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Abstract

In this paper, the notion of a QI-algebra is introduced which is a gener-
alization of a BI-algebra and there are studied its properties. We considered
ideals, congruence kernels in a QI-algebra and characterized congruence ker-
nels whenever a QI-algebra is right distributive.
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1. Introduction

BCK-algebras and BCI-algebras were introduced by Imai and Iséki [4, 5]. Since
their introduction, several generalizations of BCK-algebras were introduced and
extensively studied by many researchers. Abbott [2] introduced a concept of an
implication algebra in the sake to formalize the logical connective implication in
the classical propositional logic. Recently, Saeid et al. introduced the concept of
a BI-algebra [1] as a generalization of (dual) implication algebra and studied its
properties.

In this paper, we introduce the concept of a QI-algebra which is a generaliza-
tion of a BI-algebra and study its properties. We consider the concept of ideals,
congruences in a QI-algebra and give connection between ideals and congruence
kernels whenever a QI-algebra is right distributive.

2. Preliminaries

First, we recall certain definitions from [1, 2, 4] and [5] that are required in the
paper.

http://dx.doi.org/10.7151/dmgaa.1269
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Definition 2.1 ([5]). A BCI-algebra is an algebra (X, ∗, 0) of type (2, 0) satisfying
the following conditions:

(1) (x ∗ y) ∗ (x ∗ z) ≤ (z ∗ y),

(2) x ∗ (x ∗ y) ≤ y,

(3) x ≤ x,

(4) x ≤ y and y ≤ x imply x = y,

(5) x ≤ 0 implies x = 0,

where x ≤ y is defined by x ∗ y = 0.

If (5) is replaced by (6) 0 ≤ x, then the algebra is called a BCK-algebra
[3]. It is known that every BCK-algebra is a BCI-algebra but not conversely. A
BCK-algebra satisfying the property x ∗ (y ∗ x) = x for all x, y ∈ X is called an
implicative BCK-algebra.

Several generalizations of a BCK-algebra, in the form of definitions, one can
see in the paper [1].

Definition 2.2 ([2]). A groupoid (X, ∗) is called an implication algebra if it
satisfies the following identities:

(a) (x ∗ y) ∗ x = x,

(b) (x ∗ y) ∗ y = (y ∗ x) ∗ x,

(c) x ∗ (y ∗ z) = y ∗ (x ∗ z),

for all x, y, z ∈ X.

Definition 2.3 ([2]). Let (X, ∗) be an implication algebra and binary operation
”◦” on X be defined by

x ∗ y = y ◦ x.

Then (X, ◦) is said to be a dual implication algebra. In fact, the axioms of that
are as follows:

(a) x ◦ (y ◦ x) = x,

(b) x ◦ (x ◦ y) = y ◦ (y ◦ x),

(c) (x ◦ y) ◦ z = (x ◦ z) ◦ y,

for all x, y, z ∈ X.

Chen and Oliveira [6] proved that in any implication algebra (X, ∗) the iden-
tity x ∗ x = y ∗ y holds for all x, y ∈ X. We denote the identity x ∗ x = y ∗ y
by the constant 0. The notion of BI-algebras comes from the (dual) implication
algebra.
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Definition 2.4 ([1]). An algebra (X, ∗, 0) of type (2, 0) is called a BI-algebra if

(BI1) x ∗ x = 0,

(BI2) x ∗ (y ∗ x) = x,

for all x, y,∈ X.

It can be observed that every dual implication algebra is a BI-algebra but
converse need not be true.

3. QI-algebras

In this section, we define the notion of a QI-algebra which is a generalization of
a BI-algebra and study its properties.

Definition 3.1. A QI-algebra is a non-empty set X with a constant 0 and a
binary operation ∗ satisfying axioms:

(QI1) x ∗ x = 0,

(QI2) x ∗ 0 = x,

(QI3) x ∗ (y ∗ (x ∗ y)) = x ∗ y,

for all x, y ∈ X.

Let (X, ∗, 0) be a QI-algebra. We introduce a relation ” ≤ ” on X by x ≤ y if
and only if x∗y = 0. A relation ≤ is not a partially order, but it is only reflexive.

Note that every BI-algebra is a QI-algebra but converse need not be true.

Example 3.2. Let X = {0, 1, 2, 3} be a set with the following table.

∗ 0 1 2 3

0 0 2 1 0

1 1 0 1 0

2 2 2 0 2

3 3 2 1 0

Then (X, ∗, 0) is a QI-algebra but not a BI-algebra because

3 ∗ (2 ∗ 3) = 3 ∗ 2 = 1 6= 3.

Also, every implicative BCK-algebra is a QI-algebra but converse need not
be true.
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Example 3.3. Let X = {0, a, b, c} be a set with the following table.

∗ 0 a b c

0 0 0 0 0

a a 0 a 0

b b b 0 b

c c 0 a 0

Then (X, ∗, 0) is a QI-algebra but not an implicative BCK-algebra because

a ∗ c = 0 & c ∗ a = 0 but a 6= c and c ∗ (b ∗ c) = c ∗ b = a 6= c.

Example 3.4. Let X = {0, a, b, c} be a set with the following table.

∗ 0 a b c

0 0 b a 0

a a 0 a 0

b b b 0 b

c c b a 0

Then (X, ∗, 0) is a QI-algebra but not a BCI/BCK-algebra because

[(a ∗ a) ∗ (a ∗ c)] ∗ (c ∗ a) = (0 ∗ 0) ∗ b = a 6= 0 and 0 ∗ a 6= 0.

Proposition 3.5. Let (X, ∗, 0) be a QI-algebra. Then

(i) x ∗ (0 ∗ x) = x,

(ii) if x ≤ 0, then x = 0,

(iii) if x ∗ y = y, then x = y,

(iv) if x ∗ y = x, then x ∗ (y ∗ x) = x,

(v) if (x ∗ y) ∗ (z ∗ u) = (x ∗ z) ∗ (u ∗ y), then X = {0},

for all x, y, z, u ∈ X.

Proof. (i) Using (QI2) and (QI3) we have x∗(0∗x) = x∗(0∗(x∗0)) = x∗0 = x.

(ii) Let x ≤ 0. Then x ∗ 0 = 0 and hence x = 0.
(iii) Let x ∗ y = y. Then, by (QI3), (QI1) and (QI2), we have

y = x ∗ y = x ∗ (y ∗ (x ∗ y)) = x ∗ (y ∗ y) = x ∗ 0 = x.

(iv) Let x ∗ y = x. Then

x = x ∗ y = x ∗ (y ∗ (x ∗ y)) = x ∗ (y ∗ x).
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(v) If x ∈ X, then we have

x = x ∗ (0 ∗ x) = (x ∗ 0) ∗ (0 ∗ x) = (x ∗ 0) ∗ (x ∗ 0) = x ∗ x = 0.

Hence X = {0}.

Definition 3.6. A QI-algebra X is said to be right distributive (or left distribu-
tive, resp.) if

(QI4) (x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z), (z ∗ (x ∗ y) = (z ∗ x) ∗ (z ∗ y), resp.)

for all x, y, z ∈ X.

Example 3.7. (i) Example 3.3 is a right distributive QI-algebra.
(ii) Example 3.2 is not a right distributive QI-algebra, since

(3 ∗ 1) ∗ 3 = 2 ∗ 3 = 2 6= 0 = 0 ∗ 0 = (3 ∗ 3) ∗ (1 ∗ 3).

Proposition 3.8. If X is a left distributive QI-algebra, then X = {0}.

Proof. Let X be a left distributive QI-algebra and x ∈ X. Then by (QI2) and
(QI1), we have

x = x ∗ 0 = x ∗ (x ∗ x) = (x ∗ x) ∗ (x ∗ x) = 0 ∗ 0 = 0.

Proposition 3.9. If X is a right distributive QI-algebra, then

(QI5) 0 ∗ x = 0,

(QI6) (x ∗ y) ∗ y = x ∗ y,

for any x, y ∈ X.

Proof. Let x, y ∈ X. Then

(QI5) : 0 ∗ x = (x ∗ x) ∗ x = (x ∗ x) ∗ (x ∗ x) = 0 ∗ 0 = 0.

(QI6) : (x ∗ y) ∗ y = (x ∗ y) ∗ (y ∗ y) = (x ∗ y) ∗ 0 = x ∗ y.

Proposition 3.10. In a right distributive QI-algebra X, for all x, y, z ∈ X, the

following conditions hold:

(1) y ∗ x ≤ y,

(2) (y ∗ x) ∗ x ≤ y,

(3) (x ∗ z) ∗ (y ∗ z) ≤ x ∗ y,

(4) x ≤ y implies x ∗ z ≤ y ∗ z,

(5) (x ∗ y) ∗ z ≤ x ∗ (y ∗ z).
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(6) If x ≤ y and y ≤ z, then x ≤ z,

(7) x ≤ y implies z ∗ y ≤ z ∗ x,

(8) (x ∗ y) ∗ z ≤ (x ∗ z) ∗ y,

(9) (z ∗ x) ∗ (z ∗ y) ≤ (y ∗ x).

(10) If x ∗ y = z ∗ y, then (x ∗ z) ∗ y = 0.

Proof. We can easily prove (1) to (6) by the application of (QI1), (QI2), (QI4)
and (QI5). Let x ≤ y. Then x ∗ y = 0 and hence [(z ∗ y) ∗ (z ∗ x)] ∗ (x ∗ y) =
[(z ∗ y) ∗ (x ∗ y)] ∗ [(z ∗ x) ∗ (x ∗ y)] = [(z ∗ x) ∗ y] ∗ (z ∗ x) = 0. Therefore (7)
follows. By (1), z ∗ y ≤ z. Then, by (7), (x ∗ y) ∗ z ≤ (x ∗ y) ∗ (z ∗ y) and hence
(x ∗ y) ∗ z ≤ (x ∗ z) ∗ y which proves (8). Now [(z ∗ x) ∗ (z ∗ y)] ∗ (y ∗ x) ≤
[(z ∗ x) ∗ (y ∗ x)] ∗ (z ∗ y) = [(z ∗ y) ∗ x] ∗ (z ∗ y) = 0. Hence (z ∗ x) ∗ (z ∗ y) ≤ y ∗ x
which proves (9). Let x ∗ y = z ∗ y. Then (x ∗ z) ∗ y = (x ∗ y) ∗ (z ∗ y) = 0 which
proves (10).

4. Ideals in QI-algebras

In this section, we introduce the concept of an ideal in a QI-algebra and study
its properties.

Definition 4.1. Let (X, ∗, 0) be a QI-algebra and I ⊆ X. Then I is called an
ideal of X if it satisfies the following:

(I1) 0 ∈ I,

(I2) if x ∗ y ∈ I and y ∈ I, then x ∈ I.

Clearly, {0} and X are ideals of X and we call them as zero ideal and trivial
ideal respectively. An ideal I is said to be proper if I 6= X.

Example 4.2. Let X = {0, a, b, c} be a set with the following table.

∗ 0 a b c

0 0 b a 0

a a 0 a 0

b b b 0 b

c c b a 0

Then (X, ∗, 0) is a QI-algebra. Clearly, I1 = {0, a} and I2 = {0, a, c} are ideals
of X. But I3 = {0, a, b} is not an ideal of X.

Lemma 4.3. Let X be a QI-algebra and I a non-empty subset of X satisfying

the following conditions:
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(I3) x ∈ X and y ∈ I imply y ∗ x ∈ I,

(I4) x ∈ X, a, b ∈ I imply x ∗ ((x ∗ a) ∗ b) ∈ I.

Then I is an ideal of X.

Proof. Let I be a non-empty subset of X satisfying (I3) and (I4). Then 0 ∈ I.

Let y ∈ I and x ∗ y ∈ I. Then, by (I4), we have x ∗ (x ∗ y) = x ∗ ((x ∗ y) ∗
0) ∈ I. Put a = x ∗ y, b = x ∗ (x ∗ y). Then a, b ∈ I and x = x ∗ 0 =
x ∗ ((x ∗ (x ∗ y)) ∗ (x ∗ (x ∗ y))) ∈ I. Hence I is an ideal of X.

The converse of the above lemma does not hold in general.

Example 4.4. Let X = {0, a, b, c} be a set with the following table.

∗ 0 a b c

0 0 0 0 0

a a 0 a b

b b b 0 b

c c b c 0

Then (X, ∗, 0) is a QI-algebra. Clearly, I = {0, a} is an ideal of X but it doesn’t
satisfy (I3) and (I4).

However, for right distributive QI-algebras we have

Theorem 4.5. If X is a right distributive QI-algebra and I is an ideal of X.

Then I satisfies (I3) and (I4).

Proof. Let I be an ideal of X and a ∈ I, x ∈ X. Then (a ∗ x) ∗ a = 0 ∈ I and,
applying (I2), we conclude a ∗ x ∈ I, i.e., I satisfies (I3). Now, suppose a, b ∈ I

and x ∈ X. Then (x ∗ ((x ∗ a) ∗ b)) ∗ b = (x ∗ b) ∗ [((x ∗ a) ∗ b) ∗ b] = (x ∗ b) ∗
[((x ∗ a) ∗ b) ∗ (b ∗ b)] = (x ∗ b) ∗ ((x ∗ a) ∗ b) = (x ∗ (x ∗ a)) ∗ b ≤ (x ∗ (x ∗ a)) ≤ a

and hence [(x ∗ ((x ∗ a) ∗ b)) ∗ b] ∗ a = 0 ∈ I and applying (I2) twice, we get
x ∗ ((x ∗ a) ∗ b) ∈ I proving (I4).

Theorem 4.6. If X is a right distributive QI-algebra and I a non-empty subset
of X. Then I is an ideal of X if and only if I satisfies (I3) and (I4).

5. Congruence kernels

In this section, we give a characterization of congruence kernels in a right dis-
tributive QI-algebra. Let θ be a binary relation on a QI-algebra (X, ∗, 0). We
denote {x ∈ X | (x, 0) ∈ θ} by [0]θ. If θ is a congruence relation on X then [0]θ
is called a congruence kernel.
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Lemma 5.1. Let (X, ∗, 0) be a QI-algebra and θ a congruence relation on X.

Then the kernel [0]θ is an ideal of X.

Proof. Clearly 0 ∈ [0]θ. Suppose y ∈ [0]θ and x∗y ∈ [0]θ. Then (y, 0), (x∗y, 0) ∈
θ and hence (x ∗ y, x) = (x ∗ y, x ∗ 0) ∈ θ. By symmetry of θ, (x, x ∗ y) ∈ θ.
Therefore, by transitivity of θ, we obtain (x, 0) ∈ θ proving x ∈ [0]θ.

Lemma 5.2. Let (X, ∗, 0) be a QI-algebra and θ a congruence relation on X.

Then the kernel [0]θ satisfies (I3) and (I4).

Proof. Clearly 0 ∈ [0]θ. Suppose x ∈ X and y ∈ [0]θ. Then (y, 0) ∈ θ and hence
(y ∗ x, 0) = (y ∗ x, 0 ∗ x) ∈ θ. Therefore y ∗ x ∈ [0]θ proving (I3). Suppose x ∈ X

and a, b ∈ [0]θ. Then (x ∗ ((x ∗ a) ∗ b), 0) = (x ∗ ((x ∗ a) ∗ b), x ∗ ((x ∗ 0) ∗ 0)) ∈ θ

and hence x ∗ ((x ∗ a) ∗ b) ∈ [0]θ proving (I4).

Theorem 5.3. Let (X, ∗, 0) be a right distributive QI-algebra. Then every ideal

I of X is a kernel of a congruence θI given by

(x, y) ∈ θI if and only if x ∗ y ∈ I and y ∗ x ∈ I.

Moreover, θI is the greatest congruence on X having the kernel I.

Proof. Let I be an ideal of X. Since 0 ∈ I, we have θI is reflexive. Clearly
θI is symmetric. We prove transitivity of θI . Let (x, y) ∈ θI and (y, z) ∈ θI .
Then x ∗ y, y ∗ x, y ∗ z, z ∗ y ∈ I and, by Theorem 4.6, (x ∗ y) ∗ z ∈ I. Hence
(x ∗ z) ∗ (y ∗ z) ∈ I so that x ∗ z ∈ I. Similarly we can prove that z ∗ x ∈ I.

Thus (x, z) ∈ θI . Now, we prove the substitution property of θI . Let (x, y) ∈ θI
and (u, v) ∈ θI . Then x ∗ y, y ∗ x, u ∗ v, v ∗ u ∈ I and hence, by Theorem 4.6,
(x ∗ u) ∗ (y ∗ u) = (x ∗ y) ∗ u ∈ I and (y ∗ u) ∗ (x ∗ u) = (y ∗ x) ∗ u ∈ I. Therefore,
(x ∗u, y ∗u) ∈ θI . Further, by Proposition 2.10(9), we have (y ∗u) ∗ (y ∗ v) ≤ v ∗u
and (y ∗ v) ∗ (y ∗ u) ≤ u ∗ v. Since I is an ideal of X, we have (y ∗ u) ∗ (y ∗ v) ∈ I

and (y ∗v)∗(y ∗u) ∈ I. Hence (y ∗u, y ∗v) ∈ θI . By transitivity of θI , we conclude
(x ∗ u, y ∗ v) ∈ θI . Thus θI is a congruence relation on X.

If x ∈ I then x ∗ 0 = x ∈ I and 0 ∗ x = 0 ∈ I. Therefore (x, 0) ∈ θI , i.e.,
x ∈ [0]θI . Conversely, let x ∈ [0]θI . Then (x, 0) ∈ θI and hence x = x ∗ 0 ∈ I

which shows that I = [0]θI . Thus I is the kernel of congruence θI .
Finally, if ψ is a congruence relation on X such that [0]ψ = I, then for

(x, y) ∈ ψ we have (x ∗ y, 0) = (x ∗ y, y ∗ y) ∈ ψ and (y ∗ x, 0) = (y ∗ x, y ∗ y) ∈ ψ

thus x ∗ y ∈ I and y ∗ x ∈ I which gives (x, y) ∈ θI . Hence ψ ⊆ θI i.e., θI is the
greatest congruence relation of X having the kernel I.

We have observed that, in Example 4.4, for general QI-algebras ideals can
not coincide with (I3) and (I4), they can satisfy or not these properties. The
following example shows that also ideals need not be congruence kernels.
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Example 5.4. In Example 4.4, I = {0, a} is an ideal of X. Let (0, a) ∈ θ for
some congruence relation θ on X. Then (c, b) ∈ θ and hence (0, c) ∈ θ which
shows that c ∈ [0]θ 6= {0, a}. Hence I is not a congruence kernel.

Finally, we conclude this section with the following theorem.

Theorem 5.5. Let (X, ∗, 0) be a right distributive QI-algebra and I a non-empty

subset of X. Then the following are equivalent:

(1) I is an ideal of X.

(2) I satisfies (I3) and (I4).

(3) I is a congruence kernel.
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