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Abstract

In this paper, we introduce the developed Zariski topology-graph as-
sociated to an R-module M with respect to a subset X of the set of all
quasi-prime submodules of M and investigate the relationship between the
algebraic properties of M and the properties of its associated developed
Zariski topology-graph.
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1. Introduction

For the last few decades several mathematicians studied graphs on the various
algebraic structures (groups, rings, modules, . . . ). These interdisciplinary stud-
ies allow us to obtain characterizations and representations of special classes of
algebraic structures in terms of graphs and vice versa. Various constructions of
graphs related to the algebraic structures are found in [3, 6, 7, 8, 11, 13, 14, 18, 19].

Throughout this paper all rings are commutative with nonzero identity and
all modules are unitary. A proper ideal I of a ring R is said to be quasi-prime
if for each pair of ideals A and B of R, A ∩ B ⊆ I yields either A ⊆ I or B ⊆ I
(see [9, 12] and [17]). It is easy to see that every prime ideal is a quasi-prime
ideal. For a submodule N of an R-module M , (N :R M) denotes the ideal
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{r ∈ R | rM ⊆ N} and annihilator of M , denoted by AnnR(M), is the ideal
(0 :R M). M is called faithful if Ann(M) = (0). If there is no ambiguity we
write (N :M) (resp. Ann(M)) instead of (N :R M) (resp. AnnR(M)). A proper
submodule N of an R-module M is called quasi-prime if (N :R M) is a quasi-
prime ideal of R (see [2]). We define the quasi-prime spectrum of an R-moduleM
to be the set of all quasi-prime submodules of M and denote it by qSpecR(M).
If there is no ambiguity we write only qSpec(M) instead of qSpecR(M). The
notion of quasi-prime submodule as a generalization of quasi-prime ideal of rings
was introduced and investigated in [2]. For a submodule N of M we define
D(N) = {L ∈ qSpec(M) | (L : M) ⊇ (N : M)}. For any R-module M there
exists a topology, τ say, on qSpec(M) having ζ(M) = {D(N) |N ≤ M} as the
family of all closed sets. The topology τ is called the developed Zariski topology
on qSpec(M) (see [2]).

In this paper, we employ sets D(N) and define a new graph called the devel-
oped Zariski topology-graph, and by using this graph, we study algebraic (resp.
topological) properties of M (resp. qSpec(M)).

2. The developed Zariski topology-graph

For the reminder of this paper, we will use the letter X to denote an arbitrary
subset of qSpec(M). We will denote the intersection of all elements in X by ℑ(X)
and the closure of X in qSpec(M) with respect to the developed Zariski topology
by Cl(X).

Definition 2.1. Let M be an R-module. Then we define the developed Zariski
topology-graph GX(M) as an undirected graph in which the set of vertices
V
(

GX(M)
)

is defined by

{

N < M | ∃ 0 6= L < M such that D(N) ∪D(L) = X and D(N),D(L) 6= X
}

and distinct vertices N and L are adjacent if and only if D(N) ∪D(L) = X.

Recall that a topological space T is irreducible if for any decomposition T =
A1 ∪A2 with closed subsets Ai of T with i = 1, 2, we have A1 = T or A2 = T . A
subset Y of T is irreducible if it is irreducible as a subspace of T .

Lemma 2.2. Let M be an R-module. Then GX(M) 6= ∅ if and only if X is
closed and reducible subset of qSpec(M).

Proof. Suppose GX(M) 6= ∅. Then there exists a submodule L of M such
that L ∈ V (GX(M)). Hence, there exists a nonzero proper submodule N of
M where D(N ∩ L) = X. This shows that X is a closed subset of qSpec(M).
Moreover, D(N) ∪D(L) = X, D(L) 6= X and D(N) 6= X by Definition 2.1. It
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follows that GX(M) is a reducible subset of qSpec(M). Conversely, let X be a
closed and reducible subset of qSpec(M). Then, there are submodules L1 and
L2 of M , with X = D(L1) ∪ D(L1) and D(L1) 6= X, D(L2) 6= X. Therefore,
L1, L2 ∈ V

(

GX(M)
)

and the proof is completed.

Lemma 2.3. Let M be an R-module, Y ⊆ qSpec(M) and let L ∈ qSpec(M).
Then the following statements hold:

(1) D
(

ℑ(Y )
)

= Cl(Y ). In particular, Cl({L}) = D(L);

(2) ℑ(Y ) is a quasi-prime submodule of M if and only if Y is an irreducible
space.

Proof. See [2, Proposition 3.4(1) and Proposition 3.10].

Remark 2.4. By Lemma 2.3, X is closed if and only if X = D
(

ℑ(X)
)

. There-
fore, by Lemma 2.2, GX(M) 6= ∅ if and only ifX = D

(

ℑ(X)
)

andX is a reducible
subset of qSpec(M). Moreover, we infer from Lemma 2.3 that GX(M) 6= ∅ if and
only if X = D

(

ℑ(X)
)

and ℑ(X) is not a quasi-prime submodule of M .

Recall that a graph is said to be connected if for each pair of distinct vertices
v and w, there is a finite sequence

�� ��
�� ��v = v1

�� ��
�� ��v2 · · · �� ��

�� ��vn−1
�� ��
�� ��vn = w

of distinct vertices where each pair {vi, vi+1} is an edge of graph. Such a sequence
is said to be a path and the distance, d(v,w), between connected vertices v and w
is the length of the shortest path connecting them (d(v, v) = 0 and d(v,w) = ∞ if
there is no such path). The diameter of a connected graph G is the supremum of
the distances between vertices and is denoted by diam(G). The girth of a graph
G denoted by gr(G) is the length of a shortest cycle in G (for more details see
[16]). Let N and L be submodules of an R-module M . Then the product of N
and L is defined by (N :M)(L :M)M and denoted by NL (see [5]).

Let M be an R-module. For a submodule N of M we define Ω(N) = {L ∈
qSpec(M) | L ⊇ N}. Then we define D

√
N := ℑ(D(N)). If D(N) = ∅, then

D
√
N = M . Also, we define Ω

√
N := ℑ(Ω(N)). If Ω(N) = ∅, then Ω

√
N =

M . Consider the Z-module M = (Z/24Z) ⊕ (Z/28Z) and let N = (4Z/24Z) ⊕
(2Z/28Z), P1 = (4Z/24Z)⊕ (Z/28Z) and P2 = (4Z/24Z)⊕ (4Z/28Z). Note that
P1 and P2 are quasi-prime submodules of M . Then we have Ω

√
N = P1 ∩ (2)M =

N and D
√
N ⊆ P1 ∩ P2 = P2 $ N . Therefore, this example shows Ω

√
N and D

√
N

are different in general.

Lemma 2.5. Let M be an R-module and let I be an ideal of R. For arbitrary
submodules N and L of an R-module M we have

(1) D(N) = D
(

(N :M)M
)

= Ω
(

(N :M)M
)

;
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(2) D(N) ∪D(L) = D(NL) = Ω(NL);

(3) D(IM) = D( D
√
IM) = Ω(IM) = Ω( D

√
IM).

Proof. (1) This is easy. (2) By definition and part (1) we have

D(NL) = D ((N :M)(L :M)M)

= D ((N :M)M) ∪D ((L :M)M)

= D(N) ∪D(L).

(3) This follows from definitions.

Theorem 2.6. LetM be an R-module. Then the developed Zariski topology-graph
GX(M) is connected and diam

(

GX(M)
)

≤ 3. Moreover, if GX(M) contains a
cycle, then gr

(

GX(M)
)

≤ 4.

Proof. Suppose N,L ∈ V
(

GX(M)
)

and D(N) ∪ D(L) 6= X. Then there exist
nonzero proper submodules V and W of M such that D(N) ∪ D(V ) = X and
D(L) ∪D(W ) = X. If V =W , then

�� ��
�� ��N

�� ��
�� ��V

�� ��
�� ��L

is a path of length 2. Suppose V 6=W and D(V ∩W ) = X. Then

�� ��
�� ��N

�� ��
�� ��V

�� ��
�� ��W

�� ��
�� ��L

is a path of length 3. Let V 6=W and D(V ∩W ) 6= X. Then

�� ��
�� ��N

�� ��
�� ��V ∩W �� ��

�� ��L

is a path of length 2. Note that if N = V ∩W , then N ∩ L = V ∩W ∩ L, and
so D(N ∩ L) = D(V ∩W ∩ L) = X, a contradiction. Similarly, W ∩ V 6= L.
Therefore, GX(M) is connected and diam

(

GX(M)
)

≤ 3.
Now, let GX(M) contains a cycle. Suppose the assertion of the theorem is

false. Without loss of generality, we assume that gr
(

GX(M)
)

= 5. Hence, we
have a cycle

�� ��
�� ��N

�� ��
�� ��L

�� ��
�� ��V

�� ��
�� ��K

�� ��
�� ��W

of length 5. Clearly D(L ∩W ) 6= X and D(V ∩K) 6= X. Note that

D(N) ∪D(LW ) = D(N) ∪D(L) ∪D(W ) = X.
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Therefore

�� ��
�� ��N

DD
DD

DD
DD

}}
}}
}}
}}

�� ��
�� ��K

�� ��
�� ��LW

and

�� ��
�� ��N

@@
@@

@@
@

zz
zz
zz
zz

�� ��
�� ��V K

�� ��
�� ��L

are two cycles with length 3, a contradiction. So gr
(

GX(M)
)

≤ 4.

Let M be an R-module. When qSpec(M) 6= ∅, the map ψ : qSpec(M) →
qSpec(R/Ann(M)) defined by ψ(L) = (L :M)/Ann(M) for every L ∈ qSpec(M),
will be called the natural map of qSpec(M). An R-module M is called quasi-
primeful if either M = (0) or M 6= (0) and has a surjective natural map (see [1]).
Let Σ := qSpec(Z) \ {(0)}. Consider the Z-module M =

⊕

I∈Σ Z/I. Then M is
a quasi-primeful Z-module (see [1, Example 2.11]).

Lemma 2.7. Let M be an R-module.

(1) ψ is continuous with respect to the developed Zariski topology;

(2) ψ is bijective if and only if it is a homeomorphism;

(3) if M is quasi-primeful, then ψ is both closed and open; more precisely, for
any submodule N of M , ψ

(

D(N)
)

= D
(

(N :M)
)

and

ψ
(

qSpec(M) \D(N)
)

= qSpec(R̄) \D
(

(N :M)
)

.

Proof. See [2, Proposition 3.2].

An R-module M is called a multiplication module if every submodule N of
M is of the form IM for some ideal I of R (see [10, 15]). It is easy to see that ifM
is a multiplication R-module, then the natural map is bijective (see [1, Corollary
2.23]), and so by Lemma 2.7, it is homeomorphism.

Theorem 2.8. Suppose M is an R-module such that qSpec(M) is homeomorphic
by qSpec

(

R
Ann(M)

)

under the natural map ψ (e.g. multiplication module). If N

and L are adjacent in GX(M) and X ′ = {(K :M) | K ∈ X}, then (N :M) and
(L :M) are adjacent in GX′(R̄). Conversely, if Ī and J̄ are adjacent in GX′(R̄),
then IM and JM are adjacent in GX(M).
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Proof. Let J ∈ X ′. Then there exists a quasi-prime submodule K ∈ X such
that (K :M) = J . Hence, ψ(K) = J . By Lemma 2.7(2), ψ is injective, therefore
ψ−1(J) = K. This implies that

(2.1) ψ−1(X ′) ⊆ X.

Suppose K ∈ X. Then ψ(K) = (K :M) and so

K = ψ−1(K :M) ∈ ψ−1(X ′).

This implies that

(2.2) X ⊆ ψ−1(X ′).

From (2.1) and (2.2) it follows that X = ψ−1(X ′). By assumptionD(N)∪D(L) =
X, so

X ′ = ψ(X) = ψ
(

D(N)
)

∪ ψ
(

D(L)
)

.

From Lemma 2.7(3) it follows that X ′ = D(N :M) ∪ D((L :M)). Therefore,
(N :M) and (L :M) are adjacent in GX′(R̄).

Conversely, let D(Ī) ∪D(J̄) = X ′. Then we have

X = ψ−1
(

D(Ī)
)

∪ ψ−1
(

D(J̄)
)

= D(IM) ∪D(JM).

Therefore, IM and JM are adjacent in GX(M).

Lemma 2.9. Let M be an R-module. Then D(L) is an irreducible closed subset
of qSpec(M) for every quasi-prime submodule L of M .

Proof. See [2, Corollary 3.9].

Lemma 2.10. Suppose GX(M) 6= ∅ and K ∈ X. Then K is a vertex of GX(M)
if either of the following statements holds:

(1) There exists a subset X ′ of X such that K ∈ X ′, D(
⋂

Q∈X′ Q) = X and
D(
⋂

Q∈X′,Q 6=K Q) 6= X.

(2) For a submodule N of M , N ∈ V
(

GX(M)
)

and N ∩K 6∈ V
(

GX(M)
)

.

Proof. (1) First we recall that K is a vertex if there exists a submodule L
of M such that D(K) ∪ D(L) = X and D(K),D(L) 6= X. Suppose L :=
(
⋂

Q∈X′,Q 6=K Q). Then by assumption D(
⋂

Q∈X′,Q 6=K Q) 6= X and

D





(

⋂

Q∈X′,Q 6=K

Q

)

∩K



 = D





⋂

Q∈X′,Q 6=K

Q



 ∪D(K) = X.
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From Lemma 2.9, it follows that D(K) 6= X. Hence K is a vertex.

(2) Since N ∈ V
(

GX(M)
)

, then there exists a nonzero proper submodule L
of M such that D(N) ∪D(L) = X, D(N) 6= X and D(L) 6= X. Moreover, since
N ∩K 6∈ V

(

GX(M)
)

, we infer that, D(N ∩K)∪D(L) 6= X or D(N ∩K) = X or
D(L) = X. By assumption, only the second case is true. Hence K is a vertex.

Theorem 2.11. Let X be a finite set and GX(M) 6= ∅. Then X∩V (GX(M)) 6= ∅.

Proof. SupposeK ∈ X. ThenD(K)∪D(
⋂

Q∈X,Q 6=KQ) = X. IfD(
⋂

Q∈X,Q 6=KQ)
6= X, then K is a vertex of GX(M). Otherwise, if D(

⋂

Q∈X,Q 6=K Q) = X,
since X is reducible there exists a subset X ′ of X and K ′ ∈ X such that
D(
⋂

K∈(X\X′)K) 6= X and D(
⋂

K∈(X\X′)∪{K ′}K) = X. Hence, K ′ ∈ X ∩ V

(GX (M)). Therefore X ∩ V
(

GX(M)
)

6= ∅.

3. Relation between GX(M) and AG(M)

Recall that the annihilating-submodule graph AG(M) is a graph with vertices
V (AG(M)) = {N ≤ M | ∃ 0 6= L < M with NL = 0}, where distinct vertices N
and L are adjacent if and only if NL = 0 (see [6]).

Lemma 3.1. Suppose that M is an R-module such that M 6∈ V (AG(M)). If
AG(M) is empty, then the submodule (0) of M is a quasi-prime submodule of
M .

Proof. This follows from [6, Proposition 3.2].

Theorem 3.2. Suppose M is an R-module and M/ℑ(X) is not a vertex in
AG
(

M/ℑ(X)
)

. Then we have the following statements:

(1) AG
(

M/ℑ(X)
)

is isomorphic to a subgraph of GX(M).

(2) AG
(

M/ℑ(X)
)

= ∅ if and only if GX(M) = ∅.

Proof. (1) Let N/ℑ(X) be a vertex in AG
(

M/ℑ(X)
)

. Then there exists a
nonzero proper submodule L/ℑ(X) adjacent to N/ℑ(X). Hence,

N

ℑ(X)
· L

ℑ(X)
=

(

N

ℑ(X)
:

M

ℑ(X)

)(

L

ℑ(X)
:

M

ℑ(X)

)

M

ℑ(X)

=
(N :M)(L :M)M + ℑ(X)

ℑ(X)
= ¯(0).

Therefore, (N : M)(L : M)M = NL ⊆ ℑ(X). This yields that (NL : M) ⊆
(ℑ(X) :M). Consequently, by Lemma 2.5 we have D(NL) = D(N)∪D(L) = X.
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If D(N) = X, then (NL : M) = (ℑ(X) : M). Hence, M/ℑ(X) is a vertex, a
contradiction. Similarly D(L) 6= X.

(2) Suppose AG(M/ℑ(X)) = ∅. By Lemma 3.1, ℑ(X) is a quasi-prime sub-
module of M . Therefore, by Remark 2.4 we have GX(M) = ∅. Conversely, let
AG
(

M/ℑ(X)
)

6= ∅. Thus, from part (1) of this theorem, we have GX(M) 6= ∅.

Remark 3.3. In the annihilating-submodule graph AG(M), M itself can be a
vertex. M is a vertex if and only if there exists a nonzero proper submodule N
of M such that (N :M) = Ann(M) (see page 3289 of [6]).

Lemma 3.4. LetM be an R-module. ThenM/ℑ(X) is a vertex in AG
(

M/ℑ(X)
)

if and only if there exists a proper submodule N of M such that ℑ(X) < N and
D(N) = X.

Proof. We first show that if ℑ(X) < N and D(N) = X, then M :=M/ℑ(X) is
a vertex in AG

(

M/ℑ(X)
)

. By definition, it suffices to show that there exists a
nonzero proper submodule L of M such that LM = (0). Therefore,

M

ℑ(X)
· L

ℑ(X)
=

(

M

ℑ(X)
:

M

ℑ(X)

)(

L

ℑ(X)
:

M

ℑ(X)

)

M

ℑ(X)

=
(L :M)M +ℑ(X)

ℑ(X)
.

Thus, suffices to show (L : M)M ⊆ ℑ(X). By assumption, D(N) = X. There-
fore,

(N :M) ⊆
⋂

Q∈X
(Q :M) =

(

⋂

Q∈X
Q :M

)

=
(

ℑ(X) :M
)

⇒ (N :M)M ⊆ ℑ(X).

Hence, M
ℑ(X) is a vertex because adjacent vertex is N

ℑ(X) .

Conversely, if M/ℑ(X) is a vertex in AG
(

M/ℑ(X)
)

, then by Remark 3.3,
there exists a nonzero proper submodule N := N/ℑ(X) of M such that (N :
M ) = Ann(M). Therefore, N 6= M , ℑ(X) < N and (ℑ(X) : M) = (N :
M). Thus, D(ℑ(X)) = D(N). Since AG(M/ℑ(X)) 6= ∅ by Theorem 3.2(2), it
follows that GX(M) 6= ∅ and from Remark 2.4, it follows that D(ℑ(X)) = X.
Consequently, D(N) = X.

Theorem 3.5. Suppose M is a quasi-primeful R-module and N , L are adjacent

in GX(M). Then
D
√

(N :M)M

ℑ(X) and
D
√

(L:M)M

ℑ(X) are adjacent in AG( M
ℑ(X) ).

Proof. By assumption D(N) ∪D(L) = X. By Lemma 2.5 we have

X = D(N) ∪D(L) = D(NL) = Ω(NL) = Ω
(

(NL :M)M
)

= Ω((N :M)(L :M)M).
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Therefore,

ℑ(X) = D

√

(N :M)(L :M)M

⊆ D
√

(N :M)M ∩ (L :M)M

⊆ D

√

(N :M)M ∩ D

√

(L :M)M.

Now, we show that
D
√

(N :M)M

ℑ(X)

D
√

(L:M)M

ℑ(X) = (0). We have

D

√

(N :M)M

ℑ(X)
·

D

√

(L :M)M

ℑ(X)

=

(

D

√

(N :M)M

ℑ(X)
:

M

ℑ(X)

)(

D

√

(L :M)M

ℑ(X)
:

M

ℑ(X)

)

M

ℑ(X)

=

(

D

√

(N :M)M :M
)(

D

√

(L :M)M :M
)

M + ℑ(X)

ℑ(X)
.

It is sufficient for us to prove that
(

D

√

(N :M)M : M
)(

D

√

(L :M)M : M
)

M ⊆ ℑ(X). Since M is quasi-primeful, we have

(3.1)
(

D

√

(N :M)M :M
)

=
(

D
√
N :M

)

=
D
√
N :M

and

(3.2)
(

D

√

(L :M)M :M
)

=
(

D
√
L :M

)

=
D
√
L :M.

Thus by (3.1) and (3.2) we infer that

(

D

√

(N :M)M :M
)(

D

√

(L :M)M :M
)

M =
D
√
N :M

D
√
L :MM

⊆ D

√

(N :M)(L :M)M

⊆ Ω
√

(N :M)(L :M)M

=
Ω
√
NL = ℑ(X).

If we show that
D
√

(N :M)M

ℑ(X) is a nonzero proper submodule of M
ℑ(X) , then

we can infer that
D
√

(N :M)M

ℑ(X) is a vertex in AG
(

M
ℑ(X)

)

. Let
D
√

(N :M)M

ℑ(X) = 0.

Then (N : M)M ⊆ D

√

(N :M)M = ℑ(X), and so (N : M) ⊆ (ℑ(X) : M).
Consequently, D(N) = X a contradiction. Therefore D

√

(N :M)M 6= ℑ(X) and
similarly D

√

(L :M)M 6= ℑ(X).
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To show that
D
√

(N :M)M

ℑ(X) and
D
√

(L:M)M

ℑ(X) are adjacent in AG( M
ℑ(X) ). We must

prove that these are distinct. Let D

√

(N :M)M/ℑ(X) = D

√

(L :M)M/ℑ(X).
Then we have

(0) =
D

√

(N :M)M

ℑ(X)
·

D

√

(L :M)M

ℑ(X)

=

(

D

√

(L :M)M

ℑ(X)
:

M

ℑ(X)

)(

D

√

(L :M)M

ℑ(X)
:

M

ℑ(X)

)

M

ℑ(X)

=
(

D

√

(L :M)M
)2 M

ℑ(X)
=

(

D
√
L :M

)2
M + ℑ(X)

ℑ(X)
.

So ( D
√
L :M )2M ⊆ ℑ(X). Then ( D

√
L :M)2 ⊆ (ℑ(X) : M), Hence, (L : M) ⊆

D
√
L :M ⊆ D

√

(ℑ(X) :M) = (ℑ(X) : M). Thus D(L) = X, a contradiction.
Hence D

√

(N :M)M 6= D

√

(L :M)M and the proof is completed.

Corollary 3.6. If the conditions of Theorem 3.5 hold, then
D
√
N

ℑ(X) and
D
√
L

ℑ(X) are

adjacent in AG( M
ℑ(X) ).

Proof. Apply the same technique in the proof of Theorem 3.5.

A submodule N of an R-module M is said quasi-semiprime if it is an in-
tersection of quasi-prime submodules (see [2]). We recall that an R-module M
is co-semisimple in case every submodule of M is the intersection of maximal
submodules (see [4, p. 122]). Every proper submodule of a co-semisimple module
is a quasi-semiprime submodule.

Lemma 3.7. If A is a quasi-primeful R-module and B ≤ A, then for every
p ∈ qSpec(R) where (B : A) = p, there exists P ∈ qSpec(A) such that B ≤ P and
(P : A) = p.

Proof. The proof is easy and we omit it.

Theorem 3.8. Let M be an R-module. Suppose that N
ℑ(X) and

L
ℑ(X) are adjacent

in AG( M
ℑ(X) ). Then N and L are adjacent in GX(M) if one of the following

conditions holds:

(1) M
ℑ(X) is not a vertex in AG( M

ℑ(X) ). Particularly, this holds when M
ℑ(X) is

a quasi-primeful module and contains no quasi-semiprime S 6= ℑ(X) with
D(S) 6= X.

(2) M
N

and M
L

are quasi-primeful and contains no quasi-semiprime S 6= ℑ(X)
with D(S) 6= X.



Developed Zariski topology-graph 243

Proof. (1) If M
ℑ(X) is not a vertex in AG( M

ℑ(X) ), then by the proof of Theorem

3.2, N and L are adjacent in GX(M). To see the second assertion, let M
ℑ(X) be

a vertex in AG( M
ℑ(X) ). By Lemma 3.4, there exists a nonzero proper submodule

N ′ of M such that ℑ(X) < N ′. Clearly, M
ℑ(X) has structure of R

(ℑ(X):M) -module.

Suppose that Q is an arbitrary element of X. Then we have (N ′ :M) ⊆ (Q :M)
and therefore

(

N ′

ℑ(X)
:

M

ℑ(X)

)

⊆ (Q :M)

(ℑ(X) :M)
.

Now, by Lemma 3.7 there exists a quasi-prime submodule K
ℑ(X) such that N ′ < K

and (K : M) = (Q : M). Thus we have ℑ(X) ≤ K and so D(K) ⊆ D(ℑ(X)) =
X. Since (K :M) = (Q : M), we have Q ∈ D(K). Hence X ⊆ D(K). It follows
that D(K) = D(N ′) = X and this means that there exists a quasi-semiprime
submodule N ′ 6= ℑ(X) such that D(N ′) = X, a contradiction.

(2) Since N
ℑ(X) and L

ℑ(X) are adjacent in AG( M
ℑ(X) ) we have

N

ℑ(X)
· L

ℑ(X)
= 0 ⇒

(

N

ℑ(X)
:

M

ℑ(X)

)(

L

ℑ(X)
:

M

ℑ(X)

)

M

ℑ(X)
= 0

⇒ (N :M)(L :M)M + ℑ(X)

ℑ(X)
= 0

⇒ NL ⊆ ℑ(X)

⇒ D(NL) = D(N) ∪D(L) = X.

We now claim that D(N) 6= X and D(L) 6= X. If D(N) = X, then (N : M) ⊆
(Q : M), for every Q ∈ X. Since M

N
is quasi-primeful, there exists a quasi-

prime submodule K of M such that (K : M) = (Q : M). Thus, N ⊆ ℑ(X)
a contradiction. Therefore, D(N) 6= X. Similarly D(L) 6= X and the proof is
completed.

Lemma 3.9. Let M be an R-module.

(1) If the zero submodule of M is not quasi-prime, then AG(M) has ACC (resp.
DCC) on vertices if and only ifM is a Noetherian (resp. an Artinian) module.

(2) Suppose that R is an Artinian ring and M is a finitely generated R-module.
Then every nonzero proper submodule N of M is a vertex in AG(M).

Proof. See [6, Proposition 3.5 and Theorem 3.6].

Theorem 3.10. Suppose M is an R-module such that M
ℑ(X) is a faithful module

which is not a vertex in AG( M
ℑ(X) ). Then the following statements are equivalent:

(1) GX(M) is a finite graph;
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(2) AG( M
ℑ(X) ) is a finite graph;

(3) M
ℑ(X) has finite number of submodules. Moreover, GX(M) has n (n ≥ 1)

vertices if and only if M
ℑ(X) has n nonzero proper submodules.

Proof. (1)⇒(2) Suppose GX(M) is a finite graph. Since M
ℑ(X) is not a vertex in

AG( M
ℑ(X) ), by Theorem 3.2(1) it follows that AG( M

ℑ(X) ) is a finite graph.

(2)⇒(3) If AG( M
ℑ(X) ) is a finite graph with n (n ≥ 1) vertices, then by

Lemma 3.1, ℑ(X) is not a quasi-prime submodule. By Lemma 3.9, M
ℑ(X) has

finite length. Therefore, M
ℑ(X) is a Noetherian, Artinian and finitely generated

R-module. Since M/ℑ(X) is a faithful R-module we have

R

Ann( M
ℑ(X) )

=
R

(ℑ(X) :M)
= R.

Thus, R is an Artinian ring. By Lemma 3.9 every nonzero proper submodule
N

ℑ(X) of
M

ℑ(X) is a vertex. Consequently, M
ℑ(X) has finite number of submodules. If

N is a vertex in GX(M), then there exists a nonzero proper submodule L of M
such that D(N)∪D(L) = X. By Theorem 3.2(1), N

ℑ(X) is a vertex in AG( M
ℑ(X) ).

(3)⇒(1) If N
ℑ(X) is a nonzero proper submodule of M

ℑ(X) . Then by Lemma 3.9,
N

ℑ(X) is a vertex in AG( M
ℑ(X) ) and it follows from Theorem 3.2(1) that N is a

vertex in GX(M). Thus, GX(M) is a finite graph.

Lemma 3.11. Suppose M is an R-module such that M
ℑ(X) is not a vertex in

AG( M
ℑ(X) ) and for every P ∈ qSpec(M) ∩ V

(

GX(M)
)

there exists a quasi-
semiprime submodule of M adjacent with P . Then

qSpec

(

M

ℑ(X)

)

∩ V
(

AG

(

M

ℑ(X)

))

6= ∅ ⇔ qSpec(M) ∩ V
(

GX(M)
)

6= ∅.

Proof. Suppose that P ∈ qSpec(M) ∩ V
(

GX(M)
)

. By assumption, D(P ) ∪
D( ∩

P ′∈D′

P ′) = X where D′ is an open subset of X. Now, we show that P
ℑ(X) and

⋂

P ′∈D′

P ′

ℑ(X) are adjacent. We must prove that P
ℑ(X) ·

⋂

P ′∈D′

P ′

ℑ(X) = 0. By definition we
have

P

ℑ(X)
·

⋂

P ′∈D′

P ′

ℑ(X)
=

(

P

ℑ(X)
:

M

ℑ(X)

)





⋂

P ′∈D′

P ′

ℑ(X)
:

M

ℑ(X)





M

ℑ(X)

=

(P :M)

(

⋂

P ′∈D′

(P ′ :M)

)

M + ℑ(X)

ℑ(X)
.



Developed Zariski topology-graph 245

It is enough for us to show that (P :M)( ∩
P ′∈D′

(P ′ :M))M ⊆ ℑ(X). By assump-

tion, we have

X = D(P ) ∪D
(

⋂

P ′∈D′

P ′
)

= Ω

(

P ·
(

⋂

P ′∈D′

P ′
))

.

Therefore,

ℑ(X) = Ω

√

√

√

√P ·
(

⋂

P ′∈D′

P ′

)

⊇ P ·
(

⋂

P ′∈D′

P ′
)

.

This implies that

(P :M)

(

⋂

P ′∈D′

(P ′ :M)

)

M = P ·
⋂

P ′∈D′

P ′ ⊆ ℑ(X).

Thus, qSpec( M
ℑ(X) ) ∩ V

(

AG( M
ℑ(X) )

)

6= ∅.
Now suppose that P

ℑ(X) ∈ qSpec( M
ℑ(X)) ∩ V

(

AG( M
ℑ(X) )

)

6= ∅. Since P
ℑ(X) ∈

V
(

AG( M
ℑ(X) )

)

, there exists a proper submodule L
ℑ(X) such that

0 =
P

ℑ(X)
· L

ℑ(X)

=

(

P

ℑ(X)
:

M

ℑ(X)

)(

L

ℑ(X)
:

M

ℑ(X)

)

M

ℑ(X)

=
(P :M)(L :M)M + ℑ(X)

ℑ(X)
.

This implies that (P : M)(L : M)M ⊆ ℑ(X). Thus PL ⊆ ℑ(X) and so (PL :
M) ⊆ (ℑ(X) :M). Hence, we have D(P )∪D(L) = D(PL) = X and this follows
that P ∈ qSpec(M) ∩ V

(

GX(M)
)

. Therefore, qSpec(M) ∩ V
(

GX(M)
)

6= ∅.
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