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Abstract

It is studied how rank two pure subgroups of a torsion-free Abelian group
of rank three influences its structure and type set. In particular, the criterion
for such a subgroupB to be a direct summand of a torsion-free Abelian group
of rank three with the finite type set containing the greatest element which
does not belong to the type set of B, is presented. Some results for nil groups
and the square subgroup of a decomposable torsion-free Abelian group are
also achieved. Moreover, new results for mixed Abelian groups supporting
only associative rings are obtained. In particular, the first example of an
Abelian group supporting only associative rings but not only commutative
rings is given.
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1. Introduction and Preliminaries

In [18], Hasani, Karimi, Najafizadeh and Sadeghi have studied the square sub-
group of a torsion-free Abelian group A = A1 ⊕ A2 of rank three, assuming that
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Ai is a group of rank i, A2 is not a nil group and either t(A1) ∈ T (A2) or t(A1)
is incomparable to any type belonging to T (A2). This research was continued
by Woronowicz in [26]. The aim of the first section of that note is to study
torsion-free Abelian groups of rank three with a bit more general assumptions.
Namely, we investigate how rank two pure subgroups of a torsion-free Abelian
group of rank three influences its structure and type set. In particular, we present
the criterion for such a subgroup B to be a direct summand of a torsion-free
Abelian group of rank three with the finite type set containing the greatest ele-
ment which does not belong to the type set of B. Some new results for nil groups
and the square subgroup of a decomposable torsion-free Abelian group are also
obtained.

The second section is inspired by papers [7, 16] concerning additive groups
of associative and commutative rings. We indicate new examples of Abelian
mixed groups which support only associative rings. In particular, we construct
the first example of such a group which does not support only commutative rings.
Furthermore, we slightly generalize some results from [7].

The topic has a long history in algebra. Its starting point can be localized in
the middle of the 20th century (see, e.g., [10, 21]). Several authors have followed
this subject of study which resulted in next papers (see, e.g., [1,11,13,20]). Further
research, conducted with the momentous contribution of Feigelstock, led to the
monograph [14] and its complement [15]. Currently, torsion-free and mixed groups
are generating renewed interest (see, e.g., [3–8,16,19,24]). However, many of basic
aspects concerning the structure and the type set of a torsion-free Abelian group
of rank greater than two remain unknown. Many of natural questions related to
additive groups of associative rings are also unanswered. This is a main motivation
for that note.

Symbols Q, Z and N stand for the the field of rationals, the ring of integers
and the set of all positive integers, respectively. Throughout this paper all groups
are Abelian and written additively. The square subgroup of an Abelian group A
can be understood as a subgroup of A generated by the squares of all possible
rings defined on A. It is denoted by �A or �aA if we restrict our consideration to
associative rings. The notion comes from [23] and has been examined in [2,5]. In
accordance with [14], by the type set of a torsion-free Abelian group A we mean
the set T (A) =

{

t(a) : a ∈ A, a 6= 0
}

. The rank and torsion-free rank of A are
denoted by r(A) and r0(A), respectively. A ring R is said to be semi-prime if it
contains no nonzero nilpotent ideals. If x ∈ R, then the symbol [x] stands for
the subring of R generated by x. The additive group of a ring R is denoted by
R+. The notation I �R means that I is an ideal of R. All other designations are
consistent with generally accepted standards (see, e.g., [17]).
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2. On some specific torsion-free Abelian groups of rank three,

rings on them and their type sets

The complete preliminary knowledge of characteristics, types and type set of an
Abelian torsion-free group is contained in [14, 17]. Retaining the notation of [17]
we remind the reader only the most basic properties of characteristics and types
which will be used often throughout the paper. They are listed in the following
lemma.

Lemma 2.1. Let A, B and C be torsion-free Abelian groups and let G be a pure

subgroup of A.

(1) χ(a+ b) ≥ χ(a) ∩ χ(b) and t(a+ b) ≥ t(a) ∩ t(b) for all a, b ∈ A.

(2) If A = B ⊕ C, b ∈ B and c ∈ C, then χ(b + c) = χ(b) ∩ χ(c) and t(b+ c) =
t(b) ∩ t(c).

(3) χ
A/G

(a+G) =
⋃

x∈a+G χA(x) for every a ∈ A.

(4) tG(g) = tA(g) for every g ∈ G.

(5) If a and b are dependent elements of A, then t(a) = t(b).

(6) If f ∈ Hom(A,B), then χA

(

f(a)
)

≥ χB(a) and t
(

f(a)
)

≥ t(a) for every

a ∈ A.

(7) t(a) · t(b) ≥ t(a) for all a, b ∈ A.

(8) If R = (A, ⋆) is a ring, then t(a ⋆ b) ≥ t(a) · t(b) for all a, b ∈ A.

Proof. The proofs of (1)–(7) can be found in [14, 17]. Property (8) is placed
in [3, Lemma 1] (if a ⋆ b = 0, then the assertion is obvious).

Proposition 2.2. Let A be a torsion-free Abelian group of rank three with T (A)
containing distinct maximal types t1, t2, t3 and let x1, x2, x3 be elements of A re-

spectively of types t1, t2, t3. If �〈x1, x2〉∗ 6= {0}, then A = 〈x1, x2, x3〉∗. Moreover,

if �A 6= {0}, then T (A) contains no more maximal types and t2i = ti for some

i ∈ {1, 2, 3}.

Proof. Let G = 〈x1, x2〉∗. Suppose, contrary to our claim, that the system
{x1, x2, x3} is dependent. Since elements x1, x2, x3 are pairwise independent (cf.
(5)), there exist nonzero integers k1, k2, k3 such that k3x3 = k1x1 + k2x2. Hence
x3 ∈ G. Moreover, tG(x3) = t3 by (4). Consequently, T (G) contains three
maximal elements, contrary to [22, Theorem 3.3]. Therefore A = 〈x1, x2, x3〉∗.
Now, the second assertion follows at once form [19, Theorems 3.5 and 3.7].

A direct consequence of Proposition 2.2 and [22, p. 204] is the following:
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Corollary 2.3. Let A be a torsion-free Abelian group of rank three with �A 6= {0}.
If there exists a rank two pure subgroup G of A such that �G 6= {0},

∣

∣T (G)
∣

∣ = 3
and every maximal type of T (G) is maximal in T (A), then T (A) contains at most

three maximal types and at least one of these types is idempotent.

Proposition 2.4. If A is a torsion-free Abelian group of rank three with T (A)
containing a chain t1 < t2 < t3, then t1 is the least element of T (A). Moreover,

if A supports a semi-prime ring, then t23 = t3.

Proof. Since t1 < t2 < t3, we get A(t3) ( A(t2) ( A(t1). Take any x1, x2, x3 ∈ A
satisfying t(xi) = ti for each i ∈ {1, 2, 3}. Then x1, x2, x3 are pairwise indepen-
dent. Hence r

(

A(t1)
)

= 2 or r
(

A(t1)
)

= 3. Since A(t2) is a pure subgroup of A, we
infer that the first eventuality implies A(t2) = A(t1) so it is impossible. Therefore
r
(

A(t1)
)

= 3. Now, the purity of A(t1) in A implies A = A(t1) and, consequently,
T (A) = T

(

A(t1)
)

. Thus t1 ≤ t(a) for every a ∈ A. It follows from [9, Theorem
9.1] that t3 is a maximal element of T (A) so the second assertion is a consequence
of [22, Proposition 4.1].

It is a well-known fact that if I is an ideal in associative ring R and the ring
I is unital, then R = I ⊕ J for some J � R. We will use this observation in the
following remark related to the group A described in Proposition 2.4.

Remark 2.5. Let I = A(t3). Suppose that R = (A, ∗) is an associative semi-
prime ring. Then I∗I 6= {0} because I�R. By similar argument as in the proof of
Proposition 2.4 we infer that r(I) = 1. Therefore I can be treated as a subgroup
of Q+. Then, it follows from [25, Remark 4.2] that there exists q ∈ I \ {0} such
that for all x, y ∈ I we have x ∗ y = x · q · y. If q−1 ∈ I, then the ring I is unital
and, consequently, I is a direct summand of A.

Proposition 2.6. Let A be a torsion-free Abelian group of rank n such that T (A)
contains distinct maximal types t0, t1, . . . , tn, let x0, x1, . . . , xn be elements of A
respectively of these types and let S = {x0, x1, . . . , xn}. If every subset of S of

cardinality n is independent, then A is a nil group.

Proof. As r(A) = n we infer that {x1, x2, . . . , xn} is a maximal independent
system of A. Hence, there exist k0, k1, . . . , kn ∈ Z such that k0 6= 0 and

(1) k0x0 = k1x1 + k2x2 + · · ·+ knxn.

Since every subset of S of cardinality n is independent, we obtain ki 6= 0 for each
i ∈ {1, 2, . . . , n}. Take any i ∈ {1, 2, . . . , n}. Consider an arbitrary ring (A, ·).
Then (8) and (7) of Lemma 2.1 imply that t(x0xi) ≥ ti. Suppose contrary to our
claim that x0xi 6= 0. Then, the maximality of ti in T (A) implies that t(x0xi) = ti.
But it is impossible, because types t1, t2, . . . , tn are distinct and i has been chosen
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arbitrarily. Moreover, A = 〈x1, x2, . . . , xn〉∗ so x0 · A = A · x0 = {0}. By similar
arguments, we get xrxs = 0 for all distinct r, s ∈ {1, 2, . . . , n}. Thus, by (1), we
get kix

2
i = 0. As ki 6= 0 we obtain x2i = 0. Consequently, the arbitrary choice of

i implies that A2 = {0}. Therefore A is a nil group.

Theorem 2.7. Let A be a torsion-free Abelian group of rank three contains ele-

ments x1, x2, x3 respectively of types t1, t2, t3 satisfying t1 6= t2, t1 < t3, t2 < t3
and let B = 〈x1, x2〉∗. If

∣

∣T (A)
∣

∣ <∞ and t3 is the greatest element of T (A), then

the following conditions are equivalent:

(i)
∣

∣

∣

{

b ∈ B : χ
A
(x3 + b) � χ

A
(x3)

}

∣

∣

∣
<∞; and

(ii) B is a direct summand of A.

In particular, if B is a direct summand of A, �B 6= {0} and �(A/B) 6= {0}, then

�(a)A = 〈x3〉∗ ⊕�B.

Proof. Suppose, contrary to our claim, that x3 ∈ B. Then t3 ∈ T (B), by (4).
It follows from [20, Corollary 1.9] that t1 ∩ t2 ∈ T (B). Hence, T (B) contains
a chain of length three, in contradiction to [9, Theorem 9.1]. Thus x3 6∈ B and,
consequently, A/B is a rank one group of type tA/B(x3 + B). Define Ω =

{

b ∈
B : χ

A
(x3 + b) � χ

A
(x3)

}

. First suppose that |Ω| < ∞. We will show that
tA/B(x3 +B) = t3. Since t3 is the greatest element of T (A), for each b ∈ Ω there
exists nb ∈ N such that χ

A
(x3 + b) ≤ χ

A
(nbx3). Define N =

∏

b∈Ω nb. Then
χ

A
(x3 + b) ≤ χ

A
(Nx3) for each b ∈ B. Hence, by (3), we obtain χ

A/B
(x3 +B) ≤

χ
A
(x3). Therefore, tA/B(x3+B) ≤ tA(Nx3) and, consequently, tA/B(x3+B) ≤ t3.

Moreover, the opposite inequality follows at once from (6) if we put the canonical
epimorphism f : A → A/B. Thus, B is a direct summand of A by [17, Theorem
86.5]. Conversely, if B is a direct summand of A, then A = 〈x3〉∗ ⊕B because of
x3 6∈ B. Hence, by (2), we obtain χ

A
(x3 + b) = χ

A
(x3)∩χA

(b) ≤ χ
A
(x3) for each

b ∈ B. Consequently, Ω = ∅. This completes the proof of (i) ⇔ (ii).
If �(A/B) 6= {0}, then t23 = t3 (cf. [17, Theorems 85.1 and 121.1]). Obviously,

A/B ∼= 〈x3〉∗ so it follows from [25, Theorem 4.8] that �a 〈x3〉∗ = 〈x3〉∗. Moreover,
�B = �aB, by [3, Thorem 4] or [26, Theorem 3.6]. Combining this with [5,
Proposition 1.4 and Remark 1.10] we obtain 〈x3〉∗ ⊕ �B ⊆ �aA. Consider an
arbitrary ring R = (A, ⋆). Let π be the natural projection of A on B. Then the
multiplication b1 ⊛ b2 = π (b1 ⋆ b2) for all b1, b2 ∈ B, induces a ring structure on
B. Thus, if a ∈ �A, then π(a) ∈ �B. Next, A (t3) ⊆ 〈x3〉∗ because of t3 6∈ T (B),
t3 is the greatest element of T (A), A = 〈x3〉∗⊕B and (2). The opposite inclusion
is obvious so 〈x3〉∗ is an ideal in every ring on A. Therefore �A ⊆ 〈x3〉∗ ⊕ �B.
Of course, �aA ⊆ �A so, finally, �aA = �A = 〈x3〉∗ ⊕�B.

Remark 2.8. The existence of an Abelian group A of rank three with the finite
type set T (A) containing distinct types t1, t2 and t3 where t3 is the greatest
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element of T (A) is proved in [20] (see, Example 1.10 and Theorem 2.1 with the
Remark placed under it). Please note that in contrast to [14] and this article, in
the mentioned paper the type t∞ of 0 belongs to the type set of A.

Remark 2.9. If the group B is indecomposable, then �B is described in the
proofs of Theorem 3.2 and Lemmas 4.2 and 4.3 placed in [4]. Otherwise, it is
described in Theorem 3.6 of [26].

Remark 2.10. Notice that if
∣

∣T (B)
∣

∣ = 3 and �B 6= {0}, then the assumption
∣

∣T (A)
∣

∣ ≤ ∞ is not needed. In fact, it follows from [22, p. 204] and (4) that
T (B) = {t0, t1, t2} for some t0, t1, t2 ∈ T (A) where t0 is a minimal type in T (B)
and t1, t2 are maximal types in T (B). Hence t3 6∈ T (B) and, consequently, x3 6∈ B.

3. Some new results for additive groups of associative rings

Abelian groups supporting only associative rings are called AR-groups. An Abe-
lian group A is called a CR-group if every ring R with R+ = A is commutative. If
A satisfies the condition CR restricted to the class of associative rings, then A is
called an ACR-group. As was mentioned in the Introduction, these groups were
partially examined in [7,16]. In this section we present some new results concern-
ing AR-groups. Furthermore, we generalize some results related to (A)CR-groups
placed in [7]. The symbol P(A) means the set of all primes p for which the p-
component Ap of A is nontrivial.

Proposition 3.1. Every CR-group is an AR-group.

Proof. Consider an arbitrary CR-group A. Take any ∗ ∈ Mult(A) and a ∈ A.
An easy computation shows that the multiplication x1 ⊛ x2 = x1 ∗ (a ∗ x2) for all
x1, x2 ∈ A, induces a ring structure on A. Take any x, y ∈ A. As A is a CR-group,
we get x⊛ y = y ⊛ x, i.e., x ∗ (a ∗ y) = y ∗ (a ∗ x). Moreover, the multiplication ∗
is also commutative so x ∗ (a ∗ y) = (a ∗ x) ∗ y = (x ∗ a) ∗ y. Since x, y and a have
been chosen arbitrarily, we infer that (A, ∗) is an associative ring. Consequently,
A is an AR-group.

Remark 3.2. In [7], Abelian groups satisfying both conditions AR and CR were
called SACR-groups. This abbreviation comes from strongly associative and com-

mutative additive groups of rings and it is consistent with Feigelstock’s sugges-
tion concerning naming of Abelian groups satisfying some fixed ring properties
(see, [14, p. 36]). In view of Proposition 3.1 the conditions CR and SACR are
equivalent. Moreover, for torsion Abelian groups all the conditions: CR, AR and
ACR are equivalent (see, [7, Remark 2.3]). For all these reasons, we prefer the
prefix SACR to the prefix CR.
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Theorem 3.3. If C is a nontrivial torsion SACR-group and A is a torsion-free

nil group satisfying A = pA for each p ∈ P(C), then G = C ⊕A is an AR-group.

Proof. Let D be the greatest divisible subgroup of C and let K be a complement
of D in C. Then G = K ⊕ D ⊕ A. The basic properties of the tensor product
of Abelian groups and groups of homomorphism together with [7, Remark 2.3]
and [16, Theorem 5] imply that G⊗G ∼= K ⊕ (A⊗A). Consequently,

Mult(G) ∼= Mult(K)⊕Hom
(

(K ⊕A)⊗ (K ⊕A),D
)

.

Moreover, it follows from [7, Remark 2.3] that K is an SACR-group so if ∗ ∈
Mult(G), then there exist associative and commutative ring (K, ⋄) and a homo-
morphism ξ : (K ⊕A)⊗ (K ⊕A) → D such that

(k1, d1, a1) ∗ (k2, d2, a2) =
(

k1 ⋄ k2, ξ
(

(k1, a1)⊗ (k2, a2)
)

, 0
)

for all k1, k2 ∈ K, d1, d2 ∈ D and a1, a2 ∈ A (see, [17, Theorem 118.1]). For
arbitrary k1, k2, k3 ∈ K and a1, a2, a3 ∈ A we get ξ

(

(k1 ⋄ k2, 0) ⊗ (k3, a3)
)

=
ξ
(

(k1 ⋄ k2, 0) ⊗ (k3, 0)
)

. Moreover, there exists a direct summand H of K such
that k1, k2, k3 ∈ H and H ∼= Z+

m for some m ∈ N. Let h be any generator of
H. For i = 1, 2, 3 there exists li ∈ Z such that ki = lih. Hence ξ

(

(k1 ⋄ k2, 0) ⊗
(k3, 0)

)

= (l1l2l3)ξ
(

(h ⋄ h, 0) ⊗ (h, 0)
)

. As h ⋄ h ∈ H we get h ⋄ h = lh for some
l ∈ Z. Thus ξ

(

(k1 ⋄ k2, 0) ⊗ (k3, a3)
)

= (ll1l2l3)ξ
(

(h, 0) ⊗ (h, 0)
)

. Analogously,
ξ
(

(k1, a1) ⊗ (k2 ⋄ k3, 0)
)

= (ll1l2l3)ξ
(

(h, 0) ⊗ (h, 0)
)

. Therefore the ring (G, ∗) is
associative. Finally, G is an AR-group.

Remark 3.4. Suppose that A is a rank one group. Then a1 ⊗ a2 = a2 ⊗ a1 and
ξ
(

(k1, a1) ⊗ (k2, a2)
)

= ξ
(

(k1, 0) ⊗ (k2, 0)
)

+ ξ
(

(0, a1) ⊗ (0, a2)
)

. Combining this
with the reasoning presented in the proof of Theorem 3.3 we infer that the ring
(G, ∗) is commutative. Hence, by Proposition 3.1 (or Theorem 3.3), we infer that
G is an SACR-group.

In view of Theorem 3.3 and Remark 3.4, Proposition 2.17 from [7] can be
somewhat generalized:

Proposition 3.5. If C is a nontrivial torsion SACR-group and A is a subgroup

of Q+ such that A = pA for each p ∈ P(C), then G = C ⊕A is an SACR-group.

Theorem 3.3 is useful in indicating the first example of an AR-group which
is not an SACR-group.

Example 3.6. Define A =
〈

1
p : p ∈ P

〉

+
[

1
2

]+
, H = A ⊕ A and G = Z(2∞) ⊕

H. Then H is a torsion-free Abelian group of rank two satisfying H = 2H.
Furthermore,

(

t(A)
)2
> t(A) so [14, Corollary 2.1.3] implies �H = {0}. Hence,

by Theorem 3.3, [16, Theorem 10] and Remark 3.2, we infer that G is an AR-group
which is not an SACR-group.
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The next result is a complement of [7, Theorem 2.7] which is closely related
to [16, Theorem 10]. The proof is inspired by the proof of [16, Theorem 10].
However, we present a complete reasoning for the transparency of the paper.

Theorem 3.7. Let p be a prime. If the p-component of a mixed ACR-group A
is not cyclic, then the torsion-free rank of its complement is equal to one.

Proof. It follows from [7, Theorem 2.7] and [16, Theorem 10] that there exists
a subgroup H of A such that A = Ap ⊕ H. Suppose, contrary to our claim,
that r0(H) > 1. Then there exist independent and torsion-free elements x, y of
H. Therefore 〈x〉 ⊕ 〈y〉 is a free subgroup of H. Hence, by [12, Theorem 2]
and by basic properties of the tensor product of Abelian groups, we conclude that
〈x⊗y〉⊕〈y⊗x〉 is a free subgroup ofH⊗H (we put R = Z,M ′ = N ′ = 〈x〉⊕〈y〉 and
M = N = H in the mentioned theorem). Since Ap is not cyclic, it follows from [16,
Theorem 3] that Z(p∞) is a direct summand of Ap. Take any d ∈ Z(p∞) \ {0}.
Then there exists s ∈ N such that d ∈ Z(ps). Let ϑ be the natural projection of
〈x ⊗ y〉 ⊕ 〈y ⊗ x〉 onto 〈x⊗ y〉. Since 〈x ⊗ y〉/ps〈x ⊗ y〉 ∼= Z(ps), there exists an
epimorphism ψ : 〈x⊗ y〉 → Z(ps) such that ψ(x⊗ y) = d. Define φ = ψ ◦ϑ. Then
φ is a homomorphism of 〈x⊗ y〉⊕ 〈y⊗x〉 into Z(p∞) satisfying φ(x⊗ y) = d and
φ(y⊗x) = 0. Let ı be the natural injection of 〈x⊗y〉⊕ 〈y⊗x〉 into H ⊗H. Since
Z(p∞) is injective in the category of Abelian groups, there exists a homomorphism
ϕ : H ⊗H → Z (p∞) for which φ = ϕ ◦ ı.

0 // 〈x⊗ y〉 ⊕ 〈y ⊗ x〉
ı

//

φ

��

H ⊗H

ϕ

yyr
r

r

r

r

r

r

r

r

r

r

Z(p∞)

Let B = Z(p∞) ⊕ H. Then B is a direct summand of A. It is easily seen that
the multiplication (d1, h1) ⋆ (d2, h2) =

(

ϕ(h1 ⊗ h2), 0
)

for all d1, d2 ∈ Z(p∞) and
h1, h2 ∈ H, provides a ring structure on B. Moreover, (0, x) ⋆ (0, y) = (d, 0) 6=
(0, 0), (0, y) ⋆ (0, x) = (0, 0) and (B ⋆ B) ⋆ B = B ⋆ (B ⋆ B) = {0}. Thus (B, ⋆)
is an associative ring which is not commutative and, consequently, B is not an
ACR-group, contrary to [16, Lemma 1].

Corollary 3.8. If A is a mixed ACR-group such that P(A) = {p} and Ap is

not cyclic, then it follows from Theorem 3.7 and [16, Theorem 3] that either

A = Z(pn)⊕D⊕H or A = D⊕H where n is a positive integer, D is a nontrivial

divisible p-group and H is a torsion-free Abelian group of rank one. Moreover, if

the first eventuality holds, then H = pH, by [7, Theorem 2.7]. Thus, all mixed
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ACR-groups such that P(A) = {p} and Ap is neither divisible nor reduced are

described in Proposition 3.5. In particular, they are SACR-groups.
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