Discussiones Mathematicae General Algebra and Applications 37 (2017) 137–145 doi:10.7151/dmgaa.1269

ON QI-ALGEBRAS

RAVI KUMAR BANDARU

Department of Engineering Mathematics, GITAM University Hyderabad Campus, Telangana, 502 329 India

e-mail: ravimaths83@gmail.com

Abstract

In this paper, the notion of a QI-algebra is introduced which is a generalization of a BI-algebra and there are studied its properties. We considered ideals, congruence kernels in a QI-algebra and characterized congruence kernels whenever a QI-algebra is right distributive.

Keywords: BI-algebra, QI-algebra, right distributive, ideal, congruence kernel.

2010 Mathematics Subject Classification: 06F35, 20N02.

1. Introduction

BCK-algebras and BCI-algebras were introduced by Imai and Iséki [4, 5]. Since their introduction, several generalizations of BCK-algebras were introduced and extensively studied by many researchers. Abbott [2] introduced a concept of an implication algebra in the sake to formalize the logical connective implication in the classical propositional logic. Recently, Saeid *et al.* introduced the concept of a BI-algebra [1] as a generalization of (dual) implication algebra and studied its properties.

In this paper, we introduce the concept of a QI-algebra which is a generalization of a BI-algebra and study its properties. We consider the concept of ideals, congruences in a QI-algebra and give connection between ideals and congruence kernels whenever a QI-algebra is right distributive.

2. Preliminaries

First, we recall certain definitions from [1, 2, 4] and [5] that are required in the paper.

Definition 2.1 ([5]). A BCI-algebra is an algebra (X, *, 0) of type (2, 0) satisfying the following conditions:

- (1) $(x * y) * (x * z) \le (z * y)$,
- (2) $x * (x * y) \le y$,
- (3) $x \le x$,
- (4) $x \le y$ and $y \le x$ imply x = y,
- (5) $x \leq 0$ implies x = 0,

where $x \leq y$ is defined by x * y = 0.

If (5) is replaced by (6) $0 \le x$, then the algebra is called a BCK-algebra [3]. It is known that every BCK-algebra is a BCI-algebra but not conversely. A BCK-algebra satisfying the property x*(y*x)=x for all $x,y\in X$ is called an implicative BCK-algebra.

Several generalizations of a BCK-algebra, in the form of definitions, one can see in the paper [1].

Definition 2.2 ([2]). A groupoid (X, *) is called an implication algebra if it satisfies the following identities:

- (a) (x * y) * x = x,
- (b) (x * y) * y = (y * x) * x,
- (c) x * (y * z) = y * (x * z),

for all $x, y, z \in X$.

Definition 2.3 ([2]). Let (X, *) be an implication algebra and binary operation " \circ " on X be defined by

$$x * y = y \circ x$$
.

Then (X, \circ) is said to be a dual implication algebra. In fact, the axioms of that are as follows:

- (a) $x \circ (y \circ x) = x$,
- (b) $x \circ (x \circ y) = y \circ (y \circ x)$,
- (c) $(x \circ y) \circ z = (x \circ z) \circ y$,

for all $x, y, z \in X$.

Chen and Oliveira [6] proved that in any implication algebra (X, *) the identity x * x = y * y holds for all $x, y \in X$. We denote the identity x * x = y * y by the constant 0. The notion of BI-algebras comes from the (dual) implication algebra.

On QI-algebras 139

Definition 2.4 ([1]). An algebra (X, *, 0) of type (2, 0) is called a BI-algebra if

(BI1)
$$x * x = 0$$
,

(BI2)
$$x * (y * x) = x$$
,

for all $x, y \in X$.

It can be observed that every dual implication algebra is a BI-algebra but converse need not be true.

3. QI-algebras

In this section, we define the notion of a QI-algebra which is a generalization of a BI-algebra and study its properties.

Definition 3.1. A QI-algebra is a non-empty set X with a constant 0 and a binary operation * satisfying axioms:

$$(QI1) \ x * x = 0,$$

(QI2)
$$x * 0 = x$$
,

(QI3)
$$x * (y * (x * y)) = x * y$$
,

for all $x, y \in X$.

Let (X, *, 0) be a QI-algebra. We introduce a relation " \leq " on X by $x \leq y$ if and only if x * y = 0. A relation \leq is not a partially order, but it is only reflexive.

Note that every BI-algebra is a QI-algebra but converse need not be true.

Example 3.2. Let $X = \{0, 1, 2, 3\}$ be a set with the following table.

*	0	1	2	3
0	0	2	1	0
1	1	0	1	0
2	2	2	0	2
3	3	2	1	0

Then (X, *, 0) is a QI-algebra but not a BI-algebra because

$$3*(2*3) = 3*2 = 1 \neq 3.$$

Also, every implicative BCK-algebra is a QI-algebra but converse need not be true.

Example 3.3. Let $X = \{0, a, b, c\}$ be a set with the following table.

*	0	a	b	c
0	0	0	0	0
a	a	0	a	0
b	b	b	0	b
c	c	0	a	0

Then (X, *, 0) is a QI-algebra but not an implicative BCK-algebra because

$$a * c = 0 \& c * a = 0 \text{ but } a \neq c \text{ and } c * (b * c) = c * b = a \neq c.$$

Example 3.4. Let $X = \{0, a, b, c\}$ be a set with the following table.

*	0	a	b	c
0	0	b	a	0
a	a	0	a	0
b	b	b	0	b
c	c	b	a	0

Then (X, *, 0) is a QI-algebra but not a BCI/BCK-algebra because

$$[(a*a)*(a*c)]*(c*a) = (0*0)*b = a \neq 0 \text{ and } 0*a \neq 0.$$

Proposition 3.5. Let (X, *, 0) be a QI-algebra. Then

- (i) x * (0 * x) = x,
- (ii) if $x \leq 0$, then x = 0,
- (iii) if x * y = y, then x = y,
- (iv) if x * y = x, then x * (y * x) = x,
- (v) if (x * y) * (z * u) = (x * z) * (u * y), then $X = \{0\}$,

for all $x, y, z, u \in X$.

Proof. (i) Using (QI2) and (QI3) we have x*(0*x) = x*(0*(x*0)) = x*0 = x.

- (ii) Let $x \leq 0$. Then x * 0 = 0 and hence x = 0.
- (iii) Let x * y = y. Then, by (QI3), (QI1) and (QI2), we have

$$y = x * y = x * (y * (x * y)) = x * (y * y) = x * 0 = x.$$

(iv) Let x * y = x. Then

$$x = x * y = x * (y * (x * y)) = x * (y * x).$$

(v) If $x \in X$, then we have

$$x = x * (0 * x) = (x * 0) * (0 * x) = (x * 0) * (x * 0) = x * x = 0.$$

Hence $X = \{0\}$.

Definition 3.6. A QI-algebra X is said to be right distributive (or left distributive, resp.) if

$$(QI4)$$
 $(x*y)*z = (x*z)*(y*z), (z*(x*y) = (z*x)*(z*y), resp.)$

for all $x, y, z \in X$.

Example 3.7. (i) Example 3.3 is a right distributive QI-algebra.

(ii) Example 3.2 is not a right distributive QI-algebra, since

$$(3*1)*3 = 2*3 = 2 \neq 0 = 0*0 = (3*3)*(1*3).$$

Proposition 3.8. If X is a left distributive QI-algebra, then $X = \{0\}$.

Proof. Let X be a left distributive QI-algebra and $x \in X$. Then by (QI2) and (QI1), we have

$$x = x * 0 = x * (x * x) = (x * x) * (x * x) = 0 * 0 = 0.$$

Proposition 3.9. If X is a right distributive QI-algebra, then

- (QI5) 0 * x = 0,
- (QI6) (x * y) * y = x * y,

for any $x, y \in X$.

Proof. Let $x, y \in X$. Then

$$(QI5): 0*x = (x*x)*x = (x*x)*(x*x) = 0*0 = 0.$$

$$(QI6): (x*y)*y = (x*y)*(y*y) = (x*y)*0 = x*y.$$

Proposition 3.10. In a right distributive QI-algebra X, for all $x, y, z \in X$, the following conditions hold:

- (1) $y * x \le y$,
- (2) $(y * x) * x \le y$,
- (3) $(x*z)*(y*z) \le x*y$,
- (4) $x \le y$ implies $x * z \le y * z$,
- (5) $(x * y) * z \le x * (y * z)$.

- (6) If $x \le y$ and $y \le z$, then $x \le z$,
- (7) $x \le y$ implies $z * y \le z * x$,
- (8) $(x*y)*z \le (x*z)*y$,
- (9) $(z*x)*(z*y) \le (y*x)$.
- (10) If x * y = z * y, then (x * z) * y = 0.

Proof. We can easily prove (1) to (6) by the application of (QI1), (QI2), (QI4) and (QI5). Let $x \leq y$. Then x * y = 0 and hence [(z * y) * (z * x)] * (x * y) = [(z * y) * (x * y)] * [(z * x) * (x * y)] = [(z * x) * y] * (z * x) = 0. Therefore (7) follows. By (1), $z * y \leq z$. Then, by (7), $(x * y) * z \leq (x * y) * (z * y)$ and hence $(x * y) * z \leq (x * z) * y$ which proves (8). Now $[(z * x) * (z * y)] * (y * x) \leq [(z * x) * (y * x)] * (z * y) = [(z * y) * x] * (z * y) = 0$. Hence $(z * x) * (z * y) \leq y * x$ which proves (9). Let x * y = z * y. Then (x * z) * y = (x * y) * (z * y) = 0 which proves (10).

4. Ideals in QI-algebras

In this section, we introduce the concept of an ideal in a QI-algebra and study its properties.

Definition 4.1. Let (X, *, 0) be a QI-algebra and $I \subseteq X$. Then I is called an ideal of X if it satisfies the following:

- (I1) $0 \in I$,
- (I2) if $x * y \in I$ and $y \in I$, then $x \in I$.

Clearly, $\{0\}$ and X are ideals of X and we call them as zero ideal and trivial ideal respectively. An ideal I is said to be proper if $I \neq X$.

Example 4.2. Let $X = \{0, a, b, c\}$ be a set with the following table.

*	0	a	b	c
0	0	b	a	0
a	a	0	a	0
b	b	b	0	b
c	c	b	a	0

Then (X, *, 0) is a QI-algebra. Clearly, $I_1 = \{0, a\}$ and $I_2 = \{0, a, c\}$ are ideals of X. But $I_3 = \{0, a, b\}$ is not an ideal of X.

Lemma 4.3. Let X be a QI-algebra and I a non-empty subset of X satisfying the following conditions:

On QI-algebras 143

- (I3) $x \in X$ and $y \in I$ imply $y * x \in I$,
- (I4) $x \in X, a, b \in I \text{ imply } x * ((x * a) * b) \in I.$

Then I is an ideal of X.

Proof. Let I be a non-empty subset of X satisfying (I3) and (I4). Then $0 \in I$. Let $y \in I$ and $x * y \in I$. Then, by (I4), we have $x * (x * y) = x * ((x * y) * 0) \in I$. Put a = x * y, b = x * (x * y). Then $a, b \in I$ and $x = x * 0 = x * ((x * (x * y)) * (x * (x * y))) \in I$. Hence I is an ideal of X.

The converse of the above lemma does not hold in general.

Example 4.4. Let $X = \{0, a, b, c\}$ be a set with the following table.

*	0	a	b	c
0	0	0	0	0
a	a	0	a	b
b	b	b	0	b
c	c	b	c	0

Then (X, *, 0) is a QI-algebra. Clearly, $I = \{0, a\}$ is an ideal of X but it doesn't satisfy (I3) and (I4).

However, for right distributive QI-algebras we have

Theorem 4.5. If X is a right distributive QI-algebra and I is an ideal of X. Then I satisfies (I3) and (I4).

Proof. Let I be an ideal of X and $a \in I, x \in X$. Then $(a * x) * a = 0 \in I$ and, applying (I2), we conclude $a * x \in I$, i.e., I satisfies (I3). Now, suppose $a, b \in I$ and $x \in X$. Then $(x * ((x * a) * b)) * b = (x * b) * [((x * a) * b) * b] = (x * b) * [((x * a) * b) * (b * b)] = (x * b) * ((x * a) * b) = (x * (x * a)) * b \le (x * (x * a)) \le a$ and hence $[(x * ((x * a) * b)) * b] * a = 0 \in I$ and applying (I2) twice, we get $x * ((x * a) * b) \in I$ proving (I4).

Theorem 4.6. If X is a right distributive QI-algebra and I a non-empty subset of X. Then I is an ideal of X if and only if I satisfies (I3) and (I4).

5. Congruence Kernels

In this section, we give a characterization of congruence kernels in a right distributive QI-algebra. Let θ be a binary relation on a QI-algebra (X, *, 0). We denote $\{x \in X \mid (x, 0) \in \theta\}$ by $[0]_{\theta}$. If θ is a congruence relation on X then $[0]_{\theta}$ is called a congruence kernel.

Lemma 5.1. Let (X, *, 0) be a QI-algebra and θ a congruence relation on X. Then the kernel $[0]_{\theta}$ is an ideal of X.

Proof. Clearly $0 \in [0]_{\theta}$. Suppose $y \in [0]_{\theta}$ and $x * y \in [0]_{\theta}$. Then $(y,0), (x * y,0) \in \theta$ and hence $(x * y, x) = (x * y, x * 0) \in \theta$. By symmetry of θ , $(x, x * y) \in \theta$. Therefore, by transitivity of θ , we obtain $(x,0) \in \theta$ proving $x \in [0]_{\theta}$.

Lemma 5.2. Let (X, *, 0) be a QI-algebra and θ a congruence relation on X. Then the kernel $[0]_{\theta}$ satisfies (I3) and (I4).

Proof. Clearly $0 \in [0]_{\theta}$. Suppose $x \in X$ and $y \in [0]_{\theta}$. Then $(y,0) \in \theta$ and hence $(y*x,0)=(y*x,0*x)\in \theta$. Therefore $y*x\in [0]_{\theta}$ proving (I3). Suppose $x\in X$ and $a,b\in [0]_{\theta}$. Then $(x*((x*a)*b),0)=(x*((x*a)*b),x*((x*0)*0))\in \theta$ and hence $x*((x*a)*b)\in [0]_{\theta}$ proving (I4).

Theorem 5.3. Let (X, *, 0) be a right distributive QI-algebra. Then every ideal I of X is a kernel of a congruence θ_I given by

 $(x,y) \in \theta_I$ if and only if $x * y \in I$ and $y * x \in I$.

Moreover, θ_I is the greatest congruence on X having the kernel I.

Proof. Let I be an ideal of X. Since $0 \in I$, we have θ_I is reflexive. Clearly θ_I is symmetric. We prove transitivity of θ_I . Let $(x,y) \in \theta_I$ and $(y,z) \in \theta_I$. Then $x * y, y * x, y * z, z * y \in I$ and, by Theorem 4.6, $(x * y) * z \in I$. Hence $(x * z) * (y * z) \in I$ so that $x * z \in I$. Similarly we can prove that $z * x \in I$. Thus $(x,z) \in \theta_I$. Now, we prove the substitution property of θ_I . Let $(x,y) \in \theta_I$ and $(u,v) \in \theta_I$. Then $x * y, y * x, u * v, v * u \in I$ and hence, by Theorem 4.6, $(x * u) * (y * u) = (x * y) * u \in I$ and $(y * u) * (x * u) = (y * x) * u \in I$. Therefore, $(x * u, y * u) \in \theta_I$. Further, by Proposition 2.10(9), we have $(y * u) * (y * v) \leq v * u$ and $(y * v) * (y * u) \leq u * v$. Since I is an ideal of X, we have $(y * u) * (y * v) \in I$ and $(y * v) * (y * u) \in I$. Hence $(y * u, y * v) \in \theta_I$. By transitivity of θ_I , we conclude $(x * u, y * v) \in \theta_I$. Thus θ_I is a congruence relation on X.

If $x \in I$ then $x * 0 = x \in I$ and $0 * x = 0 \in I$. Therefore $(x, 0) \in \theta_I$, i.e., $x \in [0]_{\theta_I}$. Conversely, let $x \in [0]_{\theta_I}$. Then $(x, 0) \in \theta_I$ and hence $x = x * 0 \in I$ which shows that $I = [0]_{\theta_I}$. Thus I is the kernel of congruence θ_I .

Finally, if ψ is a congruence relation on X such that $[0]_{\psi} = I$, then for $(x,y) \in \psi$ we have $(x*y,0) = (x*y,y*y) \in \psi$ and $(y*x,0) = (y*x,y*y) \in \psi$ thus $x*y \in I$ and $y*x \in I$ which gives $(x,y) \in \theta_I$. Hence $\psi \subseteq \theta_I$ i.e., θ_I is the greatest congruence relation of X having the kernel I.

We have observed that, in Example 4.4, for general QI-algebras ideals can not coincide with (I3) and (I4), they can satisfy or not these properties. The following example shows that also ideals need not be congruence kernels.

On QI-algebras 145

Example 5.4. In Example 4.4, $I = \{0, a\}$ is an ideal of X. Let $(0, a) \in \theta$ for some congruence relation θ on X. Then $(c, b) \in \theta$ and hence $(0, c) \in \theta$ which shows that $c \in [0]_{\theta} \neq \{0, a\}$. Hence I is not a congruence kernel.

Finally, we conclude this section with the following theorem.

Theorem 5.5. Let (X, *, 0) be a right distributive QI-algebra and I a non-empty subset of X. Then the following are equivalent:

- (1) I is an ideal of X.
- (2) I satisfies (I3) and (I4).
- (3) I is a congruence kernel.

References

- [1] A.B. Saeid, H. Sik Kim and A. Rezaei, On BI-algebras, An. Şt. Univ. Ovidius Constanţa 25 (2017) 177–194. doi:10.1515/auom-2017-0014
- [2] J.C. Abbott, Semi-bolean algebra, Matem. Vestnik 4 (1967) 177–198. http://eudml.org/doc/258960
- Y. Imai and K. Isaeki, On axiom systems of propositional calculi, XIV, Proc. Japan Acad. 42 (1966) 19–22.
 doi:10.3792/pja/1195522169
- [4] I. Iseki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japon. 23 (1978) 1–26.
- [5] I. Iseki, On BCI-algebras, Mathematics Seminar Notes 8 (1980) 125–130. http://www.math.kobe-u.ac.jp/jmsj/kjm/
- [6] W.Y. Chen and J.S. Oliveira, Implication algebras and the metropolis rota axioms for cubic lattices, J. Algebra 171 (1995) 383–396. doi:10.1006/jabr.1995.1017

Received 7 April 2017 Revised 19 May 2017 Accepted 12 June 2017