorname{card}\left(C_{\text {max }}\right)=2^{n-k}+\sum_{i=2}^{k-1}\binom{k}{i}+k+1$

Here we have this very important remark.
Remark 16. There exists a finite hyperfield such that for any other finite field of the same cardinality, the linear codes over the hyperfield are always better than the classical linear code over the finite field (i.e., they have more code words).

In classical coding theory, one of the most important problems mentioned in [9] is to find a code with a large number of words knowing the parameters
(length, dimension and minimal distance). So the hyperstructure theory may help to increase the number of code words.

Theorem 17. Let C be a linear code of length n and dimension k over F_{2}. If M is the cardinality of C, then

$$
2^{k} \leq M \leq \begin{cases}2^{n-k}+k+1, & \text { if } k \leq 2 \\ 2^{n-k}+\sum_{i=2}^{k-1}\binom{k}{i}+k+1, & \text { if } k>2\end{cases}
$$

Proof. Since a generator matrix contains a basis of the hyperlinear code C as rows, it is sufficient to give a way how to construct a generator matrix for the code where the cardinality is maximal. If $k \leq 2$, this is trivial. If $k>2$, then we choose a generator matrix such that:

- in the first k columns no 1 is repeated (this forces every code word to belong to only one linear combination),
- no sum of any set of elements in any column is equal to zero,
- all the elements of the $n-k$ last columns are equal to 1 . (We need each combination to have a maximal number of code words.)

Therefore, the maximal number of code words is $2^{n-k}+\sum_{i=2}^{k-1}\binom{k}{i}+k+1$.
Corollary 18. Let C be a linear code of length n and dimension k over F_{2}, and C^{\prime} be a linear code of length n and dimension k over the field \mathbb{F}_{2}. Then $d \leq d^{\prime} \leq n-k+1$ where d is the minimal distance of C and d^{\prime} is the minimal distance of C^{\prime}.

Remark 19. The previous Corollary 18 shows that a linear code over F_{2} satisfies the Singleton bound.

Proposition 20. Let C be a linear code of length n and dimension k over F_{2}, then $c \in C$ if and only if $0 \in c \cdot H^{t}$.

Proof. \Rightarrow) Assume that $c \in C$, and let $H=\left(\begin{array}{c}h_{1} \\ \vdots \\ h_{n-k}\end{array}\right)$ be the parity check matrix of the code C. Then $c \cdot H^{t}=\left(c \cdot h_{1}^{t}, c \cdot h_{2}^{t}, \ldots, c \cdot h_{n-k}^{t}\right)$, thus by definition of $C^{\perp}, 0 \in c \cdot H^{t}$.
$\Leftarrow)$ Assume that $0 \in c \cdot H^{t}$, then c belongs either to G, (the generator matrix of the code C) or to a linear combination of rows of G. Therefore $c \in C$.

Proposition 21. Let C be a linear code of length n over F_{2}, then the double dual of C is equal to C, i.e., $\left(C^{\perp}\right)^{\perp}=C$.

Proof. Using Proposition 4.3 in [5], $\left(C^{\perp}\right)^{\perp}$ is a linear code of length n over F_{2}, so it is sufficient to show that $C=\left(C^{\perp}\right)^{\perp}$. By definition we have $\left(C^{\perp}\right)^{\perp}=\{z \in$ $F_{2} \mid 0 \in y \cdot z^{t}$; for all $\left.y \in C^{\perp}\right\}$, so it is straightforward that $C \subseteq\left(C^{\perp}\right)^{\perp}$. Now, let $z \in\left(C^{\perp}\right)^{\perp}$. Let $H=\left(\begin{array}{c}h_{1} \\ \vdots \\ h_{n-k}\end{array}\right)$ be the parity check matrix of the code C, then

$$
\begin{aligned}
z \cdot H^{t} & =\left(\sum_{i=1}^{n} z_{i} \cdot h_{1, i}, \ldots, \sum_{i=1}^{n} z_{i} \cdot h_{n-k, i}\right) \\
& =\left(\sum_{i=1}^{n} h_{1, i} \cdot z_{i}, \ldots, \sum_{i=1}^{n} h_{n-k, i} \cdot z_{i}\right)=\left(\sum_{i=1}^{n} h_{1, i} \cdot z^{t}, \ldots, \sum_{i=1}^{n} h_{n-k, i} \cdot z^{t}\right) .
\end{aligned}
$$

Thus $0 \in z \cdot H^{t}$ by definition of $\left(C^{\perp}\right)^{\perp}$, therefore $z \in C$. We conclude the proof by using Proposition 20.

Since a cyclic code in F_{2}^{n} has only one generating polynomial [5], it is clear that this polynomial divides the polynomial $x^{n}-1$.

Proposition 22. If $g(x)=a_{0}+a_{1} x+\cdots+a_{k} x^{k} \in F_{2}[x]$ is the generating polynomial for a cyclic code C over F_{2}, then

$$
G=\left(\begin{array}{ccccccc}
a_{0} & \cdots & a_{k} & 0 & 0 & \cdots & 0 \\
0 & a_{0} & \cdots & a_{k} & 0 & \cdots & 0 \\
0 & 0 & a_{0} & \cdots & a_{k} & \cdots & \vdots \\
\vdots & \vdots & \ddots & \ddots & \cdots & \ddots & 0 \\
0 & 0 & \cdots & 0 & a_{0} & \cdots & a_{k}
\end{array}\right)
$$

is the generator matrix of the cyclic code C.
Proof. Let $g_{1}=\left(a_{0}, \ldots, a_{k}, 0, \ldots, 0\right) \in F_{2}^{n}$, then G can also be write as

$$
G=\left(\begin{array}{c}
g_{1} \\
s\left(g_{1}\right)=g_{2} \\
s^{2}\left(g_{1}\right)=g_{3} \\
\vdots \\
s^{k-1}\left(g_{1}\right)=g_{k}
\end{array}\right)
$$

(where s is the shift function and $s^{k}=s \circ s \circ \cdots \circ s, k$-successive shifts).

Since the polynomial g generates C, we have $C=\langle g(x)\rangle$. Let $c \in C$, then $\left(c_{i}\right)_{i=1 \cdots n}=c \in g(x) \cdot p(x)\left(\right.$ where $\left.b_{0}+b_{1} x+\cdots+b_{n-1} x^{n-1}=p(x) \in \frac{F_{2}[x]}{\left(x^{n}-1\right)}\right)$ implies that $c_{i} \in \sum_{l+j} a_{l} \cdot b_{j}$ if $i \leq k$ and $c_{i}=0$ else if $(i>k)$.

Focusing on $g(x)$ and $p(x)$, the element c belongs to the sum $b_{0} \cdot g(x)+$ $b_{1} x \cdot g(x)+\cdots+b_{n-1} \cdot x^{n-1} \cdot g(x)$ because this sum can also be written as $e_{1} \cdot g_{1}+e_{2} \cdot g_{2}+\cdots+e_{k} \cdot g_{k}\left(e=\left(e_{1}, \ldots, e_{k}\right) \in F_{2}^{n}\right)$, and C is a cyclic code generated by $g(x)$.

Proposition 23. With the same notation as in Proposition 22, let $h(x) \in \frac{F_{2}[x]}{\left(x^{n}-1\right)}$ be a polynomial such that $x^{n}-1 \in h(x) \cdot g(x)$, then
(1) The linear code C over F_{2} can be represented by $C=\left\{\left.p(x) \in \frac{F_{2}[x]}{\left(x^{n}-1\right)} \right\rvert\, 0 \in\right.$ $p(x) \cdot h(x)\}$.
(2) $h(x)$ is the generating polynomial for the linear code C^{\perp}.

Proof. Let C be a cyclic code of length n over F_{2}, generated by the polynomial $g(x)=a_{0}+a_{1} x+\cdots+a_{k-1} x^{k-1}+a_{k} x^{k}\left(a_{k}=1\right)$. Since $x^{n}-1 \in h(x) \cdot g(x)$, then $\operatorname{deg}(h(x))=n-k$, the coefficient of the monomial of degree $n-k$ is 1 and if we assume that $h(x)=b_{0}+b_{1} x+\cdots+b_{n-k-1} x^{n-k-1}+b_{n-k} x^{n-k} \in \frac{F_{2}[x]}{\left(x^{n}-1\right)}$ (with $b_{n-k}=1$), we have $h(x) \cdot g(x)=\sum_{l=1}^{n}\left(\sum_{i+j=l} a_{i} \cdot b_{j}\right) x^{l}$, hence $0 \in \sum_{i+j=l} a_{i} \cdot b_{j}$. Let $G=\left(\begin{array}{c}g_{1} \\ \vdots \\ g_{k}\end{array}\right)$ be the generator matrix of the code C, with a k-successive shift of $g_{1}=\left(a_{0}, \ldots, a_{k}, 0, \ldots, 0\right) \in F_{2}^{n}$, let $H=\left(\begin{array}{c}h_{1} \\ \vdots \\ h_{n-k}\end{array}\right)$ be $n-k$-successive shifts of $h_{1}=\left(b_{0}, \ldots, b_{n-k}, 0, \ldots, 0\right) \in F_{2}^{n}$. Since $0 \in \sum_{i+j=l} a_{i} \cdot b_{j}$, then $0 \in$ $G \cdot H^{t}$. Therefore by Theorem $14, H$ is the parity check matrix of the code C generated by $h(x)$. Therefore, $h(x)$ is the generating polynomial of the code C^{\perp} and we deduce H.

4. CONCLUSION

In this work, we have defined concepts for linear codes and cyclic codes over the hyperfield F_{2}, such as the generator matrix, the parity check matrix and the Hamming distance. We have also characterized these linear codes and cyclic codes. We have that over a finite field and a finite Krasner hyperfield with the same cardinality, it is possible to have a code over a finite field and a code over a finite Krasner hyperfield with the same parameters (length, dimension, minimal
distance) such that, the linear code over the hyperfield has more code words than the linear code over the field.

This hints at the fact that hyperstructure theory produces codes that have advantages over classical codes and thus we obtain a method that we might use in future work to solve some problems in classical coding theory.

Acknowledgement

The authors wish to thank the anonymous reviewers for their valuable suggestions.

References

[1] R. Ameri and O.R. Dehghan, On dimension of hypervector spaces, European J. Pure Appl. Math. 1 (2008) 32-50.
[2] P. Corsini and V. Leoreanu, Applications of Hyperstructure Theory (Kluwer Academical Publications, Dordrecht, 2003). doi:10.1007/978-1-4757-3714-1
[3] B. Davvaz and A. Koushky, On hyperring of polynomials, Ital. J. Pure Appl. Math. 15 (2004) 205-214.
[4] B. Davvaz and V. Leoreanu-Fotea, Hyperring Theory and applications (International Academic Press, USA, 2007).
[5] B. Davvaz and T. Musavi, Codes over hyperrings, Matematički Vesnik 68 (2016) 26-38.
[6] F. Galand, Construction de codes $\mathbb{Z}_{p^{k}}$-linéaires de bonne distance minimale et schémas de dissimulation fondés sur les codes de recouvrement (Ph.D Thesis, Université de Caen, 2004).
[7] S. Jančic-Rašović, About the hyperring of polynomial, Ital. J. Pure Appl. Math. 21 (2007) 223-234.
[8] M. Krasner, A class of hyperrings and hyperfields, Internat. J. Math. and Math. Sci. 6 (1983) 307-312. doi:10.1155/S0161171283000265
[9] F.J. MacWilliams and N.J.A. Sloane, The Theory of Error-Correcting Codes (NorthHolland, Amsterdam, 1977).
[10] F. Marty, Sur une generalization de la notion de groupe, $8^{i e m}$ Congres Math. Scandinaves, Stockholm (1934) 45-94.
[11] S. Roy and T.K. Samanta, A note on hypervector spaces, arXiv:1002.3816v3 [math.GM].

