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Abstract

Let R be a prime ring with its Utumi ring of quotients U, C = Z(U) be
the extended centroid of R, H and G two generalized derivations of R, L a
noncentral Lie ideal of R, I a nonzero ideal of R. The left annihilator of S C
R is denoted by [r(S) and defined by Ir(S) = {x € R|xS = 0}. Suppose
that S = {H@w")u" +u"G(u"™)|u € L} and T = {H(2")z" + 2"G(2") |x €
I}, where n > 1 is a fixed integer. In the paper, we investigate the cases
when the sets [g(S) and Ig(T) are nonzero.
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tended centroid, Utumi quotient ring.
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1. INTRODUCTION

Let R be an associative ring with center Z(R). For z,y € R, the commutator of
x,y is denoted by [z, y| and defined by [z, y] = xy—yz. By d we mean a derivation
of R. An additive mapping F' from R to R is called a generalized derivation if
there exists a derivation d from R to R such that F(zy) = F(x)y + xd(y) holds
for all x,y € R.

Throughout this paper, R will always present a prime ring with center Z(R),
extended centroid C and U is its Utumi quotient ring. A well known result proved
by Posner [20], states that if the commutators [d(x), x] € Z(R) for all z € R, then
either d = 0 or R is commutative. Then result of Posner was generalized in many

This work is supported by a grant from National Board for Higher Mathematics (NBHM),
India. Grant No. is NBHM/R.P. 26/ 2012/Fresh/1745 dated 15.11.12.


http://dx.doi.org/10.7151/dmgaa.1271

162 B. DHARA

directions by a number of authors. Posner’s theorem was extended to Lie ideals
in prime rings by Lee [17] and then by Lanski [12].

On the other hand, authors generalized Posner’s theorem by considering two
derivations. In [3], Bresar proved that if d and ¢ are two derivations of R such that
d(x)x — xd(x) € Z(R) for all x € R, then either d = § = 0 or R is commutative.
Later Lee and Wong [18] consider the situation d(z)xr — xd(z) € Z(R) for all
in some noncentral Lie ideal L of R and they proved that either d =9 =0 or R
satisfies sy4.

Recently in [22] Vukman proves that if d and § are derivations on a 2mn(m -+
n — 1)-torsion free semiprime rings R such that d(z™)z" + z™§(2™) = 0 for all
x € R, where m,n > 1 are fixed integers, then both derivations d and § map R
into its center and d = —9J.

In [23], Wei and Xiao studied the similar situation replacing derivations d and
6 by generalized derivations GG and H. More precisely they proved the following:

Let m,n be fized positive integers, R be a noncommutative 2(m + n)!-torsion
free prime ring and G, H be a pair of generalized Jordan derivations on R. If
G(z™)z" +2"H (z™) € Z(R) for all x € R, then G and H both are right (or left)
multipliers.

In [14], Lee and Zhou studied the same situation of above result without
considering torsion free restriction on R. In this paper, Lee and Zhou [14] proved
the following;:

Let R be a prime ring that is not commutative and such that R 2 My (GF(2)),
let G, H be two generalized derivations of R, and let m,n be two fixed positive
integers. Then G(z™)x™ — z"H(2™) = 0 for all x € R iff the following two
conditions hold:

(1) There exists w € @ such that G(x) = zw and H(x) = wz for all x € R;
(2) either w € C, or ™ and x" are C-dependent for all v € R.

There are many papers in the literature which studied the identities of gen-
eralized derivations with left annihilator conditions.

For any subset S of R, denote by rg(S) the right annihilator of S in R, that
is, Tr(S) = {x € R|Sz = 0} and [g(S) the left annihilator of S in R that is,
Ir(S) ={x € R|zS = 0}. If rr(S) = Ir(S), then rr(S) is called an annihilator
ideal of R and is written as anng(S).

In [4], Carini et al. studied the left annihilator of the set { H (u)u—uG(u) | u €
L}, where L is a noncentral Lie ideal of R and H, G two non-zero generalized
derivations of R. In case the annihilator is not zero, the conclusion is one of the
following:

(1) there exist b/, ¢ € U such that H(z) = Vx + 2c,G(z) = 'z with ab/ = 0;
(2) R satisfies s4 and there exist V', ¢/, ¢’ € U such that H(z) = bz +xzd,G(x) =
dx+ zq, with a(b — ¢') = 0.
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Recently, Carini and De Filippis proved the following theorem:

Let R be a prime ring, U the Utumi quotient ring of R, C = Z(U) the
extended centroid of R, L a non-central Lie ideal of R, H and G non-zero gen-
eralized derivations of R. Suppose that there exists an integer n > 1 such that
Hu™)u" +u"G(u"™) € C, for all uw € L, then either there exists a € U such that
H(z) = za,G(z) = —ax, or R satisfies the standard identity s4. Moreover, in
the last case the structures of the maps G, H are obtained.

In the present paper, we shall investigate the left annihilator of the sets
{H@w")u" +u"Gu")|u € L} and {H(z")z" + 2"G(a") |x € I}, where L is a
noncentral Lie ideal of R, I is a nonzero ideal of R, n > 1 is a fixed integer and
H, G two non-zero generalized derivations of R. More precisely, we prove the
following theorems:

Theorem 1.1. Let R be a prime ring with its Utumi ring of quotients U, C =
Z(U) be the extended centroid of R, H and G two generalized derivations of R,
L a noncentral Lie ideal of R and S = {Hu")u"™ + u"G(u")|u € L}, where
n > 1 is a fized integer. If Ig(S) # {0}, then either there exist b/,p € U such
that H(z) = b'x — xp and G(x) = px for all x € R with al/ =0 or R satisfies s4.
Moreover, in the last case, if R satisfies sq4, then one of the following holds:

(1) char (R) = 2;

(2) n is even, there exist b,p € U and derivations d, § of R such that H(x) =
bx + d(x) and G(z) = px + é(x) for all x € R, with a(b+ p) = 0;

(3) n is odd, there exist b,p € U and derivations d, § of R such that H(x) =
bx + d(z) and G(x) = zp+ d(x) for all x € R, with a(b+ p) = 0.

Theorem 1.2. Let R be a noncommutative prime ring with char (R) # 2, U
its Utumi ring of quotients, C = Z(U) be the extended centroid of R, H and G
two generalized derivations of R, I a nonzero ideal of R and S = {H(z")a" +
2"G(z") |z € I}, where n > 1 is a fized integer. If Ir(S) # {0}, then there exist
V,p €U such that H(z) = b'x — zp and G(x) = pz for all x € R with ab’ = 0.

As an immediate application of the Theorem 1.1, in particular when G = —H,
then we have the following result which gives a particular result of Theorem 1.1
in [6].

Corollary 1.3. Let R be a prime ring with its Utumi ring of quotients U,
C = Z(U) be the extended centroid of R, H a generalized derivation of R and
L a noncentral Lie ideal of R. Suppose that there exists 0 # a € R such that
alH(u"),u™] =0 for all uw € L, where n > 1 is a fized integer. Then either there
exists A € C such that H(x) = Az for all x € R or R satisfies s4.

As an application of the Theorem 1.1, in particular when G = 0, then using
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Theorem 2.2 in [8], we have the following result which gives a generalization of
Theorem 1.1 in [21].

Corollary 1.4. Let R be a prime ring of char (R) # 2 with its Utumi ring of
quotients U, C = Z(U) be the extended centroid of R, H a generalized derivation
of R and L a noncentral Lie ideal of R. Suppose that there exists 0 # a € R such
that aH(u™)u™ = 0 for all uw € L, where n > 1 is a fized integer. Then either
there exist b',p € U such that H(x) = V'z for all x € R with ab’ = 0.

2. PROOF OF MAIN RESULTS IN PRIME RINGS

Let R be a prime ring with extended centroid C. Let H(x) = bx + zc¢ and
G(z) = pr+ zq for all x € R and for some b, c,p,q € U, be two inner generalized
derivations of R and L be a noncentral Lie ideal of R. Then a(H (z")a" +
2"G(2™)) = 0 implies a(bz®" + 2™ (c + p)a™ + 22"q) = 0 for all x € L. We know
that if char (R) # 2, by [2, Lemma 1] there exists a nonzero ideal I of R such
that 0 # [I, R] C L. If char (R) = 2 and dimcRC > 4 i.e., char (R) =2 and R
does not satisfy s4, then by [13, Theorem 13| there exists a nonzero ideal I of R
such that 0 # [I, R] C L. We assume that R does not satisfy s;. Then in any
case of char (R) = 2 or char (R) # 2, we can conclude that there exists a nonzero
ideal I of R such that 0 # [I,I] C L. By hypothesis, we have

(1) a(blay, xa]*" + [1,29)" (¢ + p)[x1, 2] " + w1, 22)*"q) = 0
for all x1,x9 € I. Then following lemmas are immediate consequences:

Lemma 2.1. R satisfies a nontrivial generalized polynomial identity (GPI) or
¢,p,q € C such that a(b+c+p+q) =0.

Proof. Assume that R does not satisfy any nontrivial GPI. Then R must be
noncommutative. Let T'= U ¢ C{x1, z2}, the free product of U and C{z1,x2},
the free C-algebra in noncommuting indeterminates x; and xs.

Then,

a (blz1, 22]*™ + (1, 22]™ (¢ + p)[z1, 22" + [21, 22]*"q)

is zero element in 7. If ¢ ¢ C, then ¢ and 1 are linearly independent over C.
Then from above

alzy, zo]"q=0€ T,

implying ¢ = 0, since a # 0, a contradiction. Therefore, we conclude that g € C.
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Then by hypothesis
(2) a((b+ q)[z1,x2]"™ + |21, x2]" (¢ + p))[z1,22]" =0 € T.
If c4+p ¢ C, then by (2)

a([xr, z2]"(c+p)) [21,22]" =0 €T,

implying ¢ 4+ p = 0, since a # 0, a contradiction. Therefore, we have ¢+ p € C
and hence

alb+q+c+p)r,x)" =0T

This implies a(b+ ¢+ c+p) = 0. ]
Lemma 2.2. ¢+ p,q € C with a(b+c+p+q) =0, unless R satisfies s4.

Proof. By hypothesis, R satisfies GPI
(3) f(@1,m2) = a(blzy, 22]*" + w1, 22]" (¢ + p)[w1, 22]" + [21, 22]*" ).

If R does not satisfy any nontrivial GPI, by Lemma 2.1, we obtain ¢, p,q € C with
a(b+ ¢+ p+ q) = 0 which gives the conclusion. So, we assume that R satisfies a
nontrivial GPI. Since R and U satisfy the same generalized polynomial identities
(see [5]), U satisfies f(x1,22). In case C is infinite, we have f(z1,22) = 0 for
all z1,29 € U ®c C, where C is the algebraic closure of C. Moreover, both U
and U ®¢ C are prime and centrally closed algebras [9]. Hence, replacing R by
U or U ®@¢ C according to C finite or infinite, without loss of generality we may
assume that C' = Z(R) and R is C-algebra centrally closed. By Martindale’s
theorem [19], R is then a primitive ring having nonzero socle soc(R) with C
as the associated division ring. Hence, by Jacobson’s theorem [10, p.75], R is
isomorphic to a dense ring of linear transformations of a vector space V over C.

If dimcV = 2, then R = My(C), that is, R satisfies s4, a contradiction. So,
let dimgaV > 3.

We show that for any v € V, v and quv are linearly C-dependent. Suppose
that v and guv are linearly independent for some v € V. Since dimgV > 3, there
exists u € V such that v,qu,u are linearly C-independent set of vectors. By
density, there exists x1,x2 € R such that

z1v =2, 21qv =0, T1u=qU; z2v =0, Taqv =1u, wzou=0.
Then 0 = a(blxy, 2)?" + [z1, 22]"(c + p)[x1, 2] + [71, 22]*"q)v = aqu.

This implies that if for some v € V, aqv # 0, then by contradiction, v and
qu are linearly C-dependent.
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Now choose v € V such that v and qu are linearly C-independent. Then
aqu = 0. Let us consider a subspace W = {av+ fqu | a, 8 € C} of V. Let aq # 0.
Then, there exists w € V' such that agw # 0. Then aq(v — w) = aqw # 0. Then
by the above argument, w, qw are linearly C-dependent and (v —w), g(v—w) too.
Thus there exist «, 5 € C such that qw = aw and g(v — w) = (v — w). Then
qu=pv—w)+qw=PF(v—w)+awie., (ad —flw=quv—PveW. Now a = f3
implies that qu = Sv, a contradiction. Hence a # § and so w € W.

Next assume that v € V' such that aqu = 0. Then aq(w + u) = aqw # 0. By
above argument, ag(w+u) # 0 implies w+u € W. Since w € W, we have u € W.
Thus it is observed that for any v € V, aqu # 0 implies v € W and aqv = 0
implies v € W. This implies that V = W i.e., dimgV = 2, a contradiction.

Thus up to now we have proved that v and qu are linearly C-dependent for
all v € V, unless aqg = 0. If aq # 0, by standard argument, it follows that gv = \v
for all v € V and X € C fixed. Then (¢ — A\)V =0, implying ¢ = X € C.

Now let ag = 0. Since dimcV > 3, there exists w € V such that v, qv, w are
linearly C-independent set of vectors. By density, there exists x1,z9 € R such
that

z1v=v, z1qv =0, 1w =v+qU; Tov =0, x9qv =w, zow = 0.

Then 0 = a(blxy, 22)?" + [x1, 22]"(c + p)[r1, 22]" + [21,72)*"¢)v = av. Then by
above argument, since a # 0, g € C.

Therefore, we have proved that in any case ¢ € C'. Hence our identity reduces
to

a(b' [z, wo] ™" + w1, 22]" [11, 22]") = 0,

where O/ = b+ q and ¢ = ¢+ p.

Now we prove that v and /v are linearly C-dependent. If possible let v and
cv be linearly independent for some v € V. Then there exists w € V such that

v, v and w are linearly independent over C. By density there exist z1,22 € R
such that

/ / / /
z1v =0, zicdv=v, 1w =2cV; TV =V, xT2cV=w, T2W=D0.

Then 0 = a(V [x1, 29)*" + [21, 22])"c [21, 22])")v = a(b/ +)v. As above, this implies
either a(b' + ) =0or ¢ € C. Let a(b/ + ¢) = 0. Then we have that R satisfies
0 = ald, [x1, 22]"][x1, x2]". By density there exist x1,x2 € R such that

/ / / /
ziv =0, z1dv=2v, TIW=CV;, T =cCV, TacvV=w, xow = 0.

Thus 0 = ald, [x1,22]"][x1, x2]"v = ac'v. This implies either a¢’ = 0 or ¢ € C.
Let ac’ = 0. Then we have that R satisfies 0 = a[z1,22]"|¢/[x1, 22]". Again by
density there exist x1,x9 € R such that

/ /
zv =0, ridv=v, Tyw=v+cv; zv =V, x2cV=1w, TW=0.
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Thus 0 = a[z1, 22" [x1, 22]"v = av. Since a # 0, this implies ¢ € C. Thus in
any case, we have ¢ € C. Hence R satisfies 0 = a(b + ¢')[z1, 22]?", which implies
a(' +)=0. ]

Proof of Theorem 1.1. Let 0 # a € Ir(S). Then a(H (uv™)u"™ + v"G(u™)) =0
for all u € L. If char (R) = 2 and R satisfies s4, then we obtain our conclusion
(1). So we assume that either char (R) # 2 or R does not satisfy s4. Then by
[2, Lemma 1] and [13, Theorem 13], since L is a noncentral Lie ideal of R, there
exists a nonzero ideal I of R such that [I,I] C L. Hence, by our hypothesis, we
have,

a(H ([z1, m2]")[w1, x2]" + |21, 22]"G([z1, 22]")) = 0
for all 1,29 € I. Since I, R and U satisfy the same generalized polynomial

identities (see [5]) as well as the same differential identities (see [16]), they also
satisfy the same generalized differential identities. Hence, by [15], U satisfies

a(H ([z1, 22]")[x1, 22]" + [21, 22]"G([21, 72]")) = 0

for all x1,22 € U, where H(x) = bz + d(z) and G(z) = px + é(z), for some
b,p € U and derivations d and § of U, that is, U satisfies

a(blzy, xo]®™ + d([x1, x2]™)[1, w2]™ + [1, 22]"pla1, 22]"

(4)
+ [z1, 22]"6([21, 22]™)) = 0.

Now we divide the proof into two cases:

Case 1. Let d(x) = [c,z] for all x € U and 6(z) = [q,«] for all z € U i.e., d
and d be inner derivations of U. Then from (4), we obtain that U satisfies

(5)  a((b+ )z, w2]®" + [z, 22)" (p — ¢ + @)1, 22]" — [21,22]*"q) = 0.

By Lemma 2.2, when R does not satisfy s4, we have ¢,p—c+q € C with a(b+p) =
0. This implies p — ¢ € C. Hence H(z) = bx + [¢,z] = bx + [p,z] = bz — zp,
G(z) = px for all z € U and so for all z € R with ab’ = 0, where b’ = b+ p.

Moreover, when R satisfies s4 (in this case by assumption char (R) # 2),
then R C Ms(F) and, R and Ms(F) satisfy the same GPI, where My(F) is a
matrix ring over a field F. Hence My (F) satisfies a((b+c)[z1, x2)*" +[x1, 22)" (p—
¢+ q)x1, z2]™ — [x1,22]*"q) = 0. Since [z,y]? € Z(Ma(F)) for all z,y € My(F),
M (F) satisfies

(6) a((b+ ¢ — q)z1, 2] + [w1,22]" (p — ¢ + q)[21,22]") = 0.

If n is even, then by choosing x1 = e12, T2 = €21, we have 0 = a(b + p).

If n is odd, then My(F') satisfies a((b+ ¢ — q)[z1,x2] + [x1,22](p — ¢ + q))
[z1,72)?""! = 0. By Lemma 2.7 in [7], we conclude that p — c + ¢ € Z(R) and
a(b+p)=0.
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Thus when R satisfies s4, one of the following holds:

(i) n is even and a(b+ p) = 0. In this case, H(z) = bz + [c,z] and G(z) =
px + [q, z] for all z € R, with a(b+ p) = 0. This is our conclusion (2).

(ii) n is odd and p —c+ ¢ € C and a(b+ p) = 0. Hence H(z) = bx + [c, z]
and G(z) = pxr + [¢,z] = px — [p — ¢,x] = zp + [¢,z] for all x € R, with
a(b+ p) = 0. This is our conclusion (3).

Case II. Next assume that d and § are not both inner derivations of U, but
they are C-dependent modulo inner derivations of U. Suppose d = Ad + ad,., that
is, d(z) = Ao(z) + [c,z] for all z € U, where A € C, ¢ € U. Then d can not be
inner derivation of U. From (4), we have that U satisfies

a(b[ml, 22]?" + Ao([z1, 2] [21, 22| + [, [21, 22]"][21, 22]"
o] plon, 2ol + o, o] "6(frn, 2l") ) =0,

This gives

a<b[x1, x9)2" + )\ég[m, 22]'8([z1, 2o])[1, 2] T @y, 2|+ [c, [w1, 22]"] [0, 2]

+ [x1, 2]z, 22]™ + [xl,xg]”E[wl,xg]i(S([wl,xg])[xl,wg]"1i> =0.

Then by Kharchenko’s theorem [11], we have that U satisfies

-1

a<b[$1a$2]2n + Aé[ﬂfla@]i([yl,m] + [z1, yo)) [w1, 22)" @]

(7) + e, [x1, z2]™][x1, 22]™ + |21, 22]"pla1, 22]"
+ [l’la$2]"7§[$1,$2]i([y1,w2] - [m1,y2])[x1,x2]"‘1‘i> = 0.

In particular U satisfies blended component

(8) a<b[l“1,fv2]2" + [e, [w1, w2]"[21, 22]™ + [$1’$2]np[x1’x2]n> =0

o(VE foval (bl + ool ol
(9) =0 n—1

+ [z1, 22]" ;[$1a$2]i([?/1,$2] + [331,?/2])[$1,$2]"_1_i> =0.
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For y; = [¢,x1] and yy = [q, 2], where ¢ ¢ C we have that U satisfies

(10) a([Aq, [z1, zo]"[x1, m2]" + [21, 22]"[g, [x1, 22]"]) = 0.

By Lemma 2.2, if R does not satisfy s4, then ¢ € C, a contradiction. Hence we
conclude that R satisfies s4. Now the relations (8) and (10) are similar to the
relation (5). Thus by same argument as given in Case I, when R satisfies s4 (in
this case char (R) must be not equal to 2), one of the following holds:

(i) Let n be even. Then by (8), a(b+ p) = 0. Thus H(z) = bz + d(x) and
G(z) = px + 0(z) for all z € R, with a(b+ p) = 0. This is our conclusion (2).

(ii) Let n be odd. Then by (8), p —c € C and a(b+ p) = 0. Again by (10),
q— g =¢q(l—X) € C. Since ¢ ¢ C, we have A = 1. Then replacing y; = 1
and y2 = 0, (9) gives na(\ + 1)z, 22)*® = 0, implying 2na = 0. Since char
(R) # 2, na = 0. Hence H(z) = bx + A\d(z) + [¢,z] = bx + §(x) + [c,z] and
G(z) =pr+d(x) = (p—c)x+cx+(x) =x(p—c)+cx+d(x) = zp+0(z) + [c, x]
for all z € R. This is our conclusion (3).

The situation when § = Ad + ad, is similar.

Next assume that d and § are C-independent modulo inner derivations of U.
Since neither d nor ¢ is inner, by Kharchenko’s Theorem [11], we have from (4)
that U satisfies

(11) a<b[w1,w2]2” + nil[wl,wg]i([ul,xg] + [1’1,UQ])[xl,xz]nilii[xl,xz]n

1=0

+ [$1, xg]"p[xl, $2]n + [3:1, $2]n 7%2:::[$1, $2]i([’01, $2] + [$1, UQ]) [xl, x2]n—1—i> =0.

Then U satisfies blended component

(12) a<b[w1,w2]2" + [xl,xg]"p[wl,xg]"> =0

and
77,—1 . .

(13) a([wl,wg]" > lan, ) (g, o] + [xl,vg])[wl,wg]"_l_’> = 0.
=0

Replacing v1 with [g, z1] and ve with [g, z2] for some ¢ ¢ C in (13), we obtain
that U satisfies

(14) a([z1, 22]"[q, [z1,72]"]) = 0.

By Lemma 2.2, we have ¢ € C, a contradiction, unless R satisfies s4. So we
consider the case when R satisfies s4. In this case by same argument of Case I,
(12) and (14) together implies that n is even and a(b + p) = 0. This gives our
conclusion (2). Hence the theorem is proved. |
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Corollary 2.3. Let R be a prime ring with its Utumi ring of quotients U, C' =

Z(U) be the extended centroid of R, H and G two generalized derivations of R

and L a noncentral Lie ideal of R. Suppose that there exists 0 # a € R such that

a(H(u?)u? + u?>G(u?)) = 0 for all w € L. Then either there exist b',p € U such

that H(z) = b'x — xp and G(z) = px for all x € R with al/ =0 or R satisfies s4.

Moreover, if R satisfies s4, then one of the following holds:

(1) char (R) =2;

(2) there exist b,p € U and derivations d, § of R such that H(z) = bx + d(z)
and G(z) = px + 0(z) for all x € R, with a(b+ p) = 0.

Proof of Theorem 1.2. Let 0 # a € Ir(S). Then a(H(z™)z" + z"G(2™)) =0
for all x € I. By Theorem 1.1, we have only to consider the case when R satisfies
s4. In this case R is a PI-ring, and so there exists a field K such that R C My (K)
and, R and My (K) satisfy the same GPI. First we assume that H and G are
inner generalized derivations of R, that is, H(z) = bz + zc for all x € R and
G(z) = pr + zq for all x € R, for some b,c,p,q € R. Since Ms(F) is a simple
ring, by our hypothesis, Ms(F) satisfies

(15) a(bx®™ + 2™ (c + p)z™ + 2%"q) = 0.

Moreover, R is a dense ring of K-linear transformations over a vector space V.
Let ag # 0. Assume there exists v # 0, such that {v, gv} is linear K-independent.
By the density of R, there exists r € R such that

rv=0; r(qu)=qu.

Hence
0 = a(br®™ 4 r"(c + p)r" + r*"q)v = aqu.

Of course for any w € V such that {w,v} are linearly K-dependent implies
aqw = 0. Since aq # 0, there exists w € V such that aqw # 0. Then {w, v} must
be linearly K-independent. By the above argument it follows that w and qw are
linearly K-dependent, as are {w + v, q(w +v)} and {w — v, ¢(w —v)}. Therefore
there exist ), ytv, @w—y € K such that

qw = oW, q(w+v) = ayry(w +v), g(w—v) = ay_y(w —v).
In other words we have
(16) QW + QU = Qi W + Qi
and

(17) QW — QU = Qy—pW — Qgy—y V.
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By comparing (16) with (17) we get both

(18) (200 — Qo — Q—p)W + (Qy—y — Qtp)V =0
and
(19) 2qU = (Quyto — Q)W F (o + Qyy—y)V.

By (18) and since {w,v} is K-independent and char(K) # 2, we have a,, =
Qv = Qu—p. Thus by (19) it follows 2qv = 2a,,v. Since {quv,v} is K-inde-
pendent, the conclusion ay, = a4, = 0 follows, that is gw = 0 and g(w+v) = 0,
which implies the contradiction guv = 0.

Hence we conclude that for any v € V', {v, quv} is linearly K-dependent. Thus
there exists a suitable «,, € K such that qu = a,,v, and standard argument shows
that there is € K such that qv = av for allv € V. Now let r € R, v € V. Since
qu = aw,

(20) [g,r]v = (gr)v — (rq)v = q(rv) — r(qv) = a(rv) — r(av) = 0.

Thus [¢,r]v = 0 for all v € V i.e., [¢g, 7]V = 0. Since [g,r] acts faithfully as a
linear transformation on the vector space V, [¢,r] = 0 for all » € R. Therefore,
qeC.

Thus up to now, we have proved that either ag =0 or q € C.

Let ag = 0. In this case, assume that there exists v # 0, such that {v,quv} is
linear K-independent. By the density of R, there exists r € R such that

rv=0; r(qu)=uv-+qu.

Hence
0 = a(br®” + r"(c + p)r" + r*"q)v = av.

Thus by the same argument as above, this implies either a = 0 or ¢ € C. Since
a#0,qeC.

Thus in any case we conclude that ¢ € C.

Then (15) reduces to

(21) a((b+ )" + 2™ (c + p))a” = 0.

Let there exists v # 0, such that {v, (¢ + p)v} is linear K-independent. By the
density of R, there exists r € R such that

rv=0; r((c+p)v)=(c+p)wv.

Hence
0=a((b+ q)r" +1"(c+p))r"v = a(c + p)v.
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Then again by same argument, ¢ + p € C. Then (21) reduces to
(22) alb+c+p+qar® =0

for all x € R. This implies a(b+ ¢+ p + q) = 0, where ¢,c + p € C. Hence
H(z) =br+xc=br+z(c+p)—ap = (b+c+p)xr—ap = (b+c+p+q)z—z(p+q)
for all z € R and G(x) = (p+ ¢q)z for all x € R. This gives our conclusion.

Next assume that H(z) = bx 4+ d(z) and G(x) = px + §(z), where d, § are
not both inner derivations of R. In this case by our hypothesis, R satisfies

(23) a (bz®" + d(z™)z" + z"pa" + 2"5(z™)) = 0.

If d and 6 are C-dependent modulo inner derivations of R, then d = Ad + ad,. for
some A € C. In this case (23) reduces to

(24) a (bz®" + Ao(z™)z" + [, 2"]z" + 2"pa” + 2™5(2")) = 0.
By Kharchenko’s Theorem [11], R satisfies

(25) a(bw% + A Z iy ™ 4 e, 22" 4 2 pa” + 2" Z xiyx"_i_1> =0.
- -

(2

Replacing y with [p, z] for some p ¢ C, we have from (25) that
(26) a (bx2" + Alp, 22" + [¢,2™]z"™ + 2" pz" + 2" [p,2"]) = 0.

Then this implies as above (for inner derivation case) that p € C, a contradiction.
The case when § = Ad + ad. for some A\ € C, is similar.
Next assume that d and § are C-independent modulo inner derivations of R.
Then by Kharchenko’s Theorem [11], R satisfies

(27) a(bx2" + Z xiyx"ﬂ;lx" + 2"px" + 2" Z xizx”i1> =0.
7 7

Replacing y with [p, x] and z with [p/, z] for some p,p’ ¢ C, we have

(28) a (bxzn + [p, 22" + a"px™ + 2™ [p/, x"]) =0.

Then by same argument as above, it yields that p’ € C, a contradiction. [ |
In particular, when H and G are two derivations of R, we have the following:

Corollary 2.4. Let R be a noncommutative prime ring with char (R) # 2 and
C the extended centroid of R. Let d and § be two derivations of R. If there exists
0 # a € R such that a(d(z™)z" + 2™§(z™)) = 0 for all x € R, where n > 1 is a
fized integer, then d = 6 = 0.
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3. RESULTS ON SEMIPRIME RINGS

In this section we extend the Corollary 2.4 to semiprime rings. Let R be a
semiprime ring and U the left Utumi ring of quotients of R. Then C = Z(U),
center of U, is called extended centroid of R. It is well known that C' is a Von
Neumann regular ring. It is known that C is a field if and only if R is a prime
ring. The set of all idempotents of C' is denoted by E. The elements of E are
called central idempotents.

We know that any derivation of R can be uniquely extended to a derivation
of U (see [16, Lemma 2]).

By using the standard theory of orthogonal completions for semiprime rings,
we prove the following:

Theorem 3.1. Let R be a noncommutative 2-torsion free semiprime ring, U the
left Utumi quotient ring of R and d, § be two derivations of R. If there exists
0 # a € R such that a(d(z™)z"™ + 2™§(x")) = 0 for all x € R, where n > 1 is a
fized integer, then there exist orthogonal central idempotents e1, e, es € U with
e1+ex + ez =1 such that (d+ 96)(eqU) =0, eza = 0, and e3U is commutative.

Proof. Since any derivation d can be uniquely extended to a derivation in U, and
U and R satisfy the same differential identities (see [16]), a(d(z™)z™ 4+ z™(x™))
=0forall z € U.

Let B be the complete Boolean algebra of . We choose a maximal ideal P
of B such that U/PU is 2-torsion free. Then PU is a prime ideal of U, which is
d-invariant. Denote U = U/PU and d, ¢ be the canonical pair of derivations on U
induced by d and § respectively. Then by hypothesis, a(d(z™)Z"+z"6(z")) = 0 for
all T € U. Since U is a prime ring, by Corollary 2.4, either d =6 = 0 or [U,U] =0
or a = 0. In any case, we have ad(U)[U,U] C PU and ad(U)[U,U] C PU for all
P, that is, aD(U)[U,U] C PU for all P, where D = d+4¢. Since (\{PU : P is any
maximal ideal in B with U/PU 2-torsion free} = 0, we have aD(U)[U,U] = 0.

By using the theory of orthogonal completion for semiprime rings (see, [1,
Chapter 3]), it follows that there exist orthogonal central idempotents e, es,
es € U with e; + e2 + e3 = 1 such that D(eqU) = 0, eaa = 0, and e3U is
commutative. [ |
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