GENERALIZED DERIVATIONS WITH LEFT ANNIHILATOR CONDITIONS IN PRIME AND SEMIPRIME RINGS

Basudeb Dhara
Basudeb Dhara, Department of Mathematics Belda College, Belda, Paschim Medinipur, 721424, W.B. India
e-mail: basu_dhara@yahoo.com

Abstract

Let R be a prime ring with its Utumi ring of quotients $U, C=Z(U)$ be the extended centroid of R, H and G two generalized derivations of R, L a noncentral Lie ideal of R, I a nonzero ideal of R. The left annihilator of $S \subseteq$ R is denoted by $l_{R}(S)$ and defined by $l_{R}(S)=\{x \in R \mid x S=0\}$. Suppose that $S=\left\{H\left(u^{n}\right) u^{n}+u^{n} G\left(u^{n}\right) \mid u \in L\right\}$ and $T=\left\{H\left(x^{n}\right) x^{n}+x^{n} G\left(x^{n}\right) \mid x \in\right.$ $I\}$, where $n \geq 1$ is a fixed integer. In the paper, we investigate the cases when the sets $l_{R}(S)$ and $l_{R}(T)$ are nonzero.

Keywords: prime ring, derivation, Lie ideal, generalized derivation, extended centroid, Utumi quotient ring.
2010 Mathematics Subject Classification: 16W25, 16W80, 16N60.

1. Introduction

Let R be an associative ring with center $Z(R)$. For $x, y \in R$, the commutator of x, y is denoted by $[x, y]$ and defined by $[x, y]=x y-y x$. By d we mean a derivation of R. An additive mapping F from R to R is called a generalized derivation if there exists a derivation d from R to R such that $F(x y)=F(x) y+x d(y)$ holds for all $x, y \in R$.

Throughout this paper, R will always present a prime ring with center $Z(R)$, extended centroid C and U is its Utumi quotient ring. A well known result proved by Posner [20], states that if the commutators $[d(x), x] \in Z(R)$ for all $x \in R$, then either $d=0$ or R is commutative. Then result of Posner was generalized in many

[^0]directions by a number of authors. Posner's theorem was extended to Lie ideals in prime rings by Lee [17] and then by Lanski [12].

On the other hand, authors generalized Posner's theorem by considering two derivations. In [3], Brešar proved that if d and δ are two derivations of R such that $d(x) x-x \delta(x) \in Z(R)$ for all $x \in R$, then either $d=\delta=0$ or R is commutative. Later Lee and Wong [18] consider the situation $d(x) x-x \delta(x) \in Z(R)$ for all x in some noncentral Lie ideal L of R and they proved that either $d=\delta=0$ or R satisfies s_{4}.

Recently in [22] Vukman proves that if d and δ are derivations on a $2 m n(m+$ $n-1)$!-torsion free semiprime rings R such that $d\left(x^{m}\right) x^{n}+x^{n} \delta\left(x^{m}\right)=0$ for all $x \in R$, where $m, n \geq 1$ are fixed integers, then both derivations d and $\delta \operatorname{map} R$ into its center and $d=-\delta$.

In [23], Wei and Xiao studied the similar situation replacing derivations d and δ by generalized derivations G and H. More precisely they proved the following:

Let m, n be fixed positive integers, R be a noncommutative $2(m+n)$!-torsion free prime ring and G, H be a pair of generalized Jordan derivations on R. If $G\left(x^{m}\right) x^{n}+x^{n} H\left(x^{m}\right) \in Z(R)$ for all $x \in R$, then G and H both are right (or left) multipliers.

In [14], Lee and Zhou studied the same situation of above result without considering torsion free restriction on R. In this paper, Lee and Zhou [14] proved the following:

Let R be a prime ring that is not commutative and such that $R \neq M_{2}(G F(2))$, let G, H be two generalized derivations of R, and let m, n be two fixed positive integers. Then $G\left(x^{m}\right) x^{n}-x^{n} H\left(x^{m}\right)=0$ for all $x \in R$ iff the following two conditions hold:
(1) There exists $w \in Q$ such that $G(x)=x w$ and $H(x)=w x$ for all $x \in R$;
(2) either $w \in C$, or x^{m} and x^{n} are C-dependent for all $x \in R$.

There are many papers in the literature which studied the identities of generalized derivations with left annihilator conditions.

For any subset S of R, denote by $r_{R}(S)$ the right annihilator of S in R, that is, $r_{R}(S)=\{x \in R \mid S x=0\}$ and $l_{R}(S)$ the left annihilator of S in R that is, $l_{R}(S)=\{x \in R \mid x S=0\}$. If $r_{R}(S)=l_{R}(S)$, then $r_{R}(S)$ is called an annihilator ideal of R and is written as $a n n_{R}(S)$.

In [4], Carini et al. studied the left annihilator of the set $\{H(u) u-u G(u) \mid u \in$ $L\}$, where L is a noncentral Lie ideal of R and H, G two non-zero generalized derivations of R. In case the annihilator is not zero, the conclusion is one of the following:
(1) there exist $b^{\prime}, c^{\prime} \in U$ such that $H(x)=b^{\prime} x+x c^{\prime}, G(x)=c^{\prime} x$ with $a b^{\prime}=0$;
(2) R satisfies s_{4} and there exist $b^{\prime}, c^{\prime}, q^{\prime} \in U$ such that $H(x)=b^{\prime} x+x c^{\prime}, G(x)=$ $c^{\prime} x+x q^{\prime}$, with $a\left(b^{\prime}-q^{\prime}\right)=0$.

Recently, Carini and De Filippis proved the following theorem:
Let R be a prime ring, U the Utumi quotient ring of $R, C=Z(U)$ the extended centroid of R, L a non-central Lie ideal of R, H and G non-zero generalized derivations of R. Suppose that there exists an integer $n \geq 1$ such that $H\left(u^{n}\right) u^{n}+u^{n} G\left(u^{n}\right) \in C$, for all $u \in L$, then either there exists $a \in U$ such that $H(x)=x a, G(x)=-a x$, or R satisfies the standard identity s_{4}. Moreover, in the last case the structures of the maps G, H are obtained.

In the present paper, we shall investigate the left annihilator of the sets $\left\{H\left(u^{n}\right) u^{n}+u^{n} G\left(u^{n}\right) \mid u \in L\right\}$ and $\left\{H\left(x^{n}\right) x^{n}+x^{n} G\left(x^{n}\right) \mid x \in I\right\}$, where L is a noncentral Lie ideal of R, I is a nonzero ideal of $R, n \geq 1$ is a fixed integer and H, G two non-zero generalized derivations of R. More precisely, we prove the following theorems:

Theorem 1.1. Let R be a prime ring with its Utumi ring of quotients $U, C=$ $Z(U)$ be the extended centroid of R, H and G two generalized derivations of R, L a noncentral Lie ideal of R and $S=\left\{H\left(u^{n}\right) u^{n}+u^{n} G\left(u^{n}\right) \mid u \in L\right\}$, where $n \geq 1$ is a fixed integer. If $l_{R}(S) \neq\{0\}$, then either there exist $b^{\prime}, p \in U$ such that $H(x)=b^{\prime} x-x p$ and $G(x)=p x$ for all $x \in R$ with $a b^{\prime}=0$ or R satisfies s_{4}. Moreover, in the last case, if R satisfies s_{4}, then one of the following holds:
(1) $\operatorname{char}(R)=2$;
(2) n is even, there exist $b, p \in U$ and derivations d, δ of R such that $H(x)=$ $b x+d(x)$ and $G(x)=p x+\delta(x)$ for all $x \in R$, with $a(b+p)=0$;
(3) n is odd, there exist $b, p \in U$ and derivations d, δ of R such that $H(x)=$ $b x+d(x)$ and $G(x)=x p+\delta(x)$ for all $x \in R$, with $a(b+p)=0$.

Theorem 1.2. Let R be a noncommutative prime ring with char $(R) \neq 2, U$ its Utumi ring of quotients, $C=Z(U)$ be the extended centroid of R, H and G two generalized derivations of R, I a nonzero ideal of R and $S=\left\{H\left(x^{n}\right) x^{n}+\right.$ $\left.x^{n} G\left(x^{n}\right) \mid x \in I\right\}$, where $n \geq 1$ is a fixed integer. If $l_{R}(S) \neq\{0\}$, then there exist $b^{\prime}, p \in U$ such that $H(x)=b^{\prime} x-x p$ and $G(x)=p x$ for all $x \in R$ with $a b^{\prime}=0$.

As an immediate application of the Theorem 1.1, in particular when $G=-H$, then we have the following result which gives a particular result of Theorem 1.1 in [6].

Corollary 1.3. Let R be a prime ring with its Utumi ring of quotients U, $C=Z(U)$ be the extended centroid of R, H a generalized derivation of R and L a noncentral Lie ideal of R. Suppose that there exists $0 \neq a \in R$ such that $a\left[H\left(u^{n}\right), u^{n}\right]=0$ for all $u \in L$, where $n \geq 1$ is a fixed integer. Then either there exists $\lambda \in C$ such that $H(x)=\lambda x$ for all $x \in R$ or R satisfies s_{4}.

As an application of the Theorem 1.1, in particular when $G=0$, then using

Theorem 2.2 in [8], we have the following result which gives a generalization of Theorem 1.1 in [21].

Corollary 1.4. Let R be a prime ring of char $(R) \neq 2$ with its Utumi ring of quotients $U, C=Z(U)$ be the extended centroid of R, H a generalized derivation of R and L a noncentral Lie ideal of R. Suppose that there exists $0 \neq a \in R$ such that $a H\left(u^{n}\right) u^{n}=0$ for all $u \in L$, where $n \geq 1$ is a fixed integer. Then either there exist $b^{\prime}, p \in U$ such that $H(x)=b^{\prime} x$ for all $x \in R$ with $a b^{\prime}=0$.

2. Proof of main results in prime rings

Let R be a prime ring with extended centroid C. Let $H(x)=b x+x c$ and $G(x)=p x+x q$ for all $x \in R$ and for some $b, c, p, q \in U$, be two inner generalized derivations of R and L be a noncentral Lie ideal of R. Then $a\left(H\left(x^{n}\right) x^{n}+\right.$ $\left.x^{n} G\left(x^{n}\right)\right)=0$ implies $a\left(b x^{2 n}+x^{n}(c+p) x^{n}+x^{2 n} q\right)=0$ for all $x \in L$. We know that if char $(R) \neq 2$, by [2, Lemma 1] there exists a nonzero ideal I of R such that $0 \neq[I, R] \subseteq L$. If char $(R)=2$ and $\operatorname{dim}_{C} R C>4$ i.e., char $(R)=2$ and R does not satisfy s_{4}, then by [13, Theorem 13] there exists a nonzero ideal I of R such that $0 \neq[I, R] \subseteq L$. We assume that R does not satisfy s_{4}. Then in any case of $\operatorname{char}(R)=2$ or char $(R) \neq 2$, we can conclude that there exists a nonzero ideal I of R such that $0 \neq[I, I] \subseteq L$. By hypothesis, we have

$$
\begin{equation*}
a\left(b\left[x_{1}, x_{2}\right]^{2 n}+\left[x_{1}, x_{2}\right]^{n}(c+p)\left[x_{1}, x_{2}\right]^{n}+\left[x_{1}, x_{2}\right]^{2 n} q\right)=0 \tag{1}
\end{equation*}
$$

for all $x_{1}, x_{2} \in I$. Then following lemmas are immediate consequences:
Lemma 2.1. R satisfies a nontrivial generalized polynomial identity (GPI) or $c, p, q \in C$ such that $a(b+c+p+q)=0$.

Proof. Assume that R does not satisfy any nontrivial GPI. Then R must be noncommutative. Let $T=U *_{C} C\left\{x_{1}, x_{2}\right\}$, the free product of U and $C\left\{x_{1}, x_{2}\right\}$, the free C-algebra in noncommuting indeterminates x_{1} and x_{2}.

Then,

$$
a\left(b\left[x_{1}, x_{2}\right]^{2 n}+\left[x_{1}, x_{2}\right]^{n}(c+p)\left[x_{1}, x_{2}\right]^{n}+\left[x_{1}, x_{2}\right]^{2 n} q\right)
$$

is zero element in T. If $q \notin C$, then q and 1 are linearly independent over C. Then from above

$$
a\left[x_{1}, x_{2}\right]^{2 n} q=0 \in T,
$$

implying $q=0$, since $a \neq 0$, a contradiction. Therefore, we conclude that $q \in C$.

Then by hypothesis

$$
\begin{equation*}
a\left((b+q)\left[x_{1}, x_{2}\right]^{n}+\left[x_{1}, x_{2}\right]^{n}(c+p)\right)\left[x_{1}, x_{2}\right]^{n}=0 \in T . \tag{2}
\end{equation*}
$$

If $c+p \notin C$, then by (2)

$$
a\left(\left[x_{1}, x_{2}\right]^{n}(c+p)\right)\left[x_{1}, x_{2}\right]^{n}=0 \in T
$$

implying $c+p=0$, since $a \neq 0$, a contradiction. Therefore, we have $c+p \in C$ and hence

$$
a(b+q+c+p)\left[x_{1}, x_{2}\right]^{2 n}=0 \in T
$$

This implies $a(b+q+c+p)=0$.
Lemma 2.2. $c+p, q \in C$ with $a(b+c+p+q)=0$, unless R satisfies s_{4}.
Proof. By hypothesis, R satisfies GPI

$$
\begin{equation*}
f\left(x_{1}, x_{2}\right)=a\left(b\left[x_{1}, x_{2}\right]^{2 n}+\left[x_{1}, x_{2}\right]^{n}(c+p)\left[x_{1}, x_{2}\right]^{n}+\left[x_{1}, x_{2}\right]^{2 n} q\right) . \tag{3}
\end{equation*}
$$

If R does not satisfy any nontrivial GPI, by Lemma 2.1, we obtain $c, p, q \in C$ with $a(b+c+p+q)=0$ which gives the conclusion. So, we assume that R satisfies a nontrivial GPI. Since R and U satisfy the same generalized polynomial identities (see [5]), U satisfies $f\left(x_{1}, x_{2}\right)$. In case C is infinite, we have $f\left(x_{1}, x_{2}\right)=0$ for all $x_{1}, x_{2} \in U \otimes_{C} \bar{C}$, where \bar{C} is the algebraic closure of C. Moreover, both U and $U \otimes_{C} \bar{C}$ are prime and centrally closed algebras [9]. Hence, replacing R by U or $U \otimes_{C} \bar{C}$ according to C finite or infinite, without loss of generality we may assume that $C=Z(R)$ and R is C-algebra centrally closed. By Martindale's theorem [19], R is then a primitive ring having nonzero $\operatorname{socle} \operatorname{soc}(R)$ with C as the associated division ring. Hence, by Jacobson's theorem [10, p.75], R is isomorphic to a dense ring of linear transformations of a vector space V over C.

If $\operatorname{dim}_{C} V=2$, then $R \cong M_{2}(C)$, that is, R satisfies s_{4}, a contradiction. So, let $\operatorname{dim}_{C} V \geq 3$.

We show that for any $v \in V, v$ and $q v$ are linearly C-dependent. Suppose that v and $q v$ are linearly independent for some $v \in V$. Since $\operatorname{dim}_{C} V \geq 3$, there exists $u \in V$ such that $v, q v, u$ are linearly C-independent set of vectors. By density, there exists $x_{1}, x_{2} \in R$ such that

$$
x_{1} v=v, \quad x_{1} q v=0, \quad x_{1} u=q v ; \quad x_{2} v=0, \quad x_{2} q v=u, \quad x_{2} u=0 .
$$

Then $0=a\left(b\left[x_{1}, x_{2}\right]^{2 n}+\left[x_{1}, x_{2}\right]^{n}(c+p)\left[x_{1}, x_{2}\right]^{n}+\left[x_{1}, x_{2}\right]^{2 n} q\right) v=a q v$.
This implies that if for some $v \in V$, aqv $\neq 0$, then by contradiction, v and $q v$ are linearly C-dependent.

Now choose $v \in V$ such that v and $q v$ are linearly C-independent. Then $a q v=0$. Let us consider a subspace $W=\{\alpha v+\beta q v \mid \alpha, \beta \in C\}$ of V. Let $a q \neq 0$. Then, there exists $w \in V$ such that $a q w \neq 0$. Then $a q(v-w)=a q w \neq 0$. Then by the above argument, $w, q w$ are linearly C-dependent and $(v-w), q(v-w)$ too. Thus there exist $\alpha, \beta \in C$ such that $q w=\alpha w$ and $q(v-w)=\beta(v-w)$. Then $q v=\beta(v-w)+q w=\beta(v-w)+\alpha w$ i.e., $(\alpha-\beta) w=q v-\beta v \in W$. Now $\alpha=\beta$ implies that $q v=\beta v$, a contradiction. Hence $\alpha \neq \beta$ and so $w \in W$.

Next assume that $u \in V$ such that $a q u=0$. Then $a q(w+u)=a q w \neq 0$. By above argument, $a q(w+u) \neq 0$ implies $w+u \in W$. Since $w \in W$, we have $u \in W$. Thus it is observed that for any $v \in V$, aqv $\neq 0$ implies $v \in W$ and aqv $=0$ implies $v \in W$. This implies that $V=W$ i.e., $\operatorname{dim}_{C} V=2$, a contradiction.

Thus up to now we have proved that v and $q v$ are linearly C-dependent for all $v \in V$, unless $a q=0$. If $a q \neq 0$, by standard argument, it follows that $q v=\lambda v$ for all $v \in V$ and $\lambda \in C$ fixed. Then $(q-\lambda) V=0$, implying $q=\lambda \in C$.

Now let $a q=0$. Since $\operatorname{dim}_{C} V \geq 3$, there exists $w \in V$ such that $v, q v, w$ are linearly C-independent set of vectors. By density, there exists $x_{1}, x_{2} \in R$ such that

$$
x_{1} v=v, \quad x_{1} q v=0, \quad x_{1} w=v+q v ; \quad x_{2} v=0, \quad x_{2} q v=w, \quad x_{2} w=0 .
$$

Then $0=a\left(b\left[x_{1}, x_{2}\right]^{2 n}+\left[x_{1}, x_{2}\right]^{n}(c+p)\left[x_{1}, x_{2}\right]^{n}+\left[x_{1}, x_{2}\right]^{2 n} q\right) v=a v$. Then by above argument, since $a \neq 0, q \in C$.

Therefore, we have proved that in any case $q \in C$. Hence our identity reduces to

$$
a\left(b^{\prime}\left[x_{1}, x_{2}\right]^{2 n}+\left[x_{1}, x_{2}\right]^{n} c^{\prime}\left[x_{1}, x_{2}\right]^{n}\right)=0
$$

where $b^{\prime}=b+q$ and $c^{\prime}=c+p$.
Now we prove that v and $c^{\prime} v$ are linearly C-dependent. If possible let v and $c^{\prime} v$ be linearly independent for some $v \in V$. Then there exists $w \in V$ such that $v, c^{\prime} v$ and w are linearly independent over C. By density there exist $x_{1}, x_{2} \in R$ such that

$$
x_{1} v=0, \quad x_{1} c^{\prime} v=v, \quad x_{1} w=2 c^{\prime} v ; \quad x_{2} v=c^{\prime} v, \quad x_{2} c^{\prime} v=w, \quad x_{2} w=0 .
$$

Then $0=a\left(b^{\prime}\left[x_{1}, x_{2}\right]^{2 n}+\left[x_{1}, x_{2}\right]^{n} c^{\prime}\left[x_{1}, x_{2}\right]^{n}\right) v=a\left(b^{\prime}+c^{\prime}\right) v$. As above, this implies either $a\left(b^{\prime}+c^{\prime}\right)=0$ or $c^{\prime} \in C$. Let $a\left(b^{\prime}+c^{\prime}\right)=0$. Then we have that R satisfies $0=a\left[c^{\prime},\left[x_{1}, x_{2}\right]^{n}\right]\left[x_{1}, x_{2}\right]^{n}$. By density there exist $x_{1}, x_{2} \in R$ such that

$$
x_{1} v=0, \quad x_{1} c^{\prime} v=v, \quad x_{1} w=c^{\prime} v ; \quad x_{2} v=c^{\prime} v, \quad x_{2} c^{\prime} v=w, \quad x_{2} w=0
$$

Thus $0=a\left[c^{\prime},\left[x_{1}, x_{2}\right]^{n}\right]\left[x_{1}, x_{2}\right]^{n} v=a c^{\prime} v$. This implies either $a c^{\prime}=0$ or $c^{\prime} \in C$. Let $a c^{\prime}=0$. Then we have that R satisfies $\left.0=a\left[x_{1}, x_{2}\right]^{n}\right] c^{\prime}\left[x_{1}, x_{2}\right]^{n}$. Again by density there exist $x_{1}, x_{2} \in R$ such that

$$
x_{1} v=0, \quad x_{1} c^{\prime} v=v, \quad x_{1} w=v+c^{\prime} v ; \quad x_{2} v=c^{\prime} v, \quad x_{2} c^{\prime} v=w, \quad x_{2} w=0
$$

Thus $\left.0=a\left[x_{1}, x_{2}\right]^{n}\right] c^{\prime}\left[x_{1}, x_{2}\right]^{n} v=a v$. Since $a \neq 0$, this implies $c^{\prime} \in C$. Thus in any case, we have $c^{\prime} \in C$. Hence R satisfies $0=a\left(b^{\prime}+c^{\prime}\right)\left[x_{1}, x_{2}\right]^{2 n}$, which implies $a\left(b^{\prime}+c^{\prime}\right)=0$.

Proof of Theorem 1.1. Let $0 \neq a \in l_{R}(S)$. Then $a\left(H\left(u^{n}\right) u^{n}+u^{n} G\left(u^{n}\right)\right)=0$ for all $u \in L$. If char $(R)=2$ and R satisfies s_{4}, then we obtain our conclusion (1). So we assume that either char $(R) \neq 2$ or R does not satisfy s_{4}. Then by [2, Lemma 1] and [13, Theorem 13], since L is a noncentral Lie ideal of R, there exists a nonzero ideal I of R such that $[I, I] \subseteq L$. Hence, by our hypothesis, we have,

$$
a\left(H\left(\left[x_{1}, x_{2}\right]^{n}\right)\left[x_{1}, x_{2}\right]^{n}+\left[x_{1}, x_{2}\right]^{n} G\left(\left[x_{1}, x_{2}\right]^{n}\right)\right)=0
$$

for all $x_{1}, x_{2} \in I$. Since I, R and U satisfy the same generalized polynomial identities (see [5]) as well as the same differential identities (see [16]), they also satisfy the same generalized differential identities. Hence, by [15], U satisfies

$$
a\left(H\left(\left[x_{1}, x_{2}\right]^{n}\right)\left[x_{1}, x_{2}\right]^{n}+\left[x_{1}, x_{2}\right]^{n} G\left(\left[x_{1}, x_{2}\right]^{n}\right)\right)=0
$$

for all $x_{1}, x_{2} \in U$, where $H(x)=b x+d(x)$ and $G(x)=p x+\delta(x)$, for some $b, p \in U$ and derivations d and δ of U, that is, U satisfies

$$
\begin{align*}
a\left(b\left[x_{1}, x_{2}\right]^{2 n}\right. & +d\left(\left[x_{1}, x_{2}\right]^{n}\right)\left[x_{1}, x_{2}\right]^{n}+\left[x_{1}, x_{2}\right]^{n} p\left[x_{1}, x_{2}\right]^{n} \tag{4}\\
& \left.+\left[x_{1}, x_{2}\right]^{n} \delta\left(\left[x_{1}, x_{2}\right]^{n}\right)\right)=0 .
\end{align*}
$$

Now we divide the proof into two cases:
Case I. Let $d(x)=[c, x]$ for all $x \in U$ and $\delta(x)=[q, x]$ for all $x \in U$ i.e., d and δ be inner derivations of U. Then from (4), we obtain that U satisfies

$$
\begin{equation*}
a\left((b+c)\left[x_{1}, x_{2}\right]^{2 n}+\left[x_{1}, x_{2}\right]^{n}(p-c+q)\left[x_{1}, x_{2}\right]^{n}-\left[x_{1}, x_{2}\right]^{2 n} q\right)=0 . \tag{5}
\end{equation*}
$$

By Lemma 2.2 , when R does not satisfy s_{4}, we have $q, p-c+q \in C$ with $a(b+p)=$ 0 . This implies $p-c \in C$. Hence $H(x)=b x+[c, x]=b x+[p, x]=b^{\prime} x-x p$, $G(x)=p x$ for all $x \in U$ and so for all $x \in R$ with $a b^{\prime}=0$, where $b^{\prime}=b+p$.

Moreover, when R satisfies s_{4} (in this case by assumption char $(R) \neq 2$), then $R \subseteq M_{2}(F)$ and, R and $M_{2}(F)$ satisfy the same GPI, where $M_{2}(F)$ is a matrix ring over a field F. Hence $M_{2}(F)$ satisfies $a\left((b+c)\left[x_{1}, x_{2}\right]^{2 n}+\left[x_{1}, x_{2}\right]^{n}(p-\right.$ $\left.c+q)\left[x_{1}, x_{2}\right]^{n}-\left[x_{1}, x_{2}\right]^{2 n} q\right)=0$. Since $[x, y]^{2} \in Z\left(M_{2}(F)\right)$ for all $x, y \in M_{2}(F)$, $M_{2}(F)$ satisfies

$$
\begin{equation*}
a\left((b+c-q)\left[x_{1}, x_{2}\right]^{2 n}+\left[x_{1}, x_{2}\right]^{n}(p-c+q)\left[x_{1}, x_{2}\right]^{n}\right)=0 . \tag{6}
\end{equation*}
$$

If n is even, then by choosing $x_{1}=e_{12}, x_{2}=e_{21}$, we have $0=a(b+p)$.
If n is odd, then $M_{2}(F)$ satisfies $a\left((b+c-q)\left[x_{1}, x_{2}\right]+\left[x_{1}, x_{2}\right](p-c+q)\right)$ $\left[x_{1}, x_{2}\right]^{2 n-1}=0$. By Lemma 2.7 in [7], we conclude that $p-c+q \in Z(R)$ and $a(b+p)=0$.

Thus when R satisfies s_{4}, one of the following holds:
(i) n is even and $a(b+p)=0$. In this case, $H(x)=b x+[c, x]$ and $G(x)=$ $p x+[q, x]$ for all $x \in R$, with $a(b+p)=0$. This is our conclusion (2).
(ii) n is odd and $p-c+q \in C$ and $a(b+p)=0$. Hence $H(x)=b x+[c, x]$ and $G(x)=p x+[q, x]=p x-[p-c, x]=x p+[c, x]$ for all $x \in R$, with $a(b+p)=0$. This is our conclusion (3).

Case II. Next assume that d and δ are not both inner derivations of U, but they are C-dependent modulo inner derivations of U. Suppose $d=\lambda \delta+a d_{c}$, that is, $d(x)=\lambda \delta(x)+[c, x]$ for all $x \in U$, where $\lambda \in C, c \in U$. Then d can not be inner derivation of U. From (4), we have that U satisfies

$$
\begin{gathered}
a\left(b\left[x_{1}, x_{2}\right]^{2 n}+\lambda \delta\left(\left[x_{1}, x_{2}\right]^{n}\right)\left[x_{1}, x_{2}\right]^{n}+\left[c,\left[x_{1}, x_{2}\right]^{n}\right]\left[x_{1}, x_{2}\right]^{n}\right. \\
\left.+\left[x_{1}, x_{2}\right]^{n} p\left[x_{1}, x_{2}\right]^{n}+\left[x_{1}, x_{2}\right]^{n} \delta\left(\left[x_{1}, x_{2}\right]^{n}\right)\right)=0
\end{gathered}
$$

This gives

$$
\begin{gathered}
a\left(b\left[x_{1}, x_{2}\right]^{2 n}+\lambda \sum_{i=0}^{n-1}\left[x_{1}, x_{2}\right]^{i} \delta\left(\left[x_{1}, x_{2}\right]\right)\left[x_{1}, x_{2}\right]^{n-1-i}\left[x_{1}, x_{2}\right]^{n}+\left[c,\left[x_{1}, x_{2}\right]^{n}\right]\left[x_{1}, x_{2}\right]^{n}\right. \\
\left.+\left[x_{1}, x_{2}\right]^{n} p\left[x_{1}, x_{2}\right]^{n}+\left[x_{1}, x_{2}\right]^{n} \sum_{i=0}^{n-1}\left[x_{1}, x_{2}\right]^{i} \delta\left(\left[x_{1}, x_{2}\right]\right)\left[x_{1}, x_{2}\right]^{n-1-i}\right)=0 .
\end{gathered}
$$

Then by Kharchenko's theorem [11], we have that U satisfies

$$
\begin{align*}
& a\left(b\left[x_{1}, x_{2}\right]^{2 n}+\lambda \sum_{i=0}^{n-1}\left[x_{1}, x_{2}\right]^{i}\left(\left[y_{1}, x_{2}\right]+\left[x_{1}, y_{2}\right]\right)\left[x_{1}, x_{2}\right]^{n-1-i}\left[x_{1}, x_{2}\right]^{n}\right. \\
& +\left[c,\left[x_{1}, x_{2}\right]^{n}\right]\left[x_{1}, x_{2}\right]^{n}+\left[x_{1}, x_{2}\right]^{n} p\left[x_{1}, x_{2}\right]^{n} \tag{7}\\
& \left.+\left[x_{1}, x_{2}\right]^{n} \sum_{i=0}^{n-1}\left[x_{1}, x_{2}\right]^{i}\left(\left[y_{1}, x_{2}\right]+\left[x_{1}, y_{2}\right]\right)\left[x_{1}, x_{2}\right]^{n-1-i}\right)=0
\end{align*}
$$

In particular U satisfies blended component

$$
\begin{equation*}
a\left(b\left[x_{1}, x_{2}\right]^{2 n}+\left[c,\left[x_{1}, x_{2}\right]^{n}\right]\left[x_{1}, x_{2}\right]^{n}+\left[x_{1}, x_{2}\right]^{n} p\left[x_{1}, x_{2}\right]^{n}\right)=0 \tag{8}
\end{equation*}
$$

and

$$
\begin{align*}
& a\left(\lambda \sum_{i=0}^{n-1}\left[x_{1}, x_{2}\right]^{i}\left(\left[y_{1}, x_{2}\right]+\left[x_{1}, y_{2}\right]\right)\left[x_{1}, x_{2}\right]^{n-1-i}\left[x_{1}, x_{2}\right]^{n}\right. \tag{9}\\
& \left.+\left[x_{1}, x_{2}\right]^{n} \sum_{i=0}^{n-1}\left[x_{1}, x_{2}\right]^{i}\left(\left[y_{1}, x_{2}\right]+\left[x_{1}, y_{2}\right]\right)\left[x_{1}, x_{2}\right]^{n-1-i}\right)=0
\end{align*}
$$

For $y_{1}=\left[q, x_{1}\right]$ and $y_{2}=\left[q, x_{2}\right]$, where $q \notin C$ we have that U satisfies

$$
\begin{equation*}
a\left(\left[\lambda q,\left[x_{1}, x_{2}\right]^{n}\right]\left[x_{1}, x_{2}\right]^{n}+\left[x_{1}, x_{2}\right]^{n}\left[q,\left[x_{1}, x_{2}\right]^{n}\right]\right)=0 . \tag{10}
\end{equation*}
$$

By Lemma 2.2, if R does not satisfy s_{4}, then $q \in C$, a contradiction. Hence we conclude that R satisfies s_{4}. Now the relations (8) and (10) are similar to the relation (5). Thus by same argument as given in Case I, when R satisfies s_{4} (in this case char (R) must be not equal to 2), one of the following holds:
(i) Let n be even. Then by (8), $a(b+p)=0$. Thus $H(x)=b x+d(x)$ and $G(x)=p x+\delta(x)$ for all $x \in R$, with $a(b+p)=0$. This is our conclusion (2).
(ii) Let n be odd. Then by (8), $p-c \in C$ and $a(b+p)=0$. Again by (10), $q-\lambda q=q(1-\lambda) \in C$. Since $q \notin C$, we have $\lambda=1$. Then replacing $y_{1}=x_{1}$ and $y_{2}=0$, (9) gives $n a(\lambda+1)\left[x_{1}, x_{2}\right]^{2 n}=0$, implying $2 n a=0$. Since char $(R) \neq 2, n a=0$. Hence $H(x)=b x+\lambda \delta(x)+[c, x]=b x+\delta(x)+[c, x]$ and $G(x)=p x+\delta(x)=(p-c) x+c x+\delta(x)=x(p-c)+c x+\delta(x)=x p+\delta(x)+[c, x]$ for all $x \in R$. This is our conclusion (3).

The situation when $\delta=\lambda d+a d_{c}$ is similar.
Next assume that d and δ are C-independent modulo inner derivations of U. Since neither d nor δ is inner, by Kharchenko's Theorem [11], we have from (4) that U satisfies

$$
\begin{align*}
& \text { (11) } a\left(b\left[x_{1}, x_{2}\right]^{2 n}+\sum_{i=0}^{n-1}\left[x_{1}, x_{2}\right]^{i}\left(\left[u_{1}, x_{2}\right]+\left[x_{1}, u_{2}\right]\right)\left[x_{1}, x_{2}\right]^{n-1-i}\left[x_{1}, x_{2}\right]^{n}\right. \tag{11}\\
& \left.+\left[x_{1}, x_{2}\right]^{n} p\left[x_{1}, x_{2}\right]^{n}+\left[x_{1}, x_{2}\right]^{n} \sum_{i=0}^{n-1}\left[x_{1}, x_{2}\right]^{i}\left(\left[v_{1}, x_{2}\right]+\left[x_{1}, v_{2}\right]\right)\left[x_{1}, x_{2}\right]^{n-1-i}\right)=0
\end{align*}
$$

Then U satisfies blended component

$$
\begin{equation*}
a\left(b\left[x_{1}, x_{2}\right]^{2 n}+\left[x_{1}, x_{2}\right]^{n} p\left[x_{1}, x_{2}\right]^{n}\right)=0 \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
a\left(\left[x_{1}, x_{2}\right]^{n} \sum_{i=0}^{n-1}\left[x_{1}, x_{2}\right]^{i}\left(\left[v_{1}, x_{2}\right]+\left[x_{1}, v_{2}\right]\right)\left[x_{1}, x_{2}\right]^{n-1-i}\right)=0 \tag{13}
\end{equation*}
$$

Replacing v_{1} with $\left[q, x_{1}\right]$ and v_{2} with $\left[q, x_{2}\right]$ for some $q \notin C$ in (13), we obtain that U satisfies

$$
\begin{equation*}
a\left(\left[x_{1}, x_{2}\right]^{n}\left[q,\left[x_{1}, x_{2}\right]^{n}\right]\right)=0 \tag{14}
\end{equation*}
$$

By Lemma 2.2, we have $q \in C$, a contradiction, unless R satisfies s_{4}. So we consider the case when R satisfies s_{4}. In this case by same argument of Case I, (12) and (14) together implies that n is even and $a(b+p)=0$. This gives our conclusion (2). Hence the theorem is proved.

Corollary 2.3. Let R be a prime ring with its Utumi ring of quotients $U, C=$ $Z(U)$ be the extended centroid of R, H and G two generalized derivations of R and L a noncentral Lie ideal of R. Suppose that there exists $0 \neq a \in R$ such that $a\left(H\left(u^{2}\right) u^{2}+u^{2} G\left(u^{2}\right)\right)=0$ for all $u \in L$. Then either there exist $b^{\prime}, p \in U$ such that $H(x)=b^{\prime} x-x p$ and $G(x)=p x$ for all $x \in R$ with $a b^{\prime}=0$ or R satisfies s_{4}. Moreover, if R satisfies s_{4}, then one of the following holds:
(1) $\operatorname{char}(R)=2$;
(2) there exist $b, p \in U$ and derivations d, δ of R such that $H(x)=b x+d(x)$ and $G(x)=p x+\delta(x)$ for all $x \in R$, with $a(b+p)=0$.

Proof of Theorem 1.2. Let $0 \neq a \in l_{R}(S)$. Then $a\left(H\left(x^{n}\right) x^{n}+x^{n} G\left(x^{n}\right)\right)=0$ for all $x \in I$. By Theorem 1.1, we have only to consider the case when R satisfies s_{4}. In this case R is a PI-ring, and so there exists a field K such that $R \subseteq M_{2}(K)$ and, R and $M_{2}(K)$ satisfy the same GPI. First we assume that H and G are inner generalized derivations of R, that is, $H(x)=b x+x c$ for all $x \in R$ and $G(x)=p x+x q$ for all $x \in R$, for some $b, c, p, q \in R$. Since $M_{2}(F)$ is a simple ring, by our hypothesis, $M_{2}(F)$ satisfies

$$
\begin{equation*}
a\left(b x^{2 n}+x^{n}(c+p) x^{n}+x^{2 n} q\right)=0 \tag{15}
\end{equation*}
$$

Moreover, R is a dense ring of K-linear transformations over a vector space V. Let $a q \neq 0$. Assume there exists $v \neq 0$, such that $\{v, q v\}$ is linear K-independent. By the density of R, there exists $r \in R$ such that

$$
r v=0 ; \quad r(q v)=q v
$$

Hence

$$
0=a\left(b r^{2 n}+r^{n}(c+p) r^{n}+r^{2 n} q\right) v=a q v
$$

Of course for any $w \in V$ such that $\{w, v\}$ are linearly K-dependent implies $a q w=0$. Since $a q \neq 0$, there exists $w \in V$ such that $a q w \neq 0$. Then $\{w, v\}$ must be linearly K-independent. By the above argument it follows that w and $q w$ are linearly K-dependent, as are $\{w+v, q(w+v)\}$ and $\{w-v, q(w-v)\}$. Therefore there exist $\alpha_{w}, \alpha_{w+v}, \alpha_{w-v} \in K$ such that

$$
q w=\alpha_{w} w, \quad q(w+v)=\alpha_{w+v}(w+v), \quad q(w-v)=\alpha_{w-v}(w-v)
$$

In other words we have

$$
\begin{equation*}
\alpha_{w} w+q v=\alpha_{w+v} w+\alpha_{w+v} v \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha_{w} w-q v=\alpha_{w-v} w-\alpha_{w-v} v \tag{17}
\end{equation*}
$$

By comparing (16) with (17) we get both

$$
\begin{equation*}
\left(2 \alpha_{w}-\alpha_{w+v}-\alpha_{w-v}\right) w+\left(\alpha_{w-v}-\alpha_{w+v}\right) v=0 \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
2 q v=\left(\alpha_{w+v}-\alpha_{w-v}\right) w+\left(\alpha_{w+v}+\alpha_{w-v}\right) v \tag{19}
\end{equation*}
$$

By (18) and since $\{w, v\}$ is K-independent and $\operatorname{char}(K) \neq 2$, we have $\alpha_{w}=$ $\alpha_{w+v}=\alpha_{w-v}$. Thus by (19) it follows $2 q v=2 \alpha_{w} v$. Since $\{q v, v\}$ is K-independent, the conclusion $\alpha_{w}=\alpha_{w+v}=0$ follows, that is $q w=0$ and $q(w+v)=0$, which implies the contradiction $q v=0$.

Hence we conclude that for any $v \in V,\{v, q v\}$ is linearly K-dependent. Thus there exists a suitable $\alpha_{v} \in K$ such that $q v=\alpha_{v} v$, and standard argument shows that there is $\alpha \in K$ such that $q v=\alpha v$ for all $v \in V$. Now let $r \in R, v \in V$. Since $q v=\alpha v$,

$$
\begin{equation*}
[q, r] v=(q r) v-(r q) v=q(r v)-r(q v)=\alpha(r v)-r(\alpha v)=0 \tag{20}
\end{equation*}
$$

Thus $[q, r] v=0$ for all $v \in V$ i.e., $[q, r] V=0$. Since $[q, r]$ acts faithfully as a linear transformation on the vector space $V,[q, r]=0$ for all $r \in R$. Therefore, $q \in C$.

Thus up to now, we have proved that either $a q=0$ or $q \in C$.
Let $a q=0$. In this case, assume that there exists $v \neq 0$, such that $\{v, q v\}$ is linear K-independent. By the density of R, there exists $r \in R$ such that

$$
r v=0 ; \quad r(q v)=v+q v
$$

Hence

$$
0=a\left(b r^{2 n}+r^{n}(c+p) r^{n}+r^{2 n} q\right) v=a v
$$

Thus by the same argument as above, this implies either $a=0$ or $q \in C$. Since $a \neq 0, q \in C$.

Thus in any case we conclude that $q \in C$.
Then (15) reduces to

$$
\begin{equation*}
a\left((b+q) x^{n}+x^{n}(c+p)\right) x^{n}=0 \tag{21}
\end{equation*}
$$

Let there exists $v \neq 0$, such that $\{v,(c+p) v\}$ is linear K-independent. By the density of R, there exists $r \in R$ such that

$$
r v=0 ; \quad r((c+p) v)=(c+p) v
$$

Hence

$$
0=a\left((b+q) r^{n}+r^{n}(c+p)\right) r^{n} v=a(c+p) v
$$

Then again by same argument, $c+p \in C$. Then (21) reduces to

$$
\begin{equation*}
a(b+c+p+q) x^{2 n}=0 \tag{22}
\end{equation*}
$$

for all $x \in R$. This implies $a(b+c+p+q)=0$, where $q, c+p \in C$. Hence $H(x)=b x+x c=b x+x(c+p)-x p=(b+c+p) x-x p=(b+c+p+q) x-x(p+q)$ for all $x \in R$ and $G(x)=(p+q) x$ for all $x \in R$. This gives our conclusion.

Next assume that $H(x)=b x+d(x)$ and $G(x)=p x+\delta(x)$, where d, δ are not both inner derivations of R. In this case by our hypothesis, R satisfies

$$
\begin{equation*}
a\left(b x^{2 n}+d\left(x^{n}\right) x^{n}+x^{n} p x^{n}+x^{n} \delta\left(x^{n}\right)\right)=0 \tag{23}
\end{equation*}
$$

If d and δ are C-dependent modulo inner derivations of R, then $d=\lambda \delta+a d_{c}$ for some $\lambda \in C$. In this case (23) reduces to

$$
\begin{equation*}
a\left(b x^{2 n}+\lambda \delta\left(x^{n}\right) x^{n}+\left[c, x^{n}\right] x^{n}+x^{n} p x^{n}+x^{n} \delta\left(x^{n}\right)\right)=0 \tag{24}
\end{equation*}
$$

By Kharchenko's Theorem [11], R satisfies

$$
\begin{equation*}
a\left(b x^{2 n}+\lambda \sum_{i} x^{i} y x^{n-i-1} x^{n}+\left[c, x^{n}\right] x^{n}+x^{n} p x^{n}+x^{n} \sum_{i} x^{i} y x^{n-i-1}\right)=0 \tag{25}
\end{equation*}
$$

Replacing y with $[p, x]$ for some $p \notin C$, we have from (25) that

$$
\begin{equation*}
a\left(b x^{2 n}+\lambda\left[p, x^{n}\right] x^{n}+\left[c, x^{n}\right] x^{n}+x^{n} p x^{n}+x^{n}\left[p, x^{n}\right]\right)=0 \tag{26}
\end{equation*}
$$

Then this implies as above (for inner derivation case) that $p \in C$, a contradiction.
The case when $\delta=\lambda d+a d_{c^{\prime}}$ for some $\lambda \in C$, is similar.
Next assume that d and δ are C-independent modulo inner derivations of R. Then by Kharchenko's Theorem [11], R satisfies

$$
\begin{equation*}
a\left(b x^{2 n}+\sum_{i} x^{i} y x^{n-i-1} x^{n}+x^{n} p x^{n}+x^{n} \sum_{i} x^{i} z x^{n-i-1}\right)=0 \tag{27}
\end{equation*}
$$

Replacing y with $[p, x]$ and z with $\left[p^{\prime}, x\right]$ for some $p, p^{\prime} \notin C$, we have

$$
\begin{equation*}
a\left(b x^{2 n}+\left[p, x^{n}\right] x^{n}+x^{n} p x^{n}+x^{n}\left[p^{\prime}, x^{n}\right]\right)=0 \tag{28}
\end{equation*}
$$

Then by same argument as above, it yields that $p^{\prime} \in C$, a contradiction.
In particular, when H and G are two derivations of R, we have the following:
Corollary 2.4. Let R be a noncommutative prime ring with char $(R) \neq 2$ and C the extended centroid of R. Let d and δ be two derivations of R. If there exists $0 \neq a \in R$ such that $a\left(d\left(x^{n}\right) x^{n}+x^{n} \delta\left(x^{n}\right)\right)=0$ for all $x \in R$, where $n \geq 1$ is a fixed integer, then $d=\delta=0$.

3. Results on semiprime rings

In this section we extend the Corollary 2.4 to semiprime rings. Let R be a semiprime ring and U the left Utumi ring of quotients of R. Then $C=Z(U)$, center of U, is called extended centroid of R. It is well known that C is a Von Neumann regular ring. It is known that C is a field if and only if R is a prime ring. The set of all idempotents of C is denoted by E. The elements of E are called central idempotents.

We know that any derivation of R can be uniquely extended to a derivation of U (see [16, Lemma 2]).

By using the standard theory of orthogonal completions for semiprime rings, we prove the following:

Theorem 3.1. Let R be a noncommutative 2 -torsion free semiprime ring, U the left Utumi quotient ring of R and d, δ be two derivations of R. If there exists $0 \neq a \in R$ such that $a\left(d\left(x^{n}\right) x^{n}+x^{n} \delta\left(x^{n}\right)\right)=0$ for all $x \in R$, where $n \geq 1$ is a fixed integer, then there exist orthogonal central idempotents $e_{1}, e_{2}, e_{3} \in U$ with $e_{1}+e_{2}+e_{3}=1$ such that $(d+\delta)\left(e_{1} U\right)=0, e_{2} a=0$, and $e_{3} U$ is commutative.

Proof. Since any derivation d can be uniquely extended to a derivation in U, and U and R satisfy the same differential identities (see [16]), $a\left(d\left(x^{n}\right) x^{n}+x^{n} \delta\left(x^{n}\right)\right.$) $=0$ for all $x \in U$.

Let B be the complete Boolean algebra of E. We choose a maximal ideal P of B such that $U / P U$ is 2 -torsion free. Then $P U$ is a prime ideal of U, which is d-invariant. Denote $\bar{U}=U / P U$ and $\bar{d}, \bar{\delta}$ be the canonical pair of derivations on \bar{U} induced by d and δ respectively. Then by hypothesis, $\bar{a}\left(\bar{d}\left(\bar{x}^{n}\right) \bar{x}^{n}+\bar{x}^{n} \bar{\delta}\left(\bar{x}^{n}\right)\right)=0$ for all $\bar{x} \in \bar{U}$. Since \bar{U} is a prime ring, by Corollary 2.4 , either $\bar{d}=\bar{\delta}=0$ or $[\bar{U}, \bar{U}]=0$ or $\bar{a}=0$. In any case, we have $a d(U)[U, U] \subseteq P U$ and $a \delta(U)[U, U] \subseteq P U$ for all P, that is, $a D(U)[U, U] \subseteq P U$ for all P, where $D=d+\delta$. Since $\bigcap\{P U: P$ is any maximal ideal in B with $U / P U$ 2-torsion free $\}=0$, we have $a D(U)[U, U]=0$.

By using the theory of orthogonal completion for semiprime rings (see, $[1$, Chapter 3]), it follows that there exist orthogonal central idempotents e_{1}, e_{2}, $e_{3} \in U$ with $e_{1}+e_{2}+e_{3}=1$ such that $D\left(e_{1} U\right)=0, e_{2} a=0$, and $e_{3} U$ is commutative.

References

[1] K.I. Beidar, W.S. Martindale III and A.V. Mikhalev Rings with generalized identities, Pure and Applied Math., 196 (Marcel Dekker, New York, 1996).
[2] J. Bergen, I.N. Herstein and J.W. Kerr, Lie ideals and derivations of prime rings, J. Algebra 71 (1981) 259-267. doi:10.1016/0021-8693(81)90120-4
[3] M. Brešar, Centralizing mappings and derivations in prime rings, J. Algebra 156 (1993) 385-394.
doi:10.1006/jabr.1993.1080
[4] L. Carini, V. De Filippis and B. Dhara, Annihilators on co-commutators with generalized derivations on Lie ideals, Publ. Math. Debrecen 76 (2010) 395-409.
[5] C.L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc. 103 (1988) 723-728. doi:10.1090/S0002-9939-1988-0947646-4
[6] B. Dhara, S. Kar and K.G. Pradhan, An Engel condition of generalized derivations with annihilator on Lie ideal in prime rings, Matematicki Vesnik 68 (2016) 164-174.
[7] B. Dhara, V. De Filippis and G. Scudo, Power values of generalized derivations with annihilator conditions in prime rings, Mediterr. J. Math. 10 (2013) 123-135. doi:10.1007/s00009-012-0185-5
[8] B. Dhara, Power values of derivations with annihilator conditions on Lie ideals in prime rings, Comm. Algebra 37 (2009) 2159-2167.
doi:10.1080/00927870802226213
[9] T.S. Erickson, W.S. Martindale III and J.M. Osborn, Prime nonassociative algebras, Pacific J. Math. 60 (1975) 49-63. doi:10.2140/pjm.1975.60.49
[10] N. Jacobson, Structure of Rings, Amer. Math. Soc. Colloq. Pub. 37, Amer. Math. Soc. (Providence, RI, 1964).
[11] V.K. Kharchenko, Differential identity of prime rings, Algebra and Logic. 17 (1978) 155-168. doi:10.1007/BF01670115
[12] C. Lanski, Differential identities, Lie ideals, and Posner's theorems, Pacific J. Math. 134 (1988) 275-297.
doi:10.2140/pjm.1988.134.275
[13] C. Lanski and S. Montgomery, Lie structure of prime rings of characteristic 2, Pacific J. Math. 42 (1972) 117-136.
doi:10.2140/pjm.1972.42.117
[14] T.K. Lee and Y. Zhou, An identitiy with generalized derivations, J. Algebra Appl. 8 (2009) 307-317. doi:10.1142/S021949880900331X
[15] T.K. Lee, Generalized derivations of left faithful rings, Comm. Algebra 27 (1999) 4057-4073. doi:10.1080/00927879908826682
[16] T.K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica 20 (1992) 27-38.
[17] P.H. Lee, Lie ideals of prime rings with derivations, Bull. Inst. Math. Acad. Sinica 11 (1983) 75-80.
[18] P.H. Lee and T.L. Wong, Derivations cocentralizing Lie ideals, Bull. Inst. Math. Acad. Sinica 23 (1995) 1-5.
[19] W.S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969) 576-584. doi:10.1016/0021-8693(69)90029-5
[20] E.C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957) 10931100.
doi:10.1090/S0002-9939-1957-0095863-0
[21] F. Rania, Generalized derivations and annihilator conditions in prime rings, Inter. J. Algebra 2 (2008) 963-969.
[22] J. Vukman, Identities with derivations on rings and Banach algebras, Glasnik Mathematicki 40/2 (2005) 189-199. doi:10.3336/gm.40.2.01
[23] F. Wei and Z. Xiao, Generalized derivations on (semi-)prime rings and noncommutative Banach algebras, Rend. Sem. Mat. Univ. Padova. 122 (2009) 171-190.

Received 27 October 2016
Revised 1 June 2017
Accepted 6 July 2017

[^0]: This work is supported by a grant from National Board for Higher Mathematics (NBHM), India. Grant No. is NBHM/R.P. 26/ 2012/Fresh/1745 dated 15.11.12.

