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Abstract

Let R be a prime ring with its Utumi ring of quotients U , C = Z(U) be
the extended centroid of R, H and G two generalized derivations of R, L a
noncentral Lie ideal of R, I a nonzero ideal of R. The left annihilator of S ⊆
R is denoted by lR(S) and defined by lR(S) = {x ∈ R |xS = 0}. Suppose
that S = {H(un)un + unG(un) |u ∈ L} and T = {H(xn)xn + xnG(xn) |x ∈
I}, where n ≥ 1 is a fixed integer. In the paper, we investigate the cases
when the sets lR(S) and lR(T ) are nonzero.
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1. Introduction

Let R be an associative ring with center Z(R). For x, y ∈ R, the commutator of
x, y is denoted by [x, y] and defined by [x, y] = xy−yx. By d we mean a derivation
of R. An additive mapping F from R to R is called a generalized derivation if
there exists a derivation d from R to R such that F (xy) = F (x)y + xd(y) holds
for all x, y ∈ R.

Throughout this paper, R will always present a prime ring with center Z(R),
extended centroid C and U is its Utumi quotient ring. A well known result proved
by Posner [20], states that if the commutators [d(x), x] ∈ Z(R) for all x ∈ R, then
either d = 0 or R is commutative. Then result of Posner was generalized in many
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directions by a number of authors. Posner’s theorem was extended to Lie ideals
in prime rings by Lee [17] and then by Lanski [12].

On the other hand, authors generalized Posner’s theorem by considering two
derivations. In [3], Brešar proved that if d and δ are two derivations of R such that
d(x)x − xδ(x) ∈ Z(R) for all x ∈ R, then either d = δ = 0 or R is commutative.
Later Lee and Wong [18] consider the situation d(x)x − xδ(x) ∈ Z(R) for all x
in some noncentral Lie ideal L of R and they proved that either d = δ = 0 or R
satisfies s4.

Recently in [22] Vukman proves that if d and δ are derivations on a 2mn(m+
n − 1)!-torsion free semiprime rings R such that d(xm)xn + xnδ(xm) = 0 for all
x ∈ R, where m,n ≥ 1 are fixed integers, then both derivations d and δ map R
into its center and d = −δ.

In [23], Wei and Xiao studied the similar situation replacing derivations d and
δ by generalized derivations G and H. More precisely they proved the following:

Let m,n be fixed positive integers, R be a noncommutative 2(m+n)!-torsion
free prime ring and G,H be a pair of generalized Jordan derivations on R. If

G(xm)xn +xnH(xm) ∈ Z(R) for all x ∈ R, then G and H both are right (or left)
multipliers.

In [14], Lee and Zhou studied the same situation of above result without
considering torsion free restriction on R. In this paper, Lee and Zhou [14] proved
the following:

Let R be a prime ring that is not commutative and such that R 6∼= M2(GF (2)),
let G,H be two generalized derivations of R, and let m,n be two fixed positive

integers. Then G(xm)xn − xnH(xm) = 0 for all x ∈ R iff the following two

conditions hold:

(1) There exists w ∈ Q such that G(x) = xw and H(x) = wx for all x ∈ R;

(2) either w ∈ C, or xm and xn are C-dependent for all x ∈ R.

There are many papers in the literature which studied the identities of gen-
eralized derivations with left annihilator conditions.

For any subset S of R, denote by rR(S) the right annihilator of S in R, that
is, rR(S) = {x ∈ R |Sx = 0} and lR(S) the left annihilator of S in R that is,
lR(S) = {x ∈ R |xS = 0}. If rR(S) = lR(S), then rR(S) is called an annihilator
ideal of R and is written as annR(S).

In [4], Carini et al. studied the left annihilator of the set {H(u)u−uG(u) |u ∈
L}, where L is a noncentral Lie ideal of R and H, G two non-zero generalized
derivations of R. In case the annihilator is not zero, the conclusion is one of the
following:

(1) there exist b′, c′ ∈ U such that H(x) = b′x+ xc′, G(x) = c′x with ab′ = 0;

(2) R satisfies s4 and there exist b′, c′, q′ ∈ U such that H(x) = b′x+xc′, G(x) =
c′x+ xq′, with a(b′ − q′) = 0.
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Recently, Carini and De Filippis proved the following theorem:

Let R be a prime ring, U the Utumi quotient ring of R, C = Z(U) the

extended centroid of R, L a non-central Lie ideal of R, H and G non-zero gen-

eralized derivations of R. Suppose that there exists an integer n ≥ 1 such that

H(un)un + unG(un) ∈ C, for all u ∈ L, then either there exists a ∈ U such that

H(x) = xa,G(x) = −ax, or R satisfies the standard identity s4. Moreover, in

the last case the structures of the maps G,H are obtained.

In the present paper, we shall investigate the left annihilator of the sets
{H(un)un + unG(un) |u ∈ L} and {H(xn)xn + xnG(xn) |x ∈ I}, where L is a
noncentral Lie ideal of R, I is a nonzero ideal of R, n ≥ 1 is a fixed integer and
H, G two non-zero generalized derivations of R. More precisely, we prove the
following theorems:

Theorem 1.1. Let R be a prime ring with its Utumi ring of quotients U , C =
Z(U) be the extended centroid of R, H and G two generalized derivations of R,

L a noncentral Lie ideal of R and S = {H(un)un + unG(un) |u ∈ L}, where

n ≥ 1 is a fixed integer. If lR(S) 6= {0}, then either there exist b′, p ∈ U such

that H(x) = b′x− xp and G(x) = px for all x ∈ R with ab′ = 0 or R satisfies s4.
Moreover, in the last case, if R satisfies s4, then one of the following holds:

(1) char (R) = 2;

(2) n is even, there exist b, p ∈ U and derivations d, δ of R such that H(x) =
bx+ d(x) and G(x) = px+ δ(x) for all x ∈ R, with a(b+ p) = 0;

(3) n is odd, there exist b, p ∈ U and derivations d, δ of R such that H(x) =
bx+ d(x) and G(x) = xp+ δ(x) for all x ∈ R, with a(b+ p) = 0.

Theorem 1.2. Let R be a noncommutative prime ring with char (R) 6= 2, U
its Utumi ring of quotients, C = Z(U) be the extended centroid of R, H and G
two generalized derivations of R, I a nonzero ideal of R and S = {H(xn)xn +
xnG(xn) |x ∈ I}, where n ≥ 1 is a fixed integer. If lR(S) 6= {0}, then there exist

b′, p ∈ U such that H(x) = b′x− xp and G(x) = px for all x ∈ R with ab′ = 0.

As an immediate application of the Theorem 1.1, in particular whenG = −H,
then we have the following result which gives a particular result of Theorem 1.1
in [6].

Corollary 1.3. Let R be a prime ring with its Utumi ring of quotients U ,

C = Z(U) be the extended centroid of R, H a generalized derivation of R and

L a noncentral Lie ideal of R. Suppose that there exists 0 6= a ∈ R such that

a[H(un), un] = 0 for all u ∈ L, where n ≥ 1 is a fixed integer. Then either there

exists λ ∈ C such that H(x) = λx for all x ∈ R or R satisfies s4.

As an application of the Theorem 1.1, in particular when G = 0, then using
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Theorem 2.2 in [8], we have the following result which gives a generalization of
Theorem 1.1 in [21].

Corollary 1.4. Let R be a prime ring of char (R) 6= 2 with its Utumi ring of

quotients U , C = Z(U) be the extended centroid of R, H a generalized derivation

of R and L a noncentral Lie ideal of R. Suppose that there exists 0 6= a ∈ R such

that aH(un)un = 0 for all u ∈ L, where n ≥ 1 is a fixed integer. Then either

there exist b′, p ∈ U such that H(x) = b′x for all x ∈ R with ab′ = 0.

2. Proof of main results in prime rings

Let R be a prime ring with extended centroid C. Let H(x) = bx + xc and
G(x) = px+ xq for all x ∈ R and for some b, c, p, q ∈ U , be two inner generalized
derivations of R and L be a noncentral Lie ideal of R. Then a(H(xn)xn +
xnG(xn)) = 0 implies a(bx2n + xn(c + p)xn + x2nq) = 0 for all x ∈ L. We know
that if char (R) 6= 2, by [2, Lemma 1] there exists a nonzero ideal I of R such
that 0 6= [I,R] ⊆ L. If char (R) = 2 and dimCRC > 4 i.e., char (R) = 2 and R
does not satisfy s4, then by [13, Theorem 13] there exists a nonzero ideal I of R
such that 0 6= [I,R] ⊆ L. We assume that R does not satisfy s4. Then in any
case of char (R) = 2 or char (R) 6= 2, we can conclude that there exists a nonzero
ideal I of R such that 0 6= [I, I] ⊆ L. By hypothesis, we have

(1) a(b[x1, x2]
2n + [x1, x2]

n(c+ p)[x1, x2]
n + [x1, x2]

2nq) = 0

for all x1, x2 ∈ I. Then following lemmas are immediate consequences:

Lemma 2.1. R satisfies a nontrivial generalized polynomial identity (GPI) or

c, p, q ∈ C such that a(b+ c+ p+ q) = 0.

Proof. Assume that R does not satisfy any nontrivial GPI. Then R must be
noncommutative. Let T = U ∗C C{x1, x2}, the free product of U and C{x1, x2},
the free C-algebra in noncommuting indeterminates x1 and x2.

Then,

a
(

b[x1, x2]
2n + [x1, x2]

n(c+ p)[x1, x2]
n + [x1, x2]

2nq
)

is zero element in T . If q /∈ C, then q and 1 are linearly independent over C.
Then from above

a[x1, x2]
2nq = 0 ∈ T,

implying q = 0, since a 6= 0, a contradiction. Therefore, we conclude that q ∈ C.
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Then by hypothesis

(2) a((b+ q)[x1, x2]
n + [x1, x2]

n(c+ p))[x1, x2]
n = 0 ∈ T.

If c+ p /∈ C, then by (2)

a ([x1, x2]
n(c+ p)) [x1, x2]

n = 0 ∈ T,

implying c + p = 0, since a 6= 0, a contradiction. Therefore, we have c + p ∈ C
and hence

a(b+ q + c+ p)[x1, x2]
2n = 0 ∈ T.

This implies a(b+ q + c+ p) = 0.

Lemma 2.2. c+ p, q ∈ C with a(b+ c+ p+ q) = 0, unless R satisfies s4.

Proof. By hypothesis, R satisfies GPI

(3) f(x1, x2) = a(b[x1, x2]
2n + [x1, x2]

n(c+ p)[x1, x2]
n + [x1, x2]

2nq).

If R does not satisfy any nontrivial GPI, by Lemma 2.1, we obtain c, p, q ∈ C with
a(b+ c+ p+ q) = 0 which gives the conclusion. So, we assume that R satisfies a
nontrivial GPI. Since R and U satisfy the same generalized polynomial identities
(see [5]), U satisfies f(x1, x2). In case C is infinite, we have f(x1, x2) = 0 for
all x1, x2 ∈ U ⊗C C, where C is the algebraic closure of C. Moreover, both U
and U ⊗C C are prime and centrally closed algebras [9]. Hence, replacing R by
U or U ⊗C C according to C finite or infinite, without loss of generality we may
assume that C = Z(R) and R is C-algebra centrally closed. By Martindale’s
theorem [19], R is then a primitive ring having nonzero socle soc(R) with C
as the associated division ring. Hence, by Jacobson’s theorem [10, p.75], R is
isomorphic to a dense ring of linear transformations of a vector space V over C.

If dimCV = 2, then R ∼= M2(C), that is, R satisfies s4, a contradiction. So,
let dimCV ≥ 3.

We show that for any v ∈ V , v and qv are linearly C-dependent. Suppose
that v and qv are linearly independent for some v ∈ V . Since dimCV ≥ 3, there
exists u ∈ V such that v, qv, u are linearly C-independent set of vectors. By
density, there exists x1, x2 ∈ R such that

x1v = v, x1qv = 0, x1u = qv; x2v = 0, x2qv = u, x2u = 0.

Then 0 = a(b[x1, x2]
2n + [x1, x2]

n(c+ p)[x1, x2]
n + [x1, x2]

2nq)v = aqv.

This implies that if for some v ∈ V , aqv 6= 0, then by contradiction, v and
qv are linearly C-dependent.
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Now choose v ∈ V such that v and qv are linearly C-independent. Then
aqv = 0. Let us consider a subspace W = {αv+βqv |α, β ∈ C} of V . Let aq 6= 0.
Then, there exists w ∈ V such that aqw 6= 0. Then aq(v − w) = aqw 6= 0. Then
by the above argument, w, qw are linearly C-dependent and (v−w), q(v−w) too.
Thus there exist α, β ∈ C such that qw = αw and q(v − w) = β(v − w). Then
qv = β(v −w) + qw = β(v −w) + αw i.e., (α− β)w = qv− βv ∈ W . Now α = β
implies that qv = βv, a contradiction. Hence α 6= β and so w ∈ W .

Next assume that u ∈ V such that aqu = 0. Then aq(w+ u) = aqw 6= 0. By
above argument, aq(w+u) 6= 0 implies w+u ∈ W . Since w ∈ W , we have u ∈ W .
Thus it is observed that for any v ∈ V , aqv 6= 0 implies v ∈ W and aqv = 0
implies v ∈ W . This implies that V = W i.e., dimCV = 2, a contradiction.

Thus up to now we have proved that v and qv are linearly C-dependent for
all v ∈ V , unless aq = 0. If aq 6= 0, by standard argument, it follows that qv = λv
for all v ∈ V and λ ∈ C fixed. Then (q − λ)V = 0, implying q = λ ∈ C.

Now let aq = 0. Since dimCV ≥ 3, there exists w ∈ V such that v, qv, w are
linearly C-independent set of vectors. By density, there exists x1, x2 ∈ R such
that

x1v = v, x1qv = 0, x1w = v + qv; x2v = 0, x2qv = w, x2w = 0.

Then 0 = a(b[x1, x2]
2n + [x1, x2]

n(c + p)[x1, x2]
n + [x1, x2]

2nq)v = av. Then by
above argument, since a 6= 0, q ∈ C.

Therefore, we have proved that in any case q ∈ C. Hence our identity reduces
to

a(b′[x1, x2]
2n + [x1, x2]

nc′[x1, x2]
n) = 0,

where b′ = b+ q and c′ = c+ p.
Now we prove that v and c′v are linearly C-dependent. If possible let v and

c′v be linearly independent for some v ∈ V . Then there exists w ∈ V such that
v, c′v and w are linearly independent over C. By density there exist x1, x2 ∈ R
such that

x1v = 0, x1c
′v = v, x1w = 2c′v; x2v = c′v, x2c

′v = w, x2w = 0.

Then 0 = a(b′[x1, x2]
2n+[x1, x2]

nc′[x1, x2]
n)v = a(b′+c′)v. As above, this implies

either a(b′ + c′) = 0 or c′ ∈ C. Let a(b′ + c′) = 0. Then we have that R satisfies
0 = a[c′, [x1, x2]

n][x1, x2]
n. By density there exist x1, x2 ∈ R such that

x1v = 0, x1c
′v = v, x1w = c′v; x2v = c′v, x2c

′v = w, x2w = 0.

Thus 0 = a[c′, [x1, x2]
n][x1, x2]

nv = ac′v. This implies either ac′ = 0 or c′ ∈ C.
Let ac′ = 0. Then we have that R satisfies 0 = a[x1, x2]

n]c′[x1, x2]
n. Again by

density there exist x1, x2 ∈ R such that

x1v = 0, x1c
′v = v, x1w = v + c′v; x2v = c′v, x2c

′v = w, x2w = 0.
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Thus 0 = a[x1, x2]
n]c′[x1, x2]

nv = av. Since a 6= 0, this implies c′ ∈ C. Thus in
any case, we have c′ ∈ C. Hence R satisfies 0 = a(b′ + c′)[x1, x2]

2n, which implies
a(b′ + c′) = 0.

Proof of Theorem 1.1. Let 0 6= a ∈ lR(S). Then a(H(un)un + unG(un)) = 0
for all u ∈ L. If char (R) = 2 and R satisfies s4, then we obtain our conclusion
(1). So we assume that either char (R) 6= 2 or R does not satisfy s4. Then by
[2, Lemma 1] and [13, Theorem 13], since L is a noncentral Lie ideal of R, there
exists a nonzero ideal I of R such that [I, I] ⊆ L. Hence, by our hypothesis, we
have,

a(H([x1, x2]
n)[x1, x2]

n + [x1, x2]
nG([x1, x2]

n)) = 0

for all x1, x2 ∈ I. Since I, R and U satisfy the same generalized polynomial
identities (see [5]) as well as the same differential identities (see [16]), they also
satisfy the same generalized differential identities. Hence, by [15], U satisfies

a(H([x1, x2]
n)[x1, x2]

n + [x1, x2]
nG([x1, x2]

n)) = 0

for all x1, x2 ∈ U , where H(x) = bx + d(x) and G(x) = px + δ(x), for some
b, p ∈ U and derivations d and δ of U , that is, U satisfies

(4)
a(b[x1, x2]

2n + d([x1, x2]
n)[x1, x2]

n + [x1, x2]
np[x1, x2]

n

+ [x1, x2]
nδ([x1, x2]

n)) = 0.

Now we divide the proof into two cases:

Case I. Let d(x) = [c, x] for all x ∈ U and δ(x) = [q, x] for all x ∈ U i.e., d
and δ be inner derivations of U . Then from (4), we obtain that U satisfies

(5) a((b+ c)[x1, x2]
2n + [x1, x2]

n(p − c+ q)[x1, x2]
n − [x1, x2]

2nq) = 0.

By Lemma 2.2, when R does not satisfy s4, we have q, p−c+q ∈ C with a(b+p) =
0. This implies p − c ∈ C. Hence H(x) = bx + [c, x] = bx + [p, x] = b′x − xp,
G(x) = px for all x ∈ U and so for all x ∈ R with ab′ = 0, where b′ = b+ p.

Moreover, when R satisfies s4 (in this case by assumption char (R) 6= 2),
then R ⊆ M2(F ) and, R and M2(F ) satisfy the same GPI, where M2(F ) is a
matrix ring over a field F . Hence M2(F ) satisfies a((b+c)[x1, x2]

2n+[x1, x2]
n(p−

c + q)[x1, x2]
n − [x1, x2]

2nq) = 0. Since [x, y]2 ∈ Z(M2(F )) for all x, y ∈ M2(F ),
M2(F ) satisfies

(6) a((b+ c− q)[x1, x2]
2n + [x1, x2]

n(p− c+ q)[x1, x2]
n) = 0.

If n is even, then by choosing x1 = e12, x2 = e21, we have 0 = a(b+ p).
If n is odd, then M2(F ) satisfies a((b + c − q)[x1, x2] + [x1, x2](p − c + q))

[x1, x2]
2n−1 = 0. By Lemma 2.7 in [7], we conclude that p − c + q ∈ Z(R) and

a(b+ p) = 0.
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Thus when R satisfies s4, one of the following holds:

(i) n is even and a(b + p) = 0. In this case, H(x) = bx + [c, x] and G(x) =
px+ [q, x] for all x ∈ R, with a(b+ p) = 0. This is our conclusion (2).

(ii) n is odd and p − c + q ∈ C and a(b + p) = 0. Hence H(x) = bx + [c, x]
and G(x) = px + [q, x] = px − [p − c, x] = xp + [c, x] for all x ∈ R, with
a(b+ p) = 0. This is our conclusion (3).

Case II. Next assume that d and δ are not both inner derivations of U , but
they are C-dependent modulo inner derivations of U . Suppose d = λδ+adc, that
is, d(x) = λδ(x) + [c, x] for all x ∈ U , where λ ∈ C, c ∈ U . Then d can not be
inner derivation of U . From (4), we have that U satisfies

a

(

b[x1, x2]
2n + λδ([x1, x2]

n)[x1, x2]
n + [c, [x1, x2]

n][x1, x2]
n

+ [x1, x2]
np[x1, x2]

n + [x1, x2]
nδ([x1, x2]

n)

)

= 0.

This gives

a

(

b[x1, x2]
2n+ λ

n−1
∑

i=0

[x1, x2]
iδ([x1, x2])[x1, x2]

n−1−i[x1, x2]
n+ [c, [x1, x2]

n][x1, x2]
n

+ [x1, x2]
np[x1, x2]

n + [x1, x2]
n
n−1
∑

i=0

[x1, x2]
iδ([x1, x2])[x1, x2]

n−1−i

)

= 0.

Then by Kharchenko’s theorem [11], we have that U satisfies

(7)

a

(

b[x1, x2]
2n + λ

n−1
∑

i=0

[x1, x2]
i([y1, x2] + [x1, y2])[x1, x2]

n−1−i[x1, x2]
n

+ [c, [x1, x2]
n][x1, x2]

n + [x1, x2]
np[x1, x2]

n

+ [x1, x2]
n
n−1
∑

i=0

[x1, x2]
i([y1, x2] + [x1, y2])[x1, x2]

n−1−i

)

= 0.

In particular U satisfies blended component

(8) a

(

b[x1, x2]
2n + [c, [x1, x2]

n][x1, x2]
n + [x1, x2]

np[x1, x2]
n

)

= 0

and

(9)
a

(

λ
n−1
∑

i=0

[x1, x2]
i([y1, x2] + [x1, y2])[x1, x2]

n−1−i[x1, x2]
n

+ [x1, x2]
n
n−1
∑

i=0

[x1, x2]
i([y1, x2] + [x1, y2])[x1, x2]

n−1−i

)

= 0.
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For y1 = [q, x1] and y2 = [q, x2], where q /∈ C we have that U satisfies

(10) a
(

[λq, [x1, x2]
n][x1, x2]

n + [x1, x2]
n[q, [x1, x2]

n]
)

= 0.

By Lemma 2.2, if R does not satisfy s4, then q ∈ C, a contradiction. Hence we
conclude that R satisfies s4. Now the relations (8) and (10) are similar to the
relation (5). Thus by same argument as given in Case I, when R satisfies s4 (in
this case char (R) must be not equal to 2), one of the following holds:

(i) Let n be even. Then by (8), a(b + p) = 0. Thus H(x) = bx + d(x) and
G(x) = px+ δ(x) for all x ∈ R, with a(b+ p) = 0. This is our conclusion (2).

(ii) Let n be odd. Then by (8), p − c ∈ C and a(b + p) = 0. Again by (10),
q − λq = q(1 − λ) ∈ C. Since q /∈ C, we have λ = 1. Then replacing y1 = x1
and y2 = 0, (9) gives na(λ + 1)[x1, x2]

2n = 0, implying 2na = 0. Since char
(R) 6= 2, na = 0. Hence H(x) = bx + λδ(x) + [c, x] = bx + δ(x) + [c, x] and
G(x) = px+ δ(x) = (p− c)x+ cx+ δ(x) = x(p− c)+ cx+ δ(x) = xp+ δ(x)+ [c, x]
for all x ∈ R. This is our conclusion (3).

The situation when δ = λd+ adc is similar.
Next assume that d and δ are C-independent modulo inner derivations of U .

Since neither d nor δ is inner, by Kharchenko’s Theorem [11], we have from (4)
that U satisfies

a

(

b[x1, x2]
2n +

n−1
∑

i=0

[x1, x2]
i([u1, x2] + [x1, u2])[x1, x2]

n−1−i[x1, x2]
n(11)

+ [x1, x2]
np[x1, x2]

n + [x1, x2]
n
n−1
∑

i=0

[x1, x2]
i([v1, x2] + [x1, v2])[x1, x2]

n−1−i

)

= 0.

Then U satisfies blended component

(12) a

(

b[x1, x2]
2n + [x1, x2]

np[x1, x2]
n

)

= 0

and

(13) a

(

[x1, x2]
n

n−1
∑

i=0

[x1, x2]
i([v1, x2] + [x1, v2])[x1, x2]

n−1−i

)

= 0.

Replacing v1 with [q, x1] and v2 with [q, x2] for some q /∈ C in (13), we obtain
that U satisfies

(14) a([x1, x2]
n[q, [x1, x2]

n]) = 0.

By Lemma 2.2, we have q ∈ C, a contradiction, unless R satisfies s4. So we
consider the case when R satisfies s4. In this case by same argument of Case I,
(12) and (14) together implies that n is even and a(b + p) = 0. This gives our
conclusion (2). Hence the theorem is proved.
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Corollary 2.3. Let R be a prime ring with its Utumi ring of quotients U , C =
Z(U) be the extended centroid of R, H and G two generalized derivations of R
and L a noncentral Lie ideal of R. Suppose that there exists 0 6= a ∈ R such that

a(H(u2)u2 + u2G(u2)) = 0 for all u ∈ L. Then either there exist b′, p ∈ U such

that H(x) = b′x− xp and G(x) = px for all x ∈ R with ab′ = 0 or R satisfies s4.
Moreover, if R satisfies s4, then one of the following holds:

(1) char (R) = 2;

(2) there exist b, p ∈ U and derivations d, δ of R such that H(x) = bx + d(x)
and G(x) = px+ δ(x) for all x ∈ R, with a(b+ p) = 0.

Proof of Theorem 1.2. Let 0 6= a ∈ lR(S). Then a(H(xn)xn + xnG(xn)) = 0
for all x ∈ I. By Theorem 1.1, we have only to consider the case when R satisfies
s4. In this case R is a PI-ring, and so there exists a field K such that R ⊆ M2(K)
and, R and M2(K) satisfy the same GPI. First we assume that H and G are
inner generalized derivations of R, that is, H(x) = bx + xc for all x ∈ R and
G(x) = px + xq for all x ∈ R, for some b, c, p, q ∈ R. Since M2(F ) is a simple
ring, by our hypothesis, M2(F ) satisfies

(15) a(bx2n + xn(c+ p)xn + x2nq) = 0.

Moreover, R is a dense ring of K-linear transformations over a vector space V .
Let aq 6= 0. Assume there exists v 6= 0, such that {v, qv} is linear K-independent.
By the density of R, there exists r ∈ R such that

rv = 0; r(qv) = qv.

Hence
0 = a(br2n + rn(c+ p)rn + r2nq)v = aqv.

Of course for any w ∈ V such that {w, v} are linearly K-dependent implies
aqw = 0. Since aq 6= 0, there exists w ∈ V such that aqw 6= 0. Then {w, v} must
be linearly K-independent. By the above argument it follows that w and qw are
linearly K-dependent, as are {w+ v, q(w+ v)} and {w− v, q(w− v)}. Therefore
there exist αw, αw+v, αw−v ∈ K such that

qw = αww, q(w + v) = αw+v(w + v), q(w − v) = αw−v(w − v).

In other words we have

(16) αww + qv = αw+vw + αw+vv

and

(17) αww − qv = αw−vw − αw−vv.
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By comparing (16) with (17) we get both

(18) (2αw − αw+v − αw−v)w + (αw−v − αw+v)v = 0

and

(19) 2qv = (αw+v − αw−v)w + (αw+v + αw−v)v.

By (18) and since {w, v} is K-independent and char(K) 6= 2, we have αw =
αw+v = αw−v. Thus by (19) it follows 2qv = 2αwv. Since {qv, v} is K-inde-
pendent, the conclusion αw = αw+v = 0 follows, that is qw = 0 and q(w+v) = 0,
which implies the contradiction qv = 0.

Hence we conclude that for any v ∈ V , {v, qv} is linearly K-dependent. Thus
there exists a suitable αv ∈ K such that qv = αvv, and standard argument shows
that there is α ∈ K such that qv = αv for all v ∈ V . Now let r ∈ R, v ∈ V . Since
qv = αv,

(20) [q, r]v = (qr)v − (rq)v = q(rv)− r(qv) = α(rv)− r(αv) = 0.

Thus [q, r]v = 0 for all v ∈ V i.e., [q, r]V = 0. Since [q, r] acts faithfully as a
linear transformation on the vector space V , [q, r] = 0 for all r ∈ R. Therefore,
q ∈ C.

Thus up to now, we have proved that either aq = 0 or q ∈ C.
Let aq = 0. In this case, assume that there exists v 6= 0, such that {v, qv} is

linear K-independent. By the density of R, there exists r ∈ R such that

rv = 0; r(qv) = v + qv.

Hence
0 = a(br2n + rn(c+ p)rn + r2nq)v = av.

Thus by the same argument as above, this implies either a = 0 or q ∈ C. Since
a 6= 0, q ∈ C.

Thus in any case we conclude that q ∈ C.
Then (15) reduces to

(21) a((b+ q)xn + xn(c+ p))xn = 0.

Let there exists v 6= 0, such that {v, (c + p)v} is linear K-independent. By the
density of R, there exists r ∈ R such that

rv = 0; r((c+ p)v) = (c+ p)v.

Hence
0 = a((b+ q)rn + rn(c+ p))rnv = a(c+ p)v.
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Then again by same argument, c+ p ∈ C. Then (21) reduces to

(22) a(b+ c+ p+ q)x2n = 0

for all x ∈ R. This implies a(b + c + p + q) = 0, where q, c + p ∈ C. Hence
H(x) = bx+xc = bx+x(c+p)−xp = (b+c+p)x−xp = (b+c+p+q)x−x(p+q)
for all x ∈ R and G(x) = (p+ q)x for all x ∈ R. This gives our conclusion.

Next assume that H(x) = bx + d(x) and G(x) = px + δ(x), where d, δ are
not both inner derivations of R. In this case by our hypothesis, R satisfies

(23) a
(

bx2n + d(xn)xn + xnpxn + xnδ(xn)
)

= 0.

If d and δ are C-dependent modulo inner derivations of R, then d = λδ+ adc for
some λ ∈ C. In this case (23) reduces to

(24) a
(

bx2n + λδ(xn)xn + [c, xn]xn + xnpxn + xnδ(xn)
)

= 0.

By Kharchenko’s Theorem [11], R satisfies

(25) a

(

bx2n + λ
∑

i

xiyxn−i−1xn + [c, xn]xn + xnpxn + xn
∑

i

xiyxn−i−1

)

= 0.

Replacing y with [p, x] for some p /∈ C, we have from (25) that

(26) a
(

bx2n + λ[p, xn]xn + [c, xn]xn + xnpxn + xn[p, xn]
)

= 0.

Then this implies as above (for inner derivation case) that p ∈ C, a contradiction.
The case when δ = λd+ adc′ for some λ ∈ C, is similar.
Next assume that d and δ are C-independent modulo inner derivations of R.

Then by Kharchenko’s Theorem [11], R satisfies

(27) a

(

bx2n +
∑

i

xiyxn−i−1xn + xnpxn + xn
∑

i

xizxn−i−1

)

= 0.

Replacing y with [p, x] and z with [p′, x] for some p, p′ /∈ C, we have

(28) a
(

bx2n + [p, xn]xn + xnpxn + xn[p′, xn]
)

= 0.

Then by same argument as above, it yields that p′ ∈ C, a contradiction.

In particular, when H and G are two derivations of R, we have the following:

Corollary 2.4. Let R be a noncommutative prime ring with char (R) 6= 2 and

C the extended centroid of R. Let d and δ be two derivations of R. If there exists

0 6= a ∈ R such that a(d(xn)xn + xnδ(xn)) = 0 for all x ∈ R, where n ≥ 1 is a

fixed integer, then d = δ = 0.
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3. Results on semiprime rings

In this section we extend the Corollary 2.4 to semiprime rings. Let R be a
semiprime ring and U the left Utumi ring of quotients of R. Then C = Z(U),
center of U , is called extended centroid of R. It is well known that C is a Von
Neumann regular ring. It is known that C is a field if and only if R is a prime
ring. The set of all idempotents of C is denoted by E. The elements of E are
called central idempotents.

We know that any derivation of R can be uniquely extended to a derivation
of U (see [16, Lemma 2]).

By using the standard theory of orthogonal completions for semiprime rings,
we prove the following:

Theorem 3.1. Let R be a noncommutative 2-torsion free semiprime ring, U the

left Utumi quotient ring of R and d, δ be two derivations of R. If there exists

0 6= a ∈ R such that a(d(xn)xn + xnδ(xn)) = 0 for all x ∈ R, where n ≥ 1 is a

fixed integer, then there exist orthogonal central idempotents e1, e2, e3 ∈ U with

e1 + e2 + e3 = 1 such that (d+ δ)(e1U) = 0, e2a = 0, and e3U is commutative.

Proof. Since any derivation d can be uniquely extended to a derivation in U , and
U and R satisfy the same differential identities (see [16]), a(d(xn)xn + xnδ(xn))
= 0 for all x ∈ U .

Let B be the complete Boolean algebra of E. We choose a maximal ideal P
of B such that U/PU is 2-torsion free. Then PU is a prime ideal of U , which is
d-invariant. Denote U = U/PU and d, δ be the canonical pair of derivations on U
induced by d and δ respectively. Then by hypothesis, a(d(xn)xn+xnδ(xn)) = 0 for
all x ∈ U . Since U is a prime ring, by Corollary 2.4, either d = δ = 0 or [U,U ] = 0
or a = 0. In any case, we have ad(U)[U,U ] ⊆ PU and aδ(U)[U,U ] ⊆ PU for all
P , that is, aD(U)[U,U ] ⊆ PU for all P , where D = d+δ. Since

⋂

{PU : P is any
maximal ideal in B with U/PU 2-torsion free} = 0, we have aD(U)[U,U ] = 0.

By using the theory of orthogonal completion for semiprime rings (see, [1,
Chapter 3]), it follows that there exist orthogonal central idempotents e1, e2,
e3 ∈ U with e1 + e2 + e3 = 1 such that D(e1U) = 0, e2a = 0, and e3U is
commutative.
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