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1. Introduction

The idea of associating graphs to algebraic structures for characterizing the al-
gebraic structures with graphs and vice versa dates back to Bosak [4]. Till then,
a lot of research, e.g., [1, 2, 3, 5, 6, 8, 10, 11, 9, 14] has been done in connecting
graph structures to various algebraic objects like groups, rings, vector spaces etc.
However, the most prominent among them are the zero-divisor graphs [2] and
intersection graph of ideals of rings [6]. Recently, authors in [15] proved that
intersection graph of ideals of Zn is weakly perfect for all n > 0. In this paper,
we characterize the values of n for which the intersection graphs of ideals of Zn

is perfect. In particular, we prove the following theorem.

Main Theorem. The intersection graph of ideals of Zn is perfect if and only if

n = p1
α1p2

α2p3
α3p4

α4 where pi’s are distinct primes and αi ∈ N ∪ {0}, i.e., the
number of distinct prime factors of n is less than or equal to 4.
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2. Definition, preliminaries and known results

In this section, for convenience of the reader and also for later use, we recall
some definitions, notations and results concerning elementary graph theory and
intersection graph of ideals of a ring. For undefined terms and concepts the reader
is referred to [16].

By a graph G = (V,E), we mean a non-empty set V and a symmetric binary
relation (possibly empty) E on V . The set V is called the set of vertices and E is
called the set of edges of G. Two elements u and v in V are said to be adjacent
if (u, v) ∈ E. H = (W,F ) is called an induced subgraph of G if φ 6= W ⊆ V
and F consists of all the edges between the vertices in W in G. A complete
subgraph of a graph G is called a clique. A maximal clique is a clique which is
maximal with respect to inclusion. The clique number of G, written as ω(G),
is the maximum size of a clique in G. The chromatic number of G, denoted as
χ(G), is the minimum number of colours needed to label the vertices so that the
adjacent vertices receive different colours. It is easy to observe that ω(G) ≤ χ(G).
A graph G is said to be weakly perfect if ω(G) = χ(G) and it is said to be perfect
if ω(H) = χ(H) for all induced subgraphs H of G. A graph G is said to be
weakly triangulated if neither G nor its complement contains a chordless cycle of
length more than 4. Hayward [13] proved that all weakly triangulated graphs
are perfect. Chudnovsky et al. [7] in 2004 settled a long standing conjecture
regarding perfect graphs and provided a characterization of perfect graphs.

Theorem 2.1 (Strong Perfect Graph Theorem) [7]. A graph G is perfect if and

only if neither G nor its complement contains an odd cycle of length at least 5 as

an induced subgraph.

Let R be a ring. The intersection graph of ideals of R (introduced in [6]),
denoted by G(R), consists of all non-trivial ideals as vertices and two ideals I
and J are adjacent if and only if I∩J 6= {0}. Throughout this paper, we take the
ring R to be Zn, the ring of integers modulo n. We know that Zn is a principal
ideal ring and each of its ideals is generated by m ∈ Zn where m is a factor of
n. For convenience, we denote this ideal by (m). Also without loss of generality,
whenever we take an ideal (m) of Zn, we assume that m is a factor of n. It
was proved in [15] that intersection graph of ideals of Zn is weakly perfect, i.e.,
ω(G(Zn)) = χ(G(Zn)) for all n > 0.

3. Perfectness of intersection graph of ideals of Zn

In this section, we prove some preparatory results and subsequently use them to
prove the main theorem of the paper.
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Proposition 3.1. Let G(Zn) be the intersection graph of ideals of Zn and (a)
and (b) be two ideals in Zn such that a | n and b | n. Then (a) and (b) are

adjacent in G(Zn) if and only if lcm(a, b) is a factor of n and 1 < lcm(a, b) < n.

Proof. Since Zn is isomorphic to Z/nZ as ring via the correspondence a ↔
a + nZ, the ideal (a) in Zn corresponds to the ideal 〈a〉 + nZ in Z/nZ where
〈a〉 denote the set of integer multiples of a. Now, let (a) ∼ (b) in G(Zn), i.e.,
(a) ∩ (b) 6= {0}. Since a | n and b | n, we have lcm(a, b) | n. On the other hand,
using the correspondence described above, we have 〈a〉+ nZ ∩ 〈b〉+ nZ 6= {nZ}.
But, we know that 〈a〉 + nZ ∩ 〈b〉 + nZ = 〈lcm(a, b)〉 + nZ. Hence, we have
〈lcm(a, b)〉 + nZ 6= {nZ}. This, together with the fact that lcm(a, b) | n, implies
that 1 < lcm(a, b) < n.

Conversely, let lcm(a, b) be a factor of n and 1 < lcm(a, b) < n. Clearly,
0 6= lcm(a, b) ∈ (a) ∩ (b) in Zn and hence (a) ∼ (b) in G(Zn).

Theorem 3.1. Let n = p1
α1p2

α2 · · · pk
αk . If k ≥ 5, then G(Zn) is not perfect.

Proof. Let n = p1
α1p2

α2 · · · p5
α5 .s where s = 1 if k = 5 and s = p6

α6 · · · pk
αk

if k > 5. Consider the cycle C given by (p1
α1p2

α2p3
α3s) ∼ (p2

α2p3
α3p4

α4s) ∼
(p3

α3p4
α4p5

α5s) ∼ (p4
α4p5

α5p1
α1s) ∼ (p5

α5p1
α1p2

α2s) ∼ (p1
α1p2

α2p3
α3s). Simple

calculation using Proposition 3.1 shows that C is an induced 5-cycle in G(Zn)
and hence by Theorem 2.1, G(Zn) is not perfect.

Theorem 3.2. Let n = p1
α1p2

α2p3
α3p4

α4 . Then G(Zn) does not contain any in-

duced cycle of length greater than 4.

Proof. Let us assume for contradiction that G(Zn) contain an induced cycle C
of length greater than 4, say (a1) ∼ (a2) ∼ (a3) ∼ (a4) ∼ (a5) ∼ · · · ∼ (a1). By
Proposition 3.1, we have

lcm(a1, a3) = lcm(a1, a4) = lcm(a2, a4) = lcm(a2, a5) = lcm(a3, a5) = n.

Claim. gcd(a1, a3) > 1. If possible, let gcd(a1, a3) = 1. Since gcd(a1, a3) ·
lcm(a1, a3) = a1a3, we have lcm(a1, a3) = a1a3 = n. Note that as lcm(a3, a5) =
n, we have n = a1a3

gcd(a1,a3)
= a3a5

gcd(a3,a5)
, i.e., a1 · gcd(a3, a5) = a5 · gcd(a1, a3),

i.e., a5 = a1 · gcd(a3, a5), i.e., a5 is a multiple of a1. Now as a1 and a3 are
coprime and their lcm is n, without loss of generality, two cases may arise: either
a1 = p1

α1p2
α2 ; a3 = p3

α3p4
α4 or a1 = p1

α1 ; a3 = p2
α2p3

α3p4
α4 .

If a1 = p1
α1p2

α2 ; a3 = p3
α3p4

α4 , we have a5 = p1
α1p2

α2 · s for some natural
number s such that a5 | n. Also as lcm(a1, a4) = n, we have a4 = p3

α3p4
α4 · t,

for some natural number t such that a4 | n. Thus lcm(a4, a5) = n contradicting
Proposition 3.1 and the fact that a4 ∼ a5 in C.
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If a1 = p1
α1 ; a3 = p2

α2p3
α3p4

α4 , similarly we have a5 = p1
α1 · s and a4 =

p2
α2p3

α3p4
α4 · t and hence lcm(a4, a5) = n thereby leading to a contradiction.

Thus by combining above two cases, we have gcd(a1, a3) > 1.
Thus we have lcm(a1, a3) = n and gcd(a1, a3) > 1 with a1 | n and a3 | n.

Without loss of generality, let p1 be a common factor of a1 and a3 and let a1 =
p1

x · s and a3 = p1
y · t where p1 is coprime with s and t. Now, if max{x, y} < α1,

then lcm(a1, a3) < n, a contradiction. Thus either x = α1 or y = α1, i.e., for
any common prime divisor pi of a1 and a3, either pi

αi | a1 or pi
αi | a3 or both.

Also as lcm(a1, a3) = n, all the pi
αi are factors of either a1 or a3 or both. Thus,

without loss of generality, the forms of a1 and a3 are as follows: either

Case 1: a1 = p1
α1p2

α2p3
β3p4

β4 ; a3 = p1
β1p2

β2p3
α3p4

α4

or

Case 2: a1 = p1
α1p2

β2p3
β3p4

β4 ; a3 = p1
β1p2

α2p3
α3p4

α4

or

Case 3: a1 = p1
α1p2

α2p3
β3p4

β4 ; a3 = p1
β1p2

α2p3
α3p4

α4

or

Case 4: a1 = p1
α1p2

α2p3
α3p4

β4 ; a3 = p1
β1p2

α2p3
α3p4

α4

where βi < αi. Note that in first two cases, a1 and a3 do not share any pi
αi as

common factor. In the third case, they share only one pi
αi as common factor and

in the fourth case, they share two pi
αi ’s as common factor.

Case 1. (a1 = p1
α1p2

α2p3
β3p4

β4 ; a3 = p1
β1p2

β2p3
α3p4

α4). Since lcm(a1, a4) =
n, we have a4 = p1

γ1p2
γ2p3

α3p4
α4 where γ1 ≤ α1, γ2 ≤ α2 and (γ1, γ2) 6= (α1, α2).

Again, since lcm(a3, a5) = n, we have a5 = p1
α1p2

α2p3
δ3p4

δ4 where δ3 ≤ α3, δ4 ≤
α4 and (δ3, δ4) 6= (α3, α4). Hence, we have lcm(a4, a5) = n, a contradiction to
the fact that a4 ∼ a5. Thus Case 1 is an impossibility.

Case 2. (a1 = p1
α1p2

β2p3
β3p4

β4 ; a3 = p1
β1p2

α2p3
α3p4

α4). Since lcm(a1, a4) =
n, we have a4 = p1

γ1p2
α2p3

α3p4
α4 where γ1 < α1. Again, since lcm(a3, a5) = n,

we have a5 = p1
α1p2

δ2p3
δ3p4

δ4 where δi ≤ αi and (δ2, δ3, δ4) 6= (α2, α3, α4). Hence,
we have lcm(a4, a5) = n, a contradiction to the fact that a4 ∼ a5. Thus Case 2
is an impossibility.

Case 3. (a1 = p1
α1p2

α2p3
β3p4

β4 ; a3 = p1
β1p2

α2p3
α3p4

α4). Since lcm(a1, a4) =
n, we have p3

α3p4
α4 | a4. Again, since lcm(a3, a5) = n, we have p1

α1 | a5.
Now, as lcm(a2, a5) = n, we have either p2

α2 | a2 or p2
α2 | a5. But if p2

α2 |
a5, then we have lcm(a4, a5) = n, a contradiction. Thus, we have p2

α2 | a2.
Again, as lcm(a2, a4) = n, we have either p1

α1 | a2 or p1
α1 | a4. If p1

α1 | a2,
then lcm(a2, a3) = n, a contradiction. On the other hand, if p1

α1 | a4, then
lcm(a3, a4) = n, a contradiction. Thus Case 3 is an impossibility.
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Case 4. (a1 = p1
α1p2

α2p3
α3p4

β4 ; a3 = p1
β1p2

α2p3
α3p4

α4). Since lcm(a1, a4) =
n, we have p4

α4 | a4. Now, as lcm(a2, a4) = n, we have either p1
α1 | a2 or

p1
α1 | a4. If p1

α1 | a2, then lcm(a2, a3) = n, a contradiction. On the other hand,
if p1

α1 | a4, then lcm(a3, a4) = n, a contradiction. Thus Case 4 is an impossibility.
Thus, combining all the cases we conclude that G(Zn) does not contain any

induced cycle of length greater than 4.

Theorem 3.3. Let n = p1
α1p2

α2p3
α3p4

α4 . Then G(Zn), the complement of

G(Zn), does not contain any induced cycle of length greater than 4.

Proof. Let us assume for contradiction that G(Zn) contain an induced cycle C
of length greater than 4, say (a1) ∼ (a2) ∼ (a3) ∼ (a4) ∼ · · · ∼ (at) ∼ (a1) with
t ≥ 5. Then, by Proposition 3.1, lcm(a1, a2) = lcm(a2, a3) = lcm(a3, a4) = · · · =
lcm(at, a1) = n.

Claim. gcd(a2, a3) > 1. If possible, let gcd(a2, a3) = 1. Since lcm(a2, a3) = n,
we have n = a2a3. Thus without loss of generality, either

a2 = p1
α1p2

α2 ; a3 = p3
α3p4

α4 or a2 = p1
α1 ; a3 = p2

α2p3
α3p4

α4 .

If a2 = p1
α1p2

α2 ; a3 = p3
α3p4

α4 , as lcm(a3, a4) = lcm(a1, a2) = n, we have
a1 = p3

α3p4
α4 · s and a4 = p1

α1p2
α2 · t for some positive integer s, t. But this

implies that lcm(a1, a4) = n, i.e., a1 ∼ a4 in G(Zn), a contradiction.
On the other hand, if a2 = p1

α1 ; a3 = p2
α2p3

α3p4
α4 , as lcm(a3, a4) =

lcm(a1, a2) = n, we have a1 = p2
α2p3

α3p4
α4 · s and a4 = p1

α1 · t for some positive
integer s, t. But this implies that lcm(a1, a4) = n, i.e., a1 ∼ a4 in G(Zn), a
contradiction. Hence the claim is true.

Now, we have lcm(a2, a3) = n and gcd(a2, a3) > 1 with a2 | n and a3 | n.
Without loss of generality, let p1 be a common factor of a2 and a3 and let a2 =
p1

x · s and a3 = p1
y · t where p1 is coprime with s and t. Now, if max{x, y} < α1,

then lcm(a2, a3) < n, a contradiction. Thus either x = α1 or y = α1, i.e., for any
common prime divisor pi of a2 or a3, either pi

αi | a2 or pi
αi | a3 or both. Also as

lcm(a2, a3) = n, all the pi
αi are factors of either a2 or a3. Thus, without loss of

generality, the forms of a2 and a3 are as follows: either

Case 1: a2 = p1
α1p2

α2p3
β3p4

β4 ; a3 = p1
β1p2

β2p3
α3p4

α4

or
Case 2: a2 = p1

α1p2
β2p3

β3p4
β4 ; a3 = p1

β1p2
α2p3

α3p4
α4

or
Case 3: a2 = p1

α1p2
α2p3

β3p4
β4 ; a3 = p1

β1p2
α2p3

α3p4
α4

or
Case 4: a2 = p1

α1p2
α2p3

α3p4
β4 ; a3 = p1

β1p2
α2p3

α3p4
α4
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where βi < αi. Note that in first two cases, a2 and a3 do not share any pi
αi as

common factor. In the third case, they share only one pi
αi as common factor and

in the fourth case, they share two pi
αi ’s as common factor.

Case 1. (a2 = p1
α1p2

α2p3
β3p4

β4 ; a3 = p1
β1p2

β2p3
α3p4

α4). Since lcm(a1, a2) =
lcm(a3, a4) = n, we have p3

α3p4
α4 | a1 and p1

α1p2
α2 | a4. But this implies

lcm(a1, a4) = n, i.e., a1 ∼ a4 in G(Zn), a contradiction and hence Case 1 is an
impossibility.

Case 2. (a2 = p1
α1p2

β2p3
β3p4

β4 ; a3 = p1
β1p2

α2p3
α3p4

α4). Since lcm(a1, a2) =
lcm(a3, a4) = n, we have p2

α2p3
α3p4

α4 | a1 and p1
α1 | a4. But this implies

lcm(a1, a4) = n, a contradiction and hence Case 2 is an impossibility.

Case 3. (a2 = p1
α1p2

α2p3
β3p4

β4 ; a3 = p1
β1p2

α2p3
α3p4

α4). Since lcm(a1, a2) =
n, we have p3

α3p4
α4 | a1. Also, since lcm(at, a1) = n, either p1

α1 | a1 or p1
α1 | at.

If p1
α1 | a1, then we have p1

α1p3
α3p4

α4 | a1 which implies lcm(a1, a3) = n, i.e.,
a1 ∼ a3 in G(Zn), a contradiction. On the other hand, if p1

α1 | at, we have
lcm(at, a3) = n, i.e., at ∼ a3 in G(Zn), a contradiction. Thus combining both
the possibilities, Case 3 is an impossibility.

Case 4. (a2 = p1
α1p2

α2p3
α3p4

β4 ; a3 = p1
β1p2

α2p3
α3p4

α4). Since lcm(a1, a2) =
n, we have p4

α4 | a1. Also, since lcm(at, a1) = n, either p1
α1 | a1 or p1

α1 | at.
If p1

α1 | a1, then we have p1
α1p4

α4 | a1 which implies lcm(a1, a3) = n, i.e.,
a1 ∼ a3 in G(Zn), a contradiction. On the other hand, if p1

α1 | at, we have
lcm(at, a3) = n, i.e., at ∼ a3 in G(Zn), a contradiction. Thus combining both
the possibilities, Case 4 is an impossibility.

Thus, combining all the cases we conclude that G(Zn) does not contain any
induced cycle of length greater than 4.

Finally, with Theorems 2.1, 3.1, 3.2 and 3.3 in hand, we are now in a position
to prove the main result of this paper.

Main Theorem. The intersection graph of ideals of Zn is perfect if and only if

n = p1
α1p2

α2p3
α3p4

α4 where pi’s are distinct primes and αi ∈ N ∪ {0}, i.e., the
number of distinct prime factors of n is less than or equal to 4.

Proof. Clearly, Theorem 3.1 shows that the condition is necessary. For the
sufficiency part, first with the help of Theorems 3.2 and 3.3, we prove that the
intersection graph of ideals of Zn is weakly triangulated. Now, using the fact that
weakly triangulated graphs are perfect [13], we conclude that the intersection
graph of ideals of Zn is perfect if n has exactly four distinct prime factors. The
proofs for the cases when n has exactly three, two or one distinct prime factors
follows similarly by suitably taking some of the αi’s to be zero.
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