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Abstract

Certain trace inequalities for positive definite matrices are generalized
for positive semidefinite matrices using the notion of the group generalized
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1. Introduction and preliminaries

We study certain trace inequalities for positive semidefinite matrices. We show
how some recently obtained results on trace inequalities for positive definite ma-
trices can be extended to positive semidefinite matrices. We provide a framework
where our results apply.

Let Cm×n denote the set of all m×n matrices over the complex numbers. A
Hermitian matrix A ∈ Cn×n is positive semidefinite if x∗Ax ≥ 0 for all x ∈ Cn

and positive definite if x∗Ax > 0 for all nonzero x ∈ Cn. The trace of A ∈ Cn×n is
the sum of its main diagonal entries, or, equivalently, the sum of its eigenvalues.

Obtaining solutions of many algebraic Riccati equations and Lyapunov equa-
tions is very difficult in general and impossible in some particular instances. In
such cases, one looks for bounds for the trace of products of positive definite or
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positive semidefinite matrices. For more details, we refer to [6] (and the references
cited therein). These inequalities are also important in problems in communica-
tion systems with multiple input and multiple output (see [8]).

Let us start with the following result. If A and B are positive definite matrices
then

Tr{(A−B)(B−1 −A−1)} ≥ 0.

This was generalized to the result, viz., if A,B are positive definite and C,D are
positive semidefinite then

Tr[(A−B)(B−1 −A−1) + (C −D){(B +D)−1 − (A+ C)−1}] ≥ 0.

This was further improved to the following inequality

Tr[(A−B)(B−1 −A−1) + 4(C −D){(B +D)−1 − (A+ C)−1}] ≥ 0.

Another interesting result for a positive definite block matrix is that such a matrix
could be written as a product PP ∗ and Q∗Q, where P and Q are lower triangular
block matrices whose subblocks are expressed in terms of the Schur complement
and the complementary Schur complement of the matrix that one started with.

We generalize the results mentioned above in Theorem 7 and Theorem 13.
In order to state the next result, we need some terminology.

For A ∈ Cn×n, let R(A), N(A), Tr(A), and rk(A) denote the range space
of A, the null space of A, the trace of A and the rank of A. The Moore-Penrose
(generalized) inverse of A ∈ Cm×n is the unique X ∈ Cn×m satisfying A =
AXA,X = XAX, (AX)∗ = AX and (XA)∗ = XA and is denoted by A†. The
group (generalized) inverse of A ∈ Cn×n, if it exists, is the unique X ∈ Cn×n

satisfying A = AXA,X = XAX and AX = XA and is denoted by A#. If A
is nonsingular, then A−1 = A† = A#. A necessary and sufficient condition for
a matrix to have a group inverse is rk(A2) = rk(A). Another characterization
is that the subspaces R(A) and N(A) are complementary. Let us recall that a
matrix A ∈ Cn×n is called range-Hermitian if R(A∗) = R(A). It is known that
A† = A# if and only if A is range-Hermitian. In particular, if A is positive
semidefinite then it is Hermitian and so it follows that A# exists. It may be
verified that (if A# exists, then) one has R(A) = R(A#). Let us also include a
result that will be used quite frequently in our proofs. If A,B ∈ Cn×n are such
that A# exists and R(B) ⊆ R(A), then AA#B = B. One also has the following:
If R(B) = R(A), then AA# = BB#. For proofs and other details, we refer to [4].

Let U =

(
AU BU

B∗U CU

)
∈ Cn×n be positive semidefinite. Since AU and

CU are Hermitian, A#
U and C#

U exist. The pseudo Schur complement of AU ,

denoted by FU , is FU = CU − B∗UA
#
UBU and the complementary pseudo Schur

complement denoted by GU is GU = AU −BUC
#
U B

∗
U . Extensions of the formulae
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for the usual Schur complements have been discussed in detail for the case of the
Moore-Penrose inverse and several properties have been obtained [12, section 1.6].

In Theorem 14, we prove that a positive semidefinite matrix can be written
as a product of a block upper triangular matrix and its conjugate transpose in
two different ways. As an application of this result, we derive a trace inequality
for positive semidefinite block matrices in Theorem 15.

The following three results give trace inequalities for products of matrices.

Theorem 1 [11, Theorem 3.1]. Let A,B ∈ Cn×n. Then for any positive integer
m,

|Tr(AB)2m| ≤ Tr(A∗ABB∗)m ≤ Tr{(A∗A)m(BB∗)m}.

Theorem 2 [1, Exercise 12.14]. Let A,B ∈ Cn×n be positive semidefinite. Then

Tr(AB) ≥ 0.

Theorem 3 [5, Lemma 3.3]. For Hermitian matrices X1, X2 and positive semidef-
inite S1, S2, set α = Tr(X1S1X1S2), β = Tr(X2S1X2S2) and γ= Tr(X1S1X2S2).
Then, for positive real numbers a and b one has

aα+ bβ ≥ 2
√
ab|γ|.

The next result concerns the reverse monotonicity of the group inverse. Let us
note that the original result is proved for the Moore-Penrose inverse. However,
since the matrix under consideration is Hermitian, the Moore-Penrose inverse
coincides with the group inverse.

Theorem 4 [10, Theorem 1]. Let A,B ∈ Cn×n be positive semidefinite. Then
any two of the following conditions imply the third:

(i) A−B is positive semidefinite

(ii) rk(A) = rk(B)

(iii) B# −A# is positive semidefinite.

2. Main results

In this section, we present the main results. The first result gives certain relation-
ships between the range spaces of the subblocks of a positive semidefinite block
matrix.

Theorem 5 [13, Exercise 34, p. 226]. Let U =

(
AU BU

B∗U CU

)
be positive semidef-

inite. Then
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(i) R(BU ) ⊆ R(AU ) = R(A
1/2
U ).

(ii) R(B∗U ) ⊆ R(CU ) = R(C
1/2
U ).

If A is a positive definite matrix, then A−1 (exists and) is positive definite.
We have an analogue for the group inverse, too.

Lemma 6. A ∈ Cn×n be positive semidefinite. Then A# is positive semidefinite.

Proof. Note that since A is Hermitian, A# exists. Also, (A#)∗ = (A∗)# = A#.
Now for any x ∈ Cn, one has x∗A#x = x∗A#AA#x = (A#x)∗A(A#x) ≥ 0. Thus
A# is positive semidefinite.

If A and B are positive definite matrices, then Tr{(A−B)(B−1−A−1)} ≥ 0
[1, Exercise 12.28 (c)]. We generalize this result to the case of positive semidefinite
matrices.

Theorem 7. Let A,B ∈ Cn×n be positive semidefinite with R(A) = R(B). Then

Tr{(A−B)(B# −A#)} ≥ 0.

Proof. Since R(A) = R(B), so there exists a unitary matrix U such that

A = U

(
E 0
0 0

)
U∗ and B = U

(
F 0
0 0

)
U∗,

where E and F are positive definite matrices of the same size. Now

A−B = U

(
E − F 0

0 0

)
U∗ and B# −A# = U

(
F−1 − E−1 0

0 0

)
U∗.

Thus Tr{(A−B)(B# −A#)} = Tr{(E − F )(F−1 − E−1)} ≥ 0.

In the preceding result, the condition R(A) = R(B) is indispensable.

Example 8. Let A =

(
1 0
0 0

)
and B =

(
0 0
0 1

)
. Then A, B are positive

semidefinite and R(A) 6= R(B). Now (A − B)(B# − A#) =

(
−1 0
0 −1

)
has

negative trace.

To motivate the next result, let us recall Lemma 2.3 of [3]. Let A,B be
positive definite and C,D be positive semidefinite matrices of the same size. Let
X be any Hermitian matrix. Then Tr(XA−1XB−1) − Tr{X(A + C)−1X(B +
D)−1} ≥ 0. We extend this inequality to the case when both A and B are just
positive semidefinite. Let us note that, for a positive semidefinite matrix E, since
E = S∗S, it follows that x∗Ex = 0 if and only if Ex = 0.



Trace inequalities for positive semidefinite matrices 97

Theorem 9. Let A,B,C,D ∈ Cn×n be positive semidefinite and let X ∈ Cn×n

be Hermitian. If R(C) ⊆ R(A) and R(D) ⊆ R(B), then

Tr(XA#XB#)− Tr{X(A+ C)#X(B +D)#} ≥ 0.

Proof. First, we shall show that R(A + C) = R(A). Let (A + C)x = 0. Then
x∗(A + C)x = 0 so that x∗Ax + x∗Cx = 0. As both the terms are nonnegative
(since A and C are positive semidefinite), we get x∗Ax = 0 = x∗Cx. In particular,
Ax = 0. So N(A + C) ⊆ N(A). Hence R(A) ⊆ R(A + C) ⊆ R(A) using
R(C) ⊆ R(A). Thus R(A + C) = R(A) and so rk(A + C) = rk(A). Now
(A+C)−A is positive semidefinite. Hence by Theorem 4, A#−(A+C)# is positive
semidefinite. Similarly, it follows that B# − (B + D)# is positive semidefinite.
Since XA#X is positive semidefinite (as X is Hermitian) by Theorem 2, we have

Tr{(XA#X)(B# − (B +D)#)} ≥ 0,

so that
Tr(XA#XB#) ≥ Tr{XA#X(B +D)#}.

Again, by Theorem 2,

Tr[{X(A# − (A+ C)#)X}{(B +D)#}] ≥ 0,

so that
Tr{XA#X(B +D)#} ≥ Tr{X(A+ C)#X(B +D)#}.

Combining these inequalities we have

Tr(XA#XB#) ≥ Tr{X(A+ C)#X(B +D)#}.

Remark 10. The inclusion conditions R(C) ⊆ R(A) and R(D) ⊆ R(B) are

indispensable. Let X = I, A =

(
1 0
0 0

)
and B = C = D =

(
0 0
0 1

)
. Then

A,B,C,D are positive semidefinite, R(C) 6⊆ R(A), XA#XB# = 0 and X(A +

C)#X(B + D)# =

(
0 0
0 1

2

)
so that Tr(XA#XB#) − Tr{X(A + C)#X(B +

D)#} < 0. Similarly, it may be shown that the other inclusion R(D) ⊆ R(B) is
indispensable.

To place the next result in a proper perspective, let us recall Lemma 2.2 of
[2]. Let A,B be positive definite and C,D be positive semidefinite matrices of
the same size. Set

M = (A−B)(B +D)−1(C −D)(A+ C)−1



98 P.N. Choudhury and K.C. Sivakumar

and

N = (C −D)(B +D)−1(A−B)(A+ C)−1,

i.e., N is obtained from M by interchanging the first and the third factors. Then

Tr(M) = Tr(N) ∈ R.

Now, we extend this result to the case when A,B,C,D all are positive
semidefinite matrices. Our proof is completely different from the proof for the
positive definite case.

Theorem 11. Let A,B,C and D be positive semidefinite with R(A+C) = R(B+
D). Set

K = (A−B)(B +D)#(C −D)(A+ C)#

and

L = (C −D)(B +D)#(A−B)(A+ C)#.

Then

Tr(K) = Tr(L) ∈ R.

Proof. Note that, since A+C and B+D are positive semidefinite, the matrices
(A+ C)# and (B +D)# are positive semidefinite. Since

R((A+ C)#) = R(A+ C) = R(B +D) = R((B +D)#),

we have

(B +D)#(A+ C)(A+ C)# = (B +D)#

and

(B +D)#(B +D)(A+ C)# = (A+ C)#.

Now

K = (A−B)(B +D)#(C −D)(A+ C)#

= (A−B)(B +D)#{(A+ C)− (B +D)− (A−B)}(A+ C)#

= (A−B)(B +D)#{(A+ C)− (B +D)}(A+ C)#

− (A−B)(B +D)#(A−B)(A+ C)#

= (A−B)(B +D)#− (A−B)(A+ C)#− (A−B)(B +D)#(A−B)(A+ C)#

= A(B +D)# −B(B +D)# −A(A+ C)# +B(A+ C)#

− (A−B)(B +D)#(A−B)(A+ C)#.
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By Theorem 2, the trace of each of the matrices above is real and nonnegative.
Thus Tr(K) ∈ R. Also,

Tr(K) = Tr(K)

= Tr(K∗)

= Tr{(A+ C)#(C −D)(B +D)#(A−B)}
= Tr(L).

Let us observe that if the second and the fourth factors in the expression for
K as above are interchanged, then the resulting matrix has the same trace as
the matrix L. In the result above, the condition that R(A + C) = R(B + D) is
indispensable. This is illustrated next.

Example 12. Let A = C =

(
1 i
−i 1

)
, B =

(
1 i
−i 2

)
and D =

(
1 1
1 1

)
.

Then A,B,C and D are positive semidefinite and B + D =

(
2 1 + i

1− i 3

)
.

Thus R(A + C) = span{(1, i)∗} 6= R(B + D) = C2. Also (B + D)# = (B +

D)−1 = 1
4

(
3 −1− i

−1 + i 2

)
and (A + C)# = (2A)# = 1

8

(
1 i
−i 1

)
. Now

K = (A − B)(B + D)#(C − D)(A + C)# = 1
16

(
0 0

2 + i −1 + 2i

)
and L =

(C−D)(B+D)#(A−B)(A+C)# = 1
16

(
−1− i 1− i
−1 −i

)
. Thus Tr(K) = −1+2i

16

and Tr(L) = −1−2i
16 .

The next result generalizes Theorem 2.1 and Theorem 3.1 of [5]. Let A,B
be positive definite and C,D be positive semidefinite matrices of the same size.
Set F = (A − B)(B−1 − A−1), S = (C − D){(B + D)−1 − (A + C)−1} and
T = (C − D)(B + D)−1(A − B)(A + C)−1. Then Tr(F + S) ≥ |Tr(T )| and
Tr(F + 4S) ≥ 0.

Theorem 13. Let A,B,C and D be positive semidefinite with R(C) ⊆ R(A) =
R(B) ⊇ R(D). Set

U = (A−B)(B# −A#),

V = (C −D){(B +D)# − (A+ C)#}

and

W = (C −D)(B +D)#(A−B)(A+ C)#.
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Then

(i) Tr(U + V ) ≥ |Tr(W )|

and

(ii) Tr(U + 4V ) ≥ 0.

Proof. First, we observe that R(A+C) = R(B+D). Then by Theorem 11, one
has

Tr[(A−B)(B +D)#(C −D)(A+ C)#] = Tr(W ) ∈ R.

Note that U = (A−B)B#(A−B)A#. Also,

Tr(U) = Tr[(A−B)B#(A−B)A#)]

= Tr[(A−B)A#(A−B)B#)].

By Theorem 9 (by taking X = A−B), one has

Tr(U) ≥ Tr[(A−B)(A+ C)#(A−B)(B +D)#]

= Tr[(A−B)(B +D)#(A−B)(A+ C)#].

As before, since R((A+C)#) = R(A+C) = R(B+D) = R((B+D)#), we have

(B +D)#(A+ C)(A+ C)# = (B +D)#

and

(B +D)#(B +D)(A+ C)# = (A+ C)#.

Thus

V = (C −D)(B +D)#{(A+ C)− (B +D)}(A+ C)#

= (C −D)(B +D)#(C −D)(A+ C)#

+ (C −D)(B +D)#(A−B)(A+ C)#.

(i) We have,

Tr(U + V ) ≥ Tr[(A−B)(B +D)#(A−B)(A+ C)#]

+ Tr[(C −D)(B +D)#(C −D)(A+ C)#]

+ Tr[(C −D)(B +D)#(A−B)(A+ C)#].

With X1 = A−B, X2 = C−D, S1 = (B+D)# and S2 = (A+C)# in Theorem 3
together with a = b = 1, one infers that the trace of the first two terms is greater
than or equal to 2|Tr{(C −D)(B +D)#(A−B)(A+ C)#}|. Thus
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Tr(U + V ) ≥ 2|Tr[(C −D)(B +D)#(A−B)(A+ C)#]|

+ Tr[(C −D)(B +D)#(A−B)(A+ C)#]

≥ |Tr[(C −D)(B +D)#(A−B)(A+ C)#]|,

proving (i).

(ii) We have,

Tr(U + 4V ) ≥ Tr{(A−B)(B +D)#(A−B)(A+ C)#}

+ 4Tr[(C −D)(B +D)#(C −D)(A+ C)#]

+ 4Tr[(C −D)(B +D)#(A−B)(A+ C)#]

≥ 4|Tr[(C −D)(B +D)#(A−B)(A+ C)#]|

+ 4Tr[(C −D)(B +D)#(A−B)(A+ C)#]

≥ 0,

where the second inequality was obtained by applying Theorem 3 with a = 1 and
b = 4 and making suitable choices for X1, X2, S1 and S2.

To motivate our next result, let us recall that in the proof of Theorem 2 in

[7], it was shown that if U =

(
AU BU

B∗U CU

)
is positive definite, then U = M∗M =

KK∗, where

M =

(
(AU −BUC

−1
U B∗U )1/2 0

C
−1/2
U B∗U C

1/2
U

)
and

K =

(
A

1/2
U 0

B∗UA
−1/2
U (CU −B∗UA

−1
U BU )1/2

)
.

In the next result, we obtain an analogue for positive semidefinite matrices.

Theorem 14. Let U =

(
AU BU

B∗U CU

)
be positive semidefinite. Set

P =

(
G

1/2
U 0

(C#
U )1/2B∗U C

1/2
U

)
and Q =

(
A

1/2
U 0

B∗U (A#
U )1/2 F

1/2
U

)
, where FU =

CU −B∗UA
#
UBU and GU = AU −BUC

#
U B

∗
U . Then

U = P ∗P = QQ∗.
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Proof. Since U is positive semidefinite, it follows that AU , CU , FU and GU are
positive semidefinite. Hence their square roots exist. By Theorem 5, one has

R(B∗U ) ⊆ R(CU ) = R
(
C

1/2
U

)
and

R(BU ) ⊆ R(AU ) = R
(
A

1/2
U

)
.

So,

C
1/2
U

(
C#
U

)1/2
B∗U = B∗U ,

BUC
1/2
U

(
C#
U

)1/2
= BU ,

A
1/2
U

(
A#

U

)1/2
BU = BU

and

B∗UA
1/2
U

(
A#

U

)1/2
= B∗U .

Now

P ∗P =

 G
1/2
U BU

(
C#
U

)1/2
0 C

1/2
U

 G
1/2
U 0(

C#
U

)1/2
B∗U C

1/2
U

 =

(
AU BU

B∗U CU

)
= U

and

QQ∗ =

 A
1/2
U 0

B∗U

(
A#

U

)1/2
F

1/2
U

 A
1/2
U

(
A#

U

)1/2
BU

0 F
1/2
U

 =

(
AU BU

B∗U CU

)
= U.

As an application of Theorem 14, we obtain a generalization of the following

result [9, Theorem 3.3]: Let U =

(
AU BU

B∗U CU

)
, V =

(
AV BV

B∗V CV

)
be positive

semidefinite with AU , CU , AV and CV being invertible. For any positive integer
m, set

K =
[(
AU −BUC

−1
U B∗U

)1/2
A

1/2
V

]2m
and

L =
[
C

1/2
U

(
CV −B∗VA−1V BV

)1/2]2m
.

Then
Tr(K) + Tr(L) ≤ Tr(UV )2m ≤ Tr(UmV m).

While this result was proved using singular values, the following proof of an
extension does not make use of singular values.
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Theorem 15. Let

U =

(
AU BU

B∗U CU

)
and V =

(
AV BV

B∗V CV

)
be positive semidefinite. Let FU , GU and FV , GV denote the pseudo Schur com-
plements and the complementary pseudo Schur complements of U and V , respec-
tively. Then for any positive integer m,

(i) Tr
[
G

1/2
U A

1/2
V

]2m
+ Tr

[
C

1/2
U F

1/2
V

]2m
≤ Tr(UV )2m ≤ Tr(UmV m).

(ii) Tr
[
C

1/2
V F

1/2
U

]2m
+ Tr

[
G

1/2
V A

1/2
U

]2m
≤ Tr(UV )2m ≤ Tr(UmV m).

Proof. (i) By Theorem 14, U = P ∗P and V = QQ∗, where

P =

 G
1/2
U 0(

C#
U

)1/2
B∗U C

1/2
U

 and Q =

 A
1/2
V 0

B∗V

(
A#

V

)1/2
F

1/2
V

 .

Now,

PQ =

 G
1/2
U A

1/2
V 0(

C#
U

)1/2
B∗UA

1/2
V + C

1/2
U B∗V

(
A#

V

)1/2
C

1/2
U F

1/2
U


so that,

(PQ)2m =

 (
G

1/2
U A

1/2
V

)2m
0

∗
(
C

1/2
U F

1/2
V

)2m
 ,

where the matrix at the bottom left corner is not relevant to our discussion. Now,
by Theorem 1, for any positive integer m,

|Tr(PQ)2m| ≤ Tr(P ∗PQQ∗)m ≤ Tr{(P ∗P )m(QQ∗)m}.

Thus

Tr
[
G

1/2
U A

1/2
V

]2m
+ Tr

[
C

1/2
U F

1/2
V

]2m
≤ Tr(UV )2m ≤ Tr(UmV m).

Similarly, (ii) may be shown.
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