Discussiones Mathematicae General Algebra and Applications 37 (2017) 161–175 doi:10.7151/dmgaa.1271

GENERALIZED DERIVATIONS WITH LEFT ANNIHILATOR CONDITIONS IN PRIME AND SEMIPRIME RINGS

Basudeb Dhara

Basudeb Dhara, Department of Mathematics
Belda College, Belda, Paschim Medinipur, 721424, W.B. India
e-mail: basu_dhara@yahoo.com

Abstract

Let R be a prime ring with its Utumi ring of quotients U, C = Z(U) be the extended centroid of R, H and G two generalized derivations of R, L a noncentral Lie ideal of R, I a nonzero ideal of R. The left annihilator of $S \subseteq R$ is denoted by $l_R(S)$ and defined by $l_R(S) = \{x \in R \mid xS = 0\}$. Suppose that $S = \{H(u^n)u^n + u^nG(u^n) \mid u \in L\}$ and $T = \{H(x^n)x^n + x^nG(x^n) \mid x \in I\}$, where $n \geq 1$ is a fixed integer. In the paper, we investigate the cases when the sets $l_R(S)$ and $l_R(T)$ are nonzero.

Keywords: prime ring, derivation, Lie ideal, generalized derivation, extended centroid, Utumi quotient ring.

2010 Mathematics Subject Classification: 16W25, 16W80, 16N60.

1. Introduction

Let R be an associative ring with center Z(R). For $x,y\in R$, the commutator of x,y is denoted by [x,y] and defined by [x,y]=xy-yx. By d we mean a derivation of R. An additive mapping F from R to R is called a generalized derivation if there exists a derivation d from R to R such that F(xy)=F(x)y+xd(y) holds for all $x,y\in R$.

Throughout this paper, R will always present a prime ring with center Z(R), extended centroid C and U is its Utumi quotient ring. A well known result proved by Posner [20], states that if the commutators $[d(x), x] \in Z(R)$ for all $x \in R$, then either d = 0 or R is commutative. Then result of Posner was generalized in many

This work is supported by a grant from National Board for Higher Mathematics (NBHM), India. Grant No. is NBHM/R.P. 26/ $2012/{\rm Fresh}/1745$ dated 15.11.12.

directions by a number of authors. Posner's theorem was extended to Lie ideals in prime rings by Lee [17] and then by Lanski [12].

On the other hand, authors generalized Posner's theorem by considering two derivations. In [3], Brešar proved that if d and δ are two derivations of R such that $d(x)x - x\delta(x) \in Z(R)$ for all $x \in R$, then either $d = \delta = 0$ or R is commutative. Later Lee and Wong [18] consider the situation $d(x)x - x\delta(x) \in Z(R)$ for all x in some noncentral Lie ideal L of R and they proved that either $d = \delta = 0$ or R satisfies s_4 .

Recently in [22] Vukman proves that if d and δ are derivations on a 2mn(m+n-1)!-torsion free semiprime rings R such that $d(x^m)x^n + x^n\delta(x^m) = 0$ for all $x \in R$, where $m, n \ge 1$ are fixed integers, then both derivations d and δ map R into its center and $d = -\delta$.

In [23], Wei and Xiao studied the similar situation replacing derivations d and δ by generalized derivations G and H. More precisely they proved the following:

Let m, n be fixed positive integers, R be a noncommutative 2(m+n)!-torsion free prime ring and G, H be a pair of generalized Jordan derivations on R. If $G(x^m)x^n + x^nH(x^m) \in Z(R)$ for all $x \in R$, then G and H both are right (or left) multipliers.

In [14], Lee and Zhou studied the same situation of above result without considering torsion free restriction on R. In this paper, Lee and Zhou [14] proved the following:

Let R be a prime ring that is not commutative and such that $R \ncong M_2(GF(2))$, let G, H be two generalized derivations of R, and let m, n be two fixed positive integers. Then $G(x^m)x^n - x^nH(x^m) = 0$ for all $x \in R$ iff the following two conditions hold:

- (1) There exists $w \in Q$ such that G(x) = xw and H(x) = wx for all $x \in R$;
- (2) either $w \in C$, or x^m and x^n are C-dependent for all $x \in R$.

There are many papers in the literature which studied the identities of generalized derivations with left annihilator conditions.

For any subset S of R, denote by $r_R(S)$ the right annihilator of S in R, that is, $r_R(S) = \{x \in R \mid Sx = 0\}$ and $l_R(S)$ the left annihilator of S in R that is, $l_R(S) = \{x \in R \mid xS = 0\}$. If $r_R(S) = l_R(S)$, then $r_R(S)$ is called an annihilator ideal of R and is written as $ann_R(S)$.

In [4], Carini et al. studied the left annihilator of the set $\{H(u)u-uG(u) \mid u \in L\}$, where L is a noncentral Lie ideal of R and H, G two non-zero generalized derivations of R. In case the annihilator is not zero, the conclusion is one of the following:

- (1) there exist $b', c' \in U$ such that H(x) = b'x + xc', G(x) = c'x with ab' = 0;
- (2) R satisfies s_4 and there exist $b', c', q' \in U$ such that H(x) = b'x + xc', G(x) = c'x + xq', with a(b' q') = 0.

Recently, Carini and De Filippis proved the following theorem:

Let R be a prime ring, U the Utumi quotient ring of R, C = Z(U) the extended centroid of R, L a non-central Lie ideal of R, H and G non-zero generalized derivations of R. Suppose that there exists an integer $n \ge 1$ such that $H(u^n)u^n + u^nG(u^n) \in C$, for all $u \in L$, then either there exists $a \in U$ such that H(x) = xa, G(x) = -ax, or R satisfies the standard identity s_4 . Moreover, in the last case the structures of the maps G, H are obtained.

In the present paper, we shall investigate the left annihilator of the sets $\{H(u^n)u^n + u^nG(u^n) \mid u \in L\}$ and $\{H(x^n)x^n + x^nG(x^n) \mid x \in I\}$, where L is a noncentral Lie ideal of R, I is a nonzero ideal of R, $n \geq 1$ is a fixed integer and H, G two non-zero generalized derivations of R. More precisely, we prove the following theorems:

Theorem 1.1. Let R be a prime ring with its Utumi ring of quotients U, C = Z(U) be the extended centroid of R, H and G two generalized derivations of R, L a noncentral Lie ideal of R and $S = \{H(u^n)u^n + u^nG(u^n) | u \in L\}$, where $n \geq 1$ is a fixed integer. If $l_R(S) \neq \{0\}$, then either there exist b', $p \in U$ such that H(x) = b'x - xp and G(x) = px for all $x \in R$ with ab' = 0 or R satisfies s_4 . Moreover, in the last case, if R satisfies s_4 , then one of the following holds:

- (1) char(R) = 2;
- (2) n is even, there exist $b, p \in U$ and derivations d, δ of R such that H(x) = bx + d(x) and $G(x) = px + \delta(x)$ for all $x \in R$, with a(b+p) = 0;
- (3) n is odd, there exist $b, p \in U$ and derivations d, δ of R such that H(x) = bx + d(x) and $G(x) = xp + \delta(x)$ for all $x \in R$, with a(b+p) = 0.

Theorem 1.2. Let R be a noncommutative prime ring with char $(R) \neq 2$, U its Utumi ring of quotients, C = Z(U) be the extended centroid of R, H and G two generalized derivations of R, I a nonzero ideal of R and $S = \{H(x^n)x^n + x^nG(x^n) | x \in I\}$, where $n \geq 1$ is a fixed integer. If $l_R(S) \neq \{0\}$, then there exist $b', p \in U$ such that H(x) = b'x - xp and G(x) = px for all $x \in R$ with ab' = 0.

As an immediate application of the Theorem 1.1, in particular when G = -H, then we have the following result which gives a particular result of Theorem 1.1 in [6].

Corollary 1.3. Let R be a prime ring with its Utumi ring of quotients U, C = Z(U) be the extended centroid of R, H a generalized derivation of R and L a noncentral Lie ideal of R. Suppose that there exists $0 \neq a \in R$ such that $a[H(u^n), u^n] = 0$ for all $u \in L$, where $n \geq 1$ is a fixed integer. Then either there exists $\lambda \in C$ such that $H(x) = \lambda x$ for all $x \in R$ or R satisfies s_4 .

As an application of the Theorem 1.1, in particular when G=0, then using

Theorem 2.2 in [8], we have the following result which gives a generalization of Theorem 1.1 in [21].

Corollary 1.4. Let R be a prime ring of char $(R) \neq 2$ with its Utumi ring of quotients U, C = Z(U) be the extended centroid of R, H a generalized derivation of R and L a noncentral Lie ideal of R. Suppose that there exists $0 \neq a \in R$ such that $aH(u^n)u^n = 0$ for all $u \in L$, where $n \geq 1$ is a fixed integer. Then either there exist b', $p \in U$ such that H(x) = b'x for all $x \in R$ with ab' = 0.

2. Proof of main results in prime rings

Let R be a prime ring with extended centroid C. Let H(x) = bx + xc and G(x) = px + xq for all $x \in R$ and for some $b, c, p, q \in U$, be two inner generalized derivations of R and L be a noncentral Lie ideal of R. Then $a(H(x^n)x^n + x^nG(x^n)) = 0$ implies $a(bx^{2n} + x^n(c+p)x^n + x^{2n}q) = 0$ for all $x \in L$. We know that if char $(R) \neq 2$, by [2, Lemma 1] there exists a nonzero ideal I of R such that $0 \neq [I, R] \subseteq L$. If char (R) = 2 and $dim_CRC > 4$ i.e., char (R) = 2 and R does not satisfy s_4 , then by [13, Theorem 13] there exists a nonzero ideal I of R such that $0 \neq [I, R] \subseteq L$. We assume that R does not satisfy s_4 . Then in any case of char (R) = 2 or char $(R) \neq 2$, we can conclude that there exists a nonzero ideal I of R such that $0 \neq [I, I] \subseteq L$. By hypothesis, we have

(1)
$$a(b[x_1, x_2]^{2n} + [x_1, x_2]^n(c+p)[x_1, x_2]^n + [x_1, x_2]^{2n}q) = 0$$

for all $x_1, x_2 \in I$. Then following lemmas are immediate consequences:

Lemma 2.1. R satisfies a nontrivial generalized polynomial identity (GPI) or $c, p, q \in C$ such that a(b+c+p+q) = 0.

Proof. Assume that R does not satisfy any nontrivial GPI. Then R must be noncommutative. Let $T = U *_C C\{x_1, x_2\}$, the free product of U and $C\{x_1, x_2\}$, the free C-algebra in noncommuting indeterminates x_1 and x_2 .

Then,

$$a\left(b[x_1,x_2]^{2n}+[x_1,x_2]^n(c+p)[x_1,x_2]^n+[x_1,x_2]^{2n}q\right)$$

is zero element in T. If $q \notin C$, then q and 1 are linearly independent over C. Then from above

$$a[x_1, x_2]^{2n} q = 0 \in T,$$

implying q = 0, since $a \neq 0$, a contradiction. Therefore, we conclude that $q \in C$.

Then by hypothesis

(2)
$$a((b+q)[x_1, x_2]^n + [x_1, x_2]^n (c+p))[x_1, x_2]^n = 0 \in T.$$

If $c + p \notin C$, then by (2)

$$a([x_1, x_2]^n(c+p))[x_1, x_2]^n = 0 \in T,$$

implying c + p = 0, since $a \neq 0$, a contradiction. Therefore, we have $c + p \in C$ and hence

$$a(b+q+c+p)[x_1,x_2]^{2n} = 0 \in T.$$

This implies a(b+q+c+p)=0.

Lemma 2.2. $c + p, q \in C$ with a(b + c + p + q) = 0, unless R satisfies s_4 .

Proof. By hypothesis, R satisfies GPI

(3)
$$f(x_1, x_2) = a(b[x_1, x_2]^{2n} + [x_1, x_2]^n (c+p)[x_1, x_2]^n + [x_1, x_2]^{2n} q).$$

If R does not satisfy any nontrivial GPI, by Lemma 2.1, we obtain $c, p, q \in C$ with a(b+c+p+q)=0 which gives the conclusion. So, we assume that R satisfies a nontrivial GPI. Since R and U satisfy the same generalized polynomial identities (see [5]), U satisfies $f(x_1,x_2)$. In case C is infinite, we have $f(x_1,x_2)=0$ for all $x_1,x_2\in U\otimes_C\overline{C}$, where \overline{C} is the algebraic closure of C. Moreover, both U and $U\otimes_C\overline{C}$ are prime and centrally closed algebras [9]. Hence, replacing R by U or $U\otimes_C\overline{C}$ according to C finite or infinite, without loss of generality we may assume that C=Z(R) and R is C-algebra centrally closed. By Martindale's theorem [19], R is then a primitive ring having nonzero socle soc(R) with C as the associated division ring. Hence, by Jacobson's theorem [10, p.75], R is isomorphic to a dense ring of linear transformations of a vector space V over C.

If $\dim_C V = 2$, then $R \cong M_2(C)$, that is, R satisfies s_4 , a contradiction. So, let $\dim_C V \geq 3$.

We show that for any $v \in V$, v and qv are linearly C-dependent. Suppose that v and qv are linearly independent for some $v \in V$. Since $\dim_C V \geq 3$, there exists $u \in V$ such that v, qv, u are linearly C-independent set of vectors. By density, there exists $x_1, x_2 \in R$ such that

$$x_1v = v$$
, $x_1qv = 0$, $x_1u = qv$; $x_2v = 0$, $x_2qv = u$, $x_2u = 0$.

Then $0 = a(b[x_1, x_2]^{2n} + [x_1, x_2]^n(c+p)[x_1, x_2]^n + [x_1, x_2]^{2n}q)v = aqv.$

This implies that if for some $v \in V$, $aqv \neq 0$, then by contradiction, v and qv are linearly C-dependent.

Now choose $v \in V$ such that v and qv are linearly C-independent. Then aqv=0. Let us consider a subspace $W=\{\alpha v+\beta qv \mid \alpha,\beta\in C\}$ of V. Let $aq\neq 0$. Then, there exists $w\in V$ such that $aqw\neq 0$. Then $aq(v-w)=aqw\neq 0$. Then by the above argument, w,qw are linearly C-dependent and (v-w),q(v-w) too. Thus there exist $\alpha,\beta\in C$ such that $qw=\alpha w$ and $q(v-w)=\beta(v-w)$. Then $qv=\beta(v-w)+qw=\beta(v-w)+\alpha w$ i.e., $(\alpha-\beta)w=qv-\beta v\in W$. Now $\alpha=\beta$ implies that $qv=\beta v$, a contradiction. Hence $\alpha\neq\beta$ and so $w\in W$.

Next assume that $u \in V$ such that aqu = 0. Then $aq(w + u) = aqw \neq 0$. By above argument, $aq(w+u) \neq 0$ implies $w+u \in W$. Since $w \in W$, we have $u \in W$. Thus it is observed that for any $v \in V$, $aqv \neq 0$ implies $v \in W$ and aqv = 0 implies $v \in W$. This implies that V = W i.e., $\dim_C V = 2$, a contradiction.

Thus up to now we have proved that v and qv are linearly C-dependent for all $v \in V$, unless aq = 0. If $aq \neq 0$, by standard argument, it follows that $qv = \lambda v$ for all $v \in V$ and $\lambda \in C$ fixed. Then $(q - \lambda)V = 0$, implying $q = \lambda \in C$.

Now let aq=0. Since $\dim_C V \geq 3$, there exists $w \in V$ such that v,qv,w are linearly C-independent set of vectors. By density, there exists $x_1,x_2 \in R$ such that

$$x_1v = v$$
, $x_1qv = 0$, $x_1w = v + qv$; $x_2v = 0$, $x_2qv = w$, $x_2w = 0$.

Then $0 = a(b[x_1, x_2]^{2n} + [x_1, x_2]^n(c+p)[x_1, x_2]^n + [x_1, x_2]^{2n}q)v = av$. Then by above argument, since $a \neq 0, q \in C$.

Therefore, we have proved that in any case $q \in C$. Hence our identity reduces to

$$a(b'[x_1, x_2]^{2n} + [x_1, x_2]^n c'[x_1, x_2]^n) = 0,$$

where b' = b + q and c' = c + p.

Now we prove that v and c'v are linearly C-dependent. If possible let v and c'v be linearly independent for some $v \in V$. Then there exists $w \in V$ such that v, c'v and w are linearly independent over C. By density there exist $x_1, x_2 \in R$ such that

$$x_1v = 0$$
, $x_1c'v = v$, $x_1w = 2c'v$; $x_2v = c'v$, $x_2c'v = w$, $x_2w = 0$.

Then $0 = a(b'[x_1, x_2]^{2n} + [x_1, x_2]^n c'[x_1, x_2]^n)v = a(b' + c')v$. As above, this implies either a(b' + c') = 0 or $c' \in C$. Let a(b' + c') = 0. Then we have that R satisfies $0 = a[c', [x_1, x_2]^n][x_1, x_2]^n$. By density there exist $x_1, x_2 \in R$ such that

$$x_1v = 0$$
, $x_1c'v = v$, $x_1w = c'v$; $x_2v = c'v$, $x_2c'v = w$, $x_2w = 0$.

Thus $0 = a[c', [x_1, x_2]^n][x_1, x_2]^n v = ac'v$. This implies either ac' = 0 or $c' \in C$. Let ac' = 0. Then we have that R satisfies $0 = a[x_1, x_2]^n]c'[x_1, x_2]^n$. Again by density there exist $x_1, x_2 \in R$ such that

$$x_1v = 0$$
, $x_1c'v = v$, $x_1w = v + c'v$; $x_2v = c'v$, $x_2c'v = w$, $x_2w = 0$.

Thus $0 = a[x_1, x_2]^n]c'[x_1, x_2]^nv = av$. Since $a \neq 0$, this implies $c' \in C$. Thus in any case, we have $c' \in C$. Hence R satisfies $0 = a(b' + c')[x_1, x_2]^{2n}$, which implies a(b' + c') = 0.

Proof of Theorem 1.1. Let $0 \neq a \in l_R(S)$. Then $a(H(u^n)u^n + u^nG(u^n)) = 0$ for all $u \in L$. If char (R) = 2 and R satisfies s_4 , then we obtain our conclusion (1). So we assume that either char $(R) \neq 2$ or R does not satisfy s_4 . Then by [2, Lemma 1] and [13, Theorem 13], since L is a noncentral Lie ideal of R, there exists a nonzero ideal I of R such that $[I, I] \subseteq L$. Hence, by our hypothesis, we have,

$$a(H([x_1, x_2]^n)[x_1, x_2]^n + [x_1, x_2]^n G([x_1, x_2]^n)) = 0$$

for all $x_1, x_2 \in I$. Since I, R and U satisfy the same generalized polynomial identities (see [5]) as well as the same differential identities (see [16]), they also satisfy the same generalized differential identities. Hence, by [15], U satisfies

$$a(H([x_1, x_2]^n)[x_1, x_2]^n + [x_1, x_2]^n G([x_1, x_2]^n)) = 0$$

for all $x_1, x_2 \in U$, where H(x) = bx + d(x) and $G(x) = px + \delta(x)$, for some $b, p \in U$ and derivations d and δ of U, that is, U satisfies

(4)
$$a(b[x_1, x_2]^{2n} + d([x_1, x_2]^n)[x_1, x_2]^n + [x_1, x_2]^n p[x_1, x_2]^n + [x_1, x_2]^n \delta([x_1, x_2]^n)) = 0.$$

Now we divide the proof into two cases:

Case I. Let d(x) = [c, x] for all $x \in U$ and $\delta(x) = [q, x]$ for all $x \in U$ i.e., d and δ be inner derivations of U. Then from (4), we obtain that U satisfies

(5)
$$a((b+c)[x_1,x_2]^{2n} + [x_1,x_2]^n(p-c+q)[x_1,x_2]^n - [x_1,x_2]^{2n}q) = 0.$$

By Lemma 2.2, when R does not satisfy s_4 , we have $q, p-c+q \in C$ with a(b+p)=0. This implies $p-c \in C$. Hence H(x)=bx+[c,x]=bx+[p,x]=b'x-xp, G(x)=px for all $x \in U$ and so for all $x \in R$ with ab'=0, where b'=b+p.

Moreover, when R satisfies s_4 (in this case by assumption char $(R) \neq 2$), then $R \subseteq M_2(F)$ and, R and $M_2(F)$ satisfy the same GPI, where $M_2(F)$ is a matrix ring over a field F. Hence $M_2(F)$ satisfies $a((b+c)[x_1,x_2]^{2n}+[x_1,x_2]^n(p-c+q)[x_1,x_2]^n-[x_1,x_2]^{2n}q)=0$. Since $[x,y]^2 \in Z(M_2(F))$ for all $x,y \in M_2(F)$, $M_2(F)$ satisfies

(6)
$$a((b+c-q)[x_1,x_2]^{2n} + [x_1,x_2]^n(p-c+q)[x_1,x_2]^n) = 0.$$

If n is even, then by choosing $x_1 = e_{12}$, $x_2 = e_{21}$, we have 0 = a(b+p).

If *n* is odd, then $M_2(F)$ satisfies $a((b+c-q)[x_1,x_2]+[x_1,x_2](p-c+q))[x_1,x_2]^{2n-1}=0$. By Lemma 2.7 in [7], we conclude that $p-c+q\in Z(R)$ and a(b+p)=0.

Thus when R satisfies s_4 , one of the following holds:

(i) n is even and a(b+p)=0. In this case, H(x)=bx+[c,x] and G(x)=px+[q,x] for all $x\in R$, with a(b+p)=0. This is our conclusion (2).

(ii) n is odd and $p-c+q \in C$ and a(b+p)=0. Hence H(x)=bx+[c,x] and G(x)=px+[q,x]=px-[p-c,x]=xp+[c,x] for all $x\in R$, with a(b+p)=0. This is our conclusion (3).

Case II. Next assume that d and δ are not both inner derivations of U, but they are C-dependent modulo inner derivations of U. Suppose $d = \lambda \delta + ad_c$, that is, $d(x) = \lambda \delta(x) + [c, x]$ for all $x \in U$, where $\lambda \in C$, $c \in U$. Then d can not be inner derivation of U. From (4), we have that U satisfies

$$a\left(b[x_1, x_2]^{2n} + \lambda \delta([x_1, x_2]^n)[x_1, x_2]^n + [c, [x_1, x_2]^n][x_1, x_2]^n + [x_1, x_2]^n p[x_1, x_2]^n + [x_1, x_2]^n \delta([x_1, x_2]^n)\right) = 0.$$

This gives

$$a\left(b[x_1,x_2]^{2n} + \lambda \sum_{i=0}^{n-1} [x_1,x_2]^i \delta([x_1,x_2])[x_1,x_2]^{n-1-i} [x_1,x_2]^n + [c,[x_1,x_2]^n][x_1,x_2]^n + [x_1,x_2]^n p[x_1,x_2]^n + [x_1,x_2]^n \sum_{i=0}^{n-1} [x_1,x_2]^i \delta([x_1,x_2])[x_1,x_2]^{n-1-i}\right) = 0.$$

Then by Kharchenko's theorem [11], we have that U satisfies

$$a\left(b[x_1, x_2]^{2n} + \lambda \sum_{i=0}^{n-1} [x_1, x_2]^i ([y_1, x_2] + [x_1, y_2])[x_1, x_2]^{n-1-i} [x_1, x_2]^n + [c, [x_1, x_2]^n][x_1, x_2]^n + [x_1, x_2]^n p[x_1, x_2]^n + [x_1, x_2]^n \sum_{i=0}^{n-1} [x_1, x_2]^i ([y_1, x_2] + [x_1, y_2])[x_1, x_2]^{n-1-i}\right) = 0.$$

In particular U satisfies blended component

(8)
$$a\left(b[x_1, x_2]^{2n} + [c, [x_1, x_2]^n][x_1, x_2]^n + [x_1, x_2]^n p[x_1, x_2]^n\right) = 0$$

and

(9)
$$a\left(\lambda \sum_{i=0}^{n-1} [x_1, x_2]^i ([y_1, x_2] + [x_1, y_2])[x_1, x_2]^{n-1-i} [x_1, x_2]^n + [x_1, x_2]^n \sum_{i=0}^{n-1} [x_1, x_2]^i ([y_1, x_2] + [x_1, y_2])[x_1, x_2]^{n-1-i}\right) = 0.$$

For $y_1 = [q, x_1]$ and $y_2 = [q, x_2]$, where $q \notin C$ we have that U satisfies

(10)
$$a([\lambda q, [x_1, x_2]^n][x_1, x_2]^n + [x_1, x_2]^n[q, [x_1, x_2]^n]) = 0.$$

By Lemma 2.2, if R does not satisfy s_4 , then $q \in C$, a contradiction. Hence we conclude that R satisfies s_4 . Now the relations (8) and (10) are similar to the relation (5). Thus by same argument as given in Case I, when R satisfies s_4 (in this case char (R) must be not equal to 2), one of the following holds:

- (i) Let n be even. Then by (8), a(b+p)=0. Thus H(x)=bx+d(x) and $G(x)=px+\delta(x)$ for all $x\in R$, with a(b+p)=0. This is our conclusion (2).
- (ii) Let n be odd. Then by (8), $p-c \in C$ and a(b+p)=0. Again by (10), $q-\lambda q=q(1-\lambda)\in C$. Since $q\notin C$, we have $\lambda=1$. Then replacing $y_1=x_1$ and $y_2=0$, (9) gives $na(\lambda+1)[x_1,x_2]^{2n}=0$, implying 2na=0. Since char $(R)\neq 2$, na=0. Hence $H(x)=bx+\lambda\delta(x)+[c,x]=bx+\delta(x)+[c,x]$ and $G(x)=px+\delta(x)=(p-c)x+cx+\delta(x)=x(p-c)+cx+\delta(x)=xp+\delta(x)+[c,x]$ for all $x\in R$. This is our conclusion (3).

The situation when $\delta = \lambda d + a d_c$ is similar.

Next assume that d and δ are C-independent modulo inner derivations of U. Since neither d nor δ is inner, by Kharchenko's Theorem [11], we have from (4) that U satisfies

$$(11) \quad a\left(b[x_1, x_2]^{2n} + \sum_{i=0}^{n-1} [x_1, x_2]^i([u_1, x_2] + [x_1, u_2])[x_1, x_2]^{n-1-i}[x_1, x_2]^n + [x_1, x_2]^n p[x_1, x_2]^n + [x_1, x_2]^n \sum_{i=0}^{n-1} [x_1, x_2]^i([v_1, x_2] + [x_1, v_2])[x_1, x_2]^{n-1-i}\right) = 0.$$

Then U satisfies blended component

(12)
$$a\left(b[x_1, x_2]^{2n} + [x_1, x_2]^n p[x_1, x_2]^n\right) = 0$$

and

(13)
$$a\left([x_1, x_2]^n \sum_{i=0}^{n-1} [x_1, x_2]^i ([v_1, x_2] + [x_1, v_2])[x_1, x_2]^{n-1-i}\right) = 0.$$

Replacing v_1 with $[q, x_1]$ and v_2 with $[q, x_2]$ for some $q \notin C$ in (13), we obtain that U satisfies

(14)
$$a([x_1, x_2]^n[q, [x_1, x_2]^n]) = 0.$$

By Lemma 2.2, we have $q \in C$, a contradiction, unless R satisfies s_4 . So we consider the case when R satisfies s_4 . In this case by same argument of Case I, (12) and (14) together implies that n is even and a(b+p)=0. This gives our conclusion (2). Hence the theorem is proved.

Corollary 2.3. Let R be a prime ring with its Utumi ring of quotients U, C = Z(U) be the extended centroid of R, H and G two generalized derivations of R and L a noncentral Lie ideal of R. Suppose that there exists $0 \neq a \in R$ such that $a(H(u^2)u^2 + u^2G(u^2)) = 0$ for all $u \in L$. Then either there exist b', $p \in U$ such that H(x) = b'x - xp and G(x) = px for all $x \in R$ with ab' = 0 or R satisfies s_4 . Moreover, if R satisfies s_4 , then one of the following holds:

- (1) char(R) = 2;
- (2) there exist $b, p \in U$ and derivations d, δ of R such that H(x) = bx + d(x) and $G(x) = px + \delta(x)$ for all $x \in R$, with a(b+p) = 0.

Proof of Theorem 1.2. Let $0 \neq a \in l_R(S)$. Then $a(H(x^n)x^n + x^nG(x^n)) = 0$ for all $x \in I$. By Theorem 1.1, we have only to consider the case when R satisfies s_4 . In this case R is a PI-ring, and so there exists a field K such that $R \subseteq M_2(K)$ and, R and $M_2(K)$ satisfy the same GPI. First we assume that H and G are inner generalized derivations of R, that is, H(x) = bx + xc for all $x \in R$ and G(x) = px + xq for all $x \in R$, for some $b, c, p, q \in R$. Since $M_2(F)$ is a simple ring, by our hypothesis, $M_2(F)$ satisfies

(15)
$$a(bx^{2n} + x^n(c+p)x^n + x^{2n}q) = 0.$$

Moreover, R is a dense ring of K-linear transformations over a vector space V. Let $aq \neq 0$. Assume there exists $v \neq 0$, such that $\{v, qv\}$ is linear K-independent. By the density of R, there exists $r \in R$ such that

$$rv = 0; \quad r(qv) = qv.$$

Hence

$$0 = a(br^{2n} + r^n(c+p)r^n + r^{2n}q)v = aqv.$$

Of course for any $w \in V$ such that $\{w,v\}$ are linearly K-dependent implies aqw=0. Since $aq \neq 0$, there exists $w \in V$ such that $aqw \neq 0$. Then $\{w,v\}$ must be linearly K-independent. By the above argument it follows that w and qw are linearly K-dependent, as are $\{w+v,q(w+v)\}$ and $\{w-v,q(w-v)\}$. Therefore there exist $\alpha_w,\alpha_{w+v},\alpha_{w-v} \in K$ such that

$$qw = \alpha_w w, \quad q(w+v) = \alpha_{w+v}(w+v), \quad q(w-v) = \alpha_{w-v}(w-v).$$

In other words we have

(16)
$$\alpha_w w + q v = \alpha_{w+v} w + \alpha_{w+v} v$$

and

(17)
$$\alpha_w w - qv = \alpha_{w-v} w - \alpha_{w-v} v.$$

By comparing (16) with (17) we get both

(18)
$$(2\alpha_w - \alpha_{w+v} - \alpha_{w-v})w + (\alpha_{w-v} - \alpha_{w+v})v = 0$$

and

(19)
$$2qv = (\alpha_{w+v} - \alpha_{w-v})w + (\alpha_{w+v} + \alpha_{w-v})v.$$

By (18) and since $\{w,v\}$ is K-independent and $char(K) \neq 2$, we have $\alpha_w = \alpha_{w+v} = \alpha_{w-v}$. Thus by (19) it follows $2qv = 2\alpha_w v$. Since $\{qv,v\}$ is K-independent, the conclusion $\alpha_w = \alpha_{w+v} = 0$ follows, that is qw = 0 and q(w+v) = 0, which implies the contradiction qv = 0.

Hence we conclude that for any $v \in V$, $\{v, qv\}$ is linearly K-dependent. Thus there exists a suitable $\alpha_v \in K$ such that $qv = \alpha_v v$, and standard argument shows that there is $\alpha \in K$ such that $qv = \alpha v$ for all $v \in V$. Now let $r \in R$, $v \in V$. Since $qv = \alpha v$,

(20)
$$[q, r]v = (qr)v - (rq)v = q(rv) - r(qv) = \alpha(rv) - r(\alpha v) = 0.$$

Thus [q,r]v=0 for all $v\in V$ i.e., [q,r]V=0. Since [q,r] acts faithfully as a linear transformation on the vector space V, [q,r]=0 for all $r\in R$. Therefore, $q\in C$.

Thus up to now, we have proved that either aq = 0 or $q \in C$.

Let aq = 0. In this case, assume that there exists $v \neq 0$, such that $\{v, qv\}$ is linear K-independent. By the density of R, there exists $r \in R$ such that

$$rv = 0;$$
 $r(qv) = v + qv.$

Hence

$$0 = a(br^{2n} + r^n(c+p)r^n + r^{2n}q)v = av.$$

Thus by the same argument as above, this implies either a=0 or $q\in C$. Since $a\neq 0,\ q\in C$.

Thus in any case we conclude that $q \in C$.

Then (15) reduces to

(21)
$$a((b+q)x^{n} + x^{n}(c+p))x^{n} = 0.$$

Let there exists $v \neq 0$, such that $\{v, (c+p)v\}$ is linear K-independent. By the density of R, there exists $r \in R$ such that

$$rv = 0$$
: $r((c+p)v) = (c+p)v$.

Hence

$$0 = a((b+q)r^{n} + r^{n}(c+p))r^{n}v = a(c+p)v.$$

Then again by same argument, $c + p \in C$. Then (21) reduces to

(22)
$$a(b+c+p+q)x^{2n} = 0$$

for all $x \in R$. This implies a(b+c+p+q)=0, where $q,c+p\in C$. Hence H(x) = bx + xc = bx + x(c+p) - xp = (b+c+p)x - xp = (b+c+p+q)x - x(p+q)for all $x \in R$ and G(x) = (p+q)x for all $x \in R$. This gives our conclusion.

Next assume that H(x) = bx + d(x) and $G(x) = px + \delta(x)$, where d, δ are not both inner derivations of R. In this case by our hypothesis, R satisfies

(23)
$$a \left(bx^{2n} + d(x^n)x^n + x^n px^n + x^n \delta(x^n) \right) = 0.$$

If d and δ are C-dependent modulo inner derivations of R, then $d = \lambda \delta + ad_c$ for some $\lambda \in C$. In this case (23) reduces to

(24)
$$a \left(bx^{2n} + \lambda \delta(x^n)x^n + [c, x^n]x^n + x^n px^n + x^n \delta(x^n) \right) = 0.$$

By Kharchenko's Theorem [11], R satisfies

(25)
$$a\left(bx^{2n} + \lambda \sum_{i} x^{i}yx^{n-i-1}x^{n} + [c, x^{n}]x^{n} + x^{n}px^{n} + x^{n}\sum_{i} x^{i}yx^{n-i-1}\right) = 0.$$

Replacing y with [p, x] for some $p \notin C$, we have from (25) that

(26)
$$a\left(bx^{2n} + \lambda[p, x^n]x^n + [c, x^n]x^n + x^npx^n + x^n[p, x^n]\right) = 0.$$

Then this implies as above (for inner derivation case) that $p \in C$, a contradiction.

The case when $\delta = \lambda d + a d_{c'}$ for some $\lambda \in C$, is similar.

Next assume that d and δ are C-independent modulo inner derivations of R. Then by Kharchenko's Theorem [11], R satisfies

(27)
$$a\left(bx^{2n} + \sum_{i} x^{i}yx^{n-i-1}x^{n} + x^{n}px^{n} + x^{n}\sum_{i} x^{i}zx^{n-i-1}\right) = 0.$$

Replacing y with [p, x] and z with [p', x] for some $p, p' \notin C$, we have

(28)
$$a\left(bx^{2n} + [p, x^n]x^n + x^npx^n + x^n[p', x^n]\right) = 0.$$

Then by same argument as above, it yields that $p' \in C$, a contradiction.

In particular, when H and G are two derivations of R, we have the following:

Corollary 2.4. Let R be a noncommutative prime ring with char $(R) \neq 2$ and C the extended centroid of R. Let d and δ be two derivations of R. If there exists $0 \neq a \in R$ such that $a(d(x^n)x^n + x^n\delta(x^n)) = 0$ for all $x \in R$, where $n \geq 1$ is a fixed integer, then $d = \delta = 0$.

3. Results on semiprime rings

In this section we extend the Corollary 2.4 to semiprime rings. Let R be a semiprime ring and U the left Utumi ring of quotients of R. Then C = Z(U), center of U, is called extended centroid of R. It is well known that C is a Von Neumann regular ring. It is known that C is a field if and only if R is a prime ring. The set of all idempotents of C is denoted by E. The elements of E are called central idempotents.

We know that any derivation of R can be uniquely extended to a derivation of U (see [16, Lemma 2]).

By using the standard theory of orthogonal completions for semiprime rings, we prove the following:

Theorem 3.1. Let R be a noncommutative 2-torsion free semiprime ring, U the left Utumi quotient ring of R and d, δ be two derivations of R. If there exists $0 \neq a \in R$ such that $a(d(x^n)x^n + x^n\delta(x^n)) = 0$ for all $x \in R$, where $n \geq 1$ is a fixed integer, then there exist orthogonal central idempotents e_1 , e_2 , $e_3 \in U$ with $e_1 + e_2 + e_3 = 1$ such that $(d + \delta)(e_1U) = 0$, $e_2a = 0$, and e_3U is commutative.

Proof. Since any derivation d can be uniquely extended to a derivation in U, and U and R satisfy the same differential identities (see [16]), $a(d(x^n)x^n + x^n\delta(x^n)) = 0$ for all $x \in U$.

Let B be the complete Boolean algebra of E. We choose a maximal ideal P of B such that U/PU is 2-torsion free. Then PU is a prime ideal of U, which is d-invariant. Denote $\overline{U} = U/PU$ and \overline{d} , $\overline{\delta}$ be the canonical pair of derivations on \overline{U} induced by d and δ respectively. Then by hypothesis, $\overline{a}(\overline{d}(\overline{x}^n)\overline{x}^n+\overline{x}^n\overline{\delta}(\overline{x}^n))=0$ for all $\overline{x}\in \overline{U}$. Since \overline{U} is a prime ring, by Corollary 2.4, either $\overline{d}=\overline{\delta}=0$ or $[\overline{U},\overline{U}]=0$ or $\overline{a}=0$. In any case, we have $ad(U)[U,U]\subseteq PU$ and $a\delta(U)[U,U]\subseteq PU$ for all P, that is, $aD(U)[U,U]\subseteq PU$ for all P, where $D=d+\delta$. Since $\bigcap\{PU:P\text{ is any maximal ideal in }B\text{ with }U/PU\text{ 2-torsion free}\}=0$, we have aD(U)[U,U]=0.

By using the theory of orthogonal completion for semiprime rings (see, [1, Chapter 3]), it follows that there exist orthogonal central idempotents e_1 , e_2 , $e_3 \in U$ with $e_1 + e_2 + e_3 = 1$ such that $D(e_1U) = 0$, $e_2a = 0$, and e_3U is commutative.

References

- [1] K.I. Beidar, W.S. Martindale III and A.V. Mikhalev *Rings with generalized identities*, Pure and Applied Math., 196 (Marcel Dekker, New York, 1996).
- [2] J. Bergen, I.N. Herstein and J.W. Kerr, Lie ideals and derivations of prime rings,
 J. Algebra 71 (1981) 259–267.
 doi:10.1016/0021-8693(81)90120-4

[3] M. Brešar, Centralizing mappings and derivations in prime rings, J. Algebra 156 (1993) 385–394.
 doi:10.1006/jabr.1993.1080

- [4] L. Carini, V. De Filippis and B. Dhara, Annihilators on co-commutators with generalized derivations on Lie ideals, Publ. Math. Debrecen **76** (2010) 395–409.
- [5] C.L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc. 103 (1988) 723–728.
 doi:10.1090/S0002-9939-1988-0947646-4
- [6] B. Dhara, S. Kar and K.G. Pradhan, An Engel condition of generalized derivations with annihilator on Lie ideal in prime rings, Matematicki Vesnik 68 (2016) 164–174.
- [7] B. Dhara, V. De Filippis and G. Scudo, Power values of generalized derivations with annihilator conditions in prime rings, Mediterr. J. Math. 10 (2013) 123–135. doi:10.1007/s00009-012-0185-5
- [8] B. Dhara, Power values of derivations with annihilator conditions on Lie ideals in prime rings, Comm. Algebra 37 (2009) 2159–2167. doi:10.1080/00927870802226213
- T.S. Erickson, W.S. Martindale III and J.M. Osborn, Prime nonassociative algebras, Pacific J. Math. 60 (1975) 49–63. doi:10.2140/pjm.1975.60.49
- [10] N. Jacobson, Structure of Rings, Amer. Math. Soc. Colloq. Pub. 37, Amer. Math. Soc. (Providence, RI, 1964).
- [11] V.K. Kharchenko, Differential identity of prime rings, Algebra and Logic. 17 (1978) 155–168. doi:10.1007/BF01670115
- [12] C. Lanski, Differential identities, Lie ideals, and Posner's theorems, Pacific J. Math. 134 (1988) 275–297. doi:10.2140/pjm.1988.134.275
- [13] C. Lanski and S. Montgomery, Lie structure of prime rings of characteristic 2, Pacific J. Math. 42 (1972) 117–136. doi:10.2140/pjm.1972.42.117
- [14] T.K. Lee and Y. Zhou, An identity with generalized derivations, J. Algebra Appl. 8 (2009) 307–317.
 doi:10.1142/S021949880900331X
- [15] T.K. Lee, Generalized derivations of left faithful rings, Comm. Algebra 27 (1999) 4057–4073. doi:10.1080/00927879908826682
- [16] T.K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica **20** (1992) 27–38.
- [17] P.H. Lee, Lie ideals of prime rings with derivations, Bull. Inst. Math. Acad. Sinica 11 (1983) 75–80.

- [18] P.H. Lee and T.L. Wong, *Derivations cocentralizing Lie ideals*, Bull. Inst. Math. Acad. Sinica **23** (1995) 1–5.
- [19] W.S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969) 576–584. doi:10.1016/0021-8693(69)90029-5
- [20] E.C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957) 1093–1100. doi:10.1090/S0002-9939-1957-0095863-0
- [21] F. Rania, Generalized derivations and annihilator conditions in prime rings, Inter. J. Algebra 2 (2008) 963–969.
- [22] J. Vukman, Identities with derivations on rings and Banach algebras, Glasnik Mathematicki 40/2 (2005) 189–199. doi:10.3336/gm.40.2.01
- [23] F. Wei and Z. Xiao, Generalized derivations on (semi-)prime rings and noncommutative Banach algebras, Rend. Sem. Mat. Univ. Padova. 122 (2009) 171–190.

Received 27 October 2016 Revised 1 June 2017 Accepted 6 July 2017