Discussiones Mathematicae General Algebra and Applications 37 (2017) 59–74 doi:10.7151/dmgaa.1266

ON THE SECOND SPECTRUM OF LATTICE MODULES

NARAYAN PHADATARE, SACHIN BALLAL

AND

VILAS KHARAT

Department of Mathematics Savitribai Phule Pune University Pune-411 007, India

e-mail: a9999phadatare@gmail.com ballalshyam@gmail.com laddoo1@yahoo.com

Abstract

The second spectrum $Spec^{s}(M)$ is the collection of all second elements of M. In this paper, we study the topology on $Spec^{s}(M)$, which is a generalization of the Zariski topology on the prime spectrum of lattice modules. Besides some properties, $Spec^{s}(M)$ is characterized and the interrelations between the topological properties of $Spec^{s}(M)$ and the algebraic properties of M, are studied.

Keywords: second element, prime element, maximal element, minimal element, spectral space.

2010 Mathematics Subject Classification: 06D10, 06E10, 06F10.

1. INTRODUCTION

The Zariski topology for second spectrum of a module over a commutative ring is being introduce and studied by Ansari-Toroghy, Farshadifar in [1]. As a generalization of most of the results in [1], we introduce the concept of second elements of a lattice module M over a C-lattice L and also study the Zariski topology on $Spec^{s}(M)$, the collection of all second elements of a lattice module M.

The concept of second element of a comultiplication lattice module was introduced in [10]. A lattice module M is said to be *comultiplication* if for every element N of M, there exists an element $a \in L$ such that $N = (0_M : a)$ and an element $0_M \neq N \in M$ is said to be *second*, if for each $a \in L$, either aN = N or $aN = 0_M$.

There are many generalizations of the Zariski topology over the set of all prime submodules of a R-module M (see [1, 5, 8, 9, 15, 17]). In [5], the Zariski topology over the prime spectrum Spec(M) of a lattice module M over a C-lattice L has been studied by Sachin Ballal and Villas Kharat. In [20], authors introduced and studied the concept of quasi-prime elements as a generalization of prime elements and also the Zariski topology on the quasi-prime spectrum of a lattice module M over a C-lattice L.

The Zariski topology on the set Spec(L) of all prime elements in multiplicative lattices is being studied in [18] by Thakare, Manjarekar and Maeda, and in [19] by Thakare and Manjarekar as a generalization of the Zariski topology of a commutative ring with unity.

A lattice L is said to be *complete*, if for any subset S of L, we have $\forall S, \land S \in L$. A complete lattice L is said to be a *multiplicative lattice*, if there is defined a binary operation "." called multiplication on L satisfying the following conditions:

- (1) a.b = b.a, for all $a, b, c \in L$;
- (2) a.(b.c) = (a.b).c, for all $a, b, c \in L$;
- (3) $a.(\vee_{\alpha}b_{\alpha}) = \vee_{\alpha}(a.b_{\alpha}), \text{ for all } a, b_{\alpha} \in L;$
- (4) a.1 = a, for all $a \in L$.

Henceforth, a.b will be simply denoted by ab. An element $e \in L$ is said to be *meet principal* (respectively, *join principal*) if it satisfies the identity $a \wedge be = ((a : e) \wedge b)e$ (respectively, $((ae \vee b) : e) = a \vee (b : e))$, for all $a, b \in L$. An element $e \in L$ is said to be *principal* if it is both meet as well as join principal. If each element of L is the join of principal elements of L, then L is called *principally generated*.

An element a in L is called *compact* if $a \leq \bigvee_{\alpha \in I} b_{\alpha}(I \text{ is an indexed set})$ implies $a \leq b_{\alpha_1} \vee b_{\alpha_2} \vee \cdots \vee b_{\alpha_n}$ for some subset $\{\alpha_1, \alpha_2, \ldots, \alpha_n\}$ of I. By a *C*-lattice, we mean a multiplicative lattice L, with least element 0_L and greatest element 1_L which is compact as well as multiplicative identity, that is generated under joins by a multiplicatively closed subset C of compact elements of L. Throughout this paper, L will be a C-lattice.

An element $p \in L$ is said to be *proper* if p < 1. A proper element m of a multiplicative lattice L is said to be *maximal* if $m < x \leq 1$ implies x = 1, $x \in L$. A proper element m of a multiplicative lattice L is said to be *minimal* if $0 \leq x < m$ implies $x = 0, x \in L$. A proper element p of a multiplicative lattice L is said to be *prime* if $ab \leq p$ implies either $a \leq p$ or $b \leq p$. A proper element p of a multiplicative lattice L is said to be *quasi-prime* if $a \wedge b \leq p$ implies either $a \leq p$ or $b \leq p$. For any $a \in L$, its radical is denoted by \sqrt{a} and defined as $\sqrt{a} = \lor \{x \in L | x^n \leq a, \text{ for some } n \in Z^+\} = \land \{p \in L | a \leq p \text{ and } p \text{ is a prime}\}.$ An element $a \in L$ with $\sqrt{a} = a$ is called *semiprime* or *radical*.

A complete lattice M is said to be *lattice module* over a multiplicative lattice L, or L-module, if there is a multiplication between elements of M and L, denoted by $aN \in M$, for $a \in L$ and $N \in M$, which satisfies the following properties:

- 1. (ab)N = a(bN);
- 2. $(\bigvee_{\alpha} a_{\alpha})(\bigvee_{\beta} N_{\beta}) = (\bigvee_{\alpha\beta} a_{\alpha} N_{\beta});$
- 3. $1_L N = N;$
- 4. $0_L N = 0_M$; for all $a, b, a_\alpha \in L$, and for all $N, N_\beta \in M$.

The greatest element of M will be denoted by 1_M and the smallest element will be denoted by 0_M . For $N \in M$, $b \in L$, denote $(N : b) = \vee \{K \in M | bK \leq N\}$. For $a, b \in L$, we write $(a : b) = \vee \{x \in L | bx \leq a\}$ and for $A, B \in M$, $(A : B) = \vee \{x \in L | Bx \leq A\}$. An element $A \in M$ is said to be weak meet principal if $(B : A)A = B \wedge A$ for all $B \in M$; weak join principal if $(bA : A) = b \vee (0_M : A)$ for all $b \in L$; and weak principal if A is both weak meet principal and weak join principal. An element $N \in M$ is said to be compact if $N \leq \bigvee_{\alpha \in I} A_{\alpha}(I \text{ is an}$ indexed set) implies $N \leq A_{\alpha_1} \vee A_{\alpha_2} \vee \cdots \vee A_{\alpha_n}$ for some subset $\{\alpha_1, \alpha_2, \ldots, \alpha_n\}$ of I. If each element of M is the join of principal (compact) elements of M, then M is called principally generated (compactly generated).

An element $N < 1_M$ in M is said to be *prime* if $aX \leq N$ implies $X \leq N$ or $a1_M \leq N$, i.e., $a \leq (N : 1_M)$ for $a \in L$ and $X \in M$. An element $N < 1_M$ in M is said to be *quasi-prime* if $(N : 1_M)$ is a quasi-prime element of L. Note that, every prime element in M is quasi-prime. An element $N < 1_M$ of M is said to be *maximal* if $N \leq B$ implies either N = B or $B = 1_M$, $B \in M$. A non-zero element $K \neq 1_M$ of M is said to be *minimal* if $0_M \leq N < K$ implies $N = 0_M$, $N \in M$.

Further, all these concepts and for more information on multiplicative lattices and lattice modules, the reader may refer ([3–7, 10–13, 18, 19]).

2. TOPOLOGY ON $Spec^{s}(M)$

Here, we define the second element for a lattice module M over a C-lattice L.

Definition 2.1. Let M be a lattice module over a C-lattice L. A non-zero element $N \in M$ is said to be *second*, if for $a \in L$, either aN = N or $aN = 0_M$.

Note that, every minimal element of M is second.

Lemma 2.2. Let M be a lattice module over a C-lattice L and $N \in M$. If N is second then $(0_M : N)$ is a prime element of L.

Proof. Suppose that N is a second element of M and $abN = 0_M$ for $a, b \in L$ with $bN \neq 0_M$. Since N is second, bN = N and so $aN = 0_M$, i.e., $a \leq (0_M : N)$. Consequently, $(0_M : N)$ is a prime element of L.

Converse of Lemma 2.2 is true for comultiplication lattice module (see [10]).

Lemma 2.3 [10]. Let M be a comultiplication lattice module over a multiplicative lattice L and $N \in M$. Then N is second if and only if $(0_M : N)$ is a prime element in L.

Example 2.4. The lattice depicted in Figure (a) is a multiplicative lattice L and the lattice depicted in Figure (b) is a lattice module M over a multiplicative lattice L. Note that, X is a second element of M but Y, Z, P and 1_M are not second elements of M.

	0_L	a	b	с	d	1_L
0_L						
a	0_L	а	0_L	а	0_L	a
b	0_L	0_L	0_L	0_L	b	b
с	0_L	а	0_L	а	b	с
d	0_L	0_L	b	b	d	d
1_L	0_L	a	b	с	d	1_L

Figure (a). Multiplicative Lattice L.

	0_M	Х	Y	Ζ	Р	1_M
0_L	0_M	0_M	0_M	0_M	0_M	0_M
a	0_M	0_M	0_M	0_M	0_M	0_M
b	0_M	0_M	Х	Х	Х	Х
с	0_M	0_M	Х	Х	Х	Х
d	0_M	Х	Y	Ζ	Р	1_M
1_L	0_M	Х	Y	Z	Р	1_M

Figure (b). Lattice Module M over L.

Example 2.5. The lattice depicted in Figure (a) is a multiplicative lattice L and the lattice depicted in Figure (b) is a Lattice module M over a multiplicative lattice L. Note that, all non-zero elements of M are second elements of M.

•	0_L	a	b	с	d	1_L
0_L						
a	0_L	a	0_L	a	0_L	a
b	0_L	0_L	0_L	0_L	b	b
с	0_L	a	0_L	a	b	с
d	0_L	0_L	b	b	d	d
1_L	0_L	a	b	с	d	1_L

Figure (a). Multiplicative Lattice L.

•	0_M	Х	Y	Ζ	Р	1_M
0_L	0_M	0_M	0_M	0_M	0_M	0_M
a	0_M	Х	Y	Ζ	Р	1_M
b	0_M	0_M	0_M	0_M	0_M	0_M
с	0_M	Х	Y	Ζ	Р	1_M
d	0_M	0_M	0_M	0_M	0_M	0_M
1_L	0_M	Х	Y	Ζ	Р	1_M

Figure (b). Lattice Module M over L.

The following result is useful throughout the paper.

Lemma 2.6 [14]. Let M be a lattice module over a multiplicative lattice L. Then for $x \in L$ and $A, B, C \in M$, following holds:

- 1. $x \leq (0_M : (0_M : x)).$
- 2. $A \leq (0_M : (0_M : A)).$
- 3. If $A \leq B$ then $(C : B) \leq (C : A)$.
- 4. $(0_M : A) = (0_M : (0_M : (0_M : A))).$
- 5. $(A: B \lor C) = (A: B) \land (A: C).$

Let M be a lattice module over a C-lattice L. Consider the set $Spec^{s}(M)$ of second elements of a lattice module M. Since every minimal element of Mis second, $Min(M) \subseteq Spec^{s}(M)$, where Min(M) is the set of all minimal elements of M. Also, $D^{s*}(N) = \{S \in Spec^{s}(M) | S \leq N\}$, for $N \in M$. Note that $D^{s*}(1_M) = Spec^{s}(M)$, and $D^{s*}(0_M)$ is an empty set. **Proposition 2.7.** Let M be a lattice module over a C-lattice L and $N, N_i, K \in M$ $(i \in I)$. Then the following statements hold.

- 1. $\cap_{i \in I} D^{s*}(N_i) = D^{s*}(\wedge_{i \in I} N_i).$
- 2. $D^{s*}(N) \cup D^{s*}(K) \subseteq D^{s*}(N \vee K).$

Proof. (1) Note that, $D^{s*}(\wedge_{i \in I} N_i) \subseteq D^{s*}(N_i)$ for each i, since $\wedge_{i \in I} N_i \leq N_i$. Hence $D^{s*}(\wedge_{i \in I} N_i) \subseteq \bigcap_{i \in I} D^{s*}(N_i)$.

Now, suppose that $K \in \bigcap_{i \in I} D^{s*}(N_i)$. Then for each $i, K \in D^{s*}(N_i)$ therefore $K \leq N_i$. This implies $K \leq \bigwedge_{i \in I} N_i$ and so $\bigcap_{i \in I} D^{s*}(N_i) \subseteq D^{s*}(\bigwedge_{i \in I} N_i)$. Consequently, $\bigcap_{i \in I} D^{s*}(N_i) = D^{s*}(\bigwedge_{i \in I} N_i)$.

(2) Since $N, K \leq N \lor K$, we have $D^{s*}(N), D^{s*}(K) \subseteq D^{s*}(N \lor K)$ and so $D^{s*}(N) \cup D^{s*}(K) \subseteq D^{s*}(N \lor K)$.

We note from Proposition 2.7 that, the set $\zeta^{s*}(M) = \{D^{s*}(N) | N \in M\}$ forms a topology if and only if it is closed under finite union. In this case, $\zeta^{s*}(M)$ induces a topology τ^{s*} on $Spec^{s}(M)$, and we call it the *Zariski* topology.

Proposition 2.8. Let M be a lattice module over a C-lattice L and $a, b \in L$. Then $D^{s*}((0_M : a)) \cup D^{s*}((0_M : b)) = D^{s*}((0_M : ab))$.

Proof. Note that $D^{s*}((0_M : a)) \cup D^{s*}((0_M : b)) \subseteq D^{s*}((0_M : ab) \text{ for } a, b \in L.$

Now, suppose that $S \in D^{s*}((0_M : ab))$ with $S \notin D^{s*}((0_M : b))$. We claim that $S \in D^{s*}((0_M : a))$. By assumption $S \leq (0_M : ab)$ and $S \nleq (0_M : b)$, therefore $abS = 0_M$ and $bS \neq 0_M$. Since S is a second element of M and $bS \neq 0_M$, we have bS = S. Therefore $abS = aS = 0_M$ and so $S \leq (0_M : a)$. Consequently, $S \in D^{s*}((0_M : a))$.

From Proposition 2.7 and Proposition 2.8, we observe that, the set $\{D^{s*}((0_M : a)) | a \in L\}$ forms a topology, say τ'^s on $Spec^s(M)$.

It clear from Proposition 2.7 that, the collection $\{D^{s*}(N)|N \in M\}$ need not be closed under finite union. So for $N \in M$, we define a new set $D^s(N) = \{S \in Spec^s(M) | (0_M : N) \leq (0_M : S)\}$ and we have the following Theorem.

Theorem 2.9. Let M be a lattice module over a C-lattice L and $N, N_i, K \in M$ $(i \in I)$. Then the following statements hold.

- 1. $D^{s}(1_{M}) = Spec^{s}(M)$, and $D^{s}(0_{M})$ is an empty set.
- 2. $\cap_{i \in I} D^s(N_i) = D^s(\wedge_{i \in I} (0_M : (0_M : N_i))).$
- 3. $D^s(N) \cup D^s(K) = D^s(N \vee K).$

Proof. (1) By definition $D^{s}(1_{M}) = \{S \in Spec^{s}(M) | (0_{M} : 1_{M}) = 0_{L} \leq (0_{M} : S)\} = Spec^{s}(M)$ and $D^{s}(0_{M}) = \{S \in Spec^{s}(M) | (0_{M} : 0_{M}) = 1_{L} \leq (0_{M} : S)\}$ is empty.

(2) Suppose that $S \in \bigcap_{i \in I} D^s(N_i)$. Then $S \in D^s(N_i)$, for each $i \in I$ therefore $(0_M : N_i) \leq (0_M : S)$, for each $i \in I$ and so $\bigvee_{i \in I} (0_M : N_i) \leq (0_M : S)$. Therefore $(0_M : (0_M : \bigvee_{i \in I} (0_M : N_i))) \leq (0_M : (0_M : (0_M : S))) = (0_M : S)$ by Lemma 2.31(3) and Lemma 2.31(4) and hence $S \in D^s(\wedge_{i \in I} (0_M : (0_M : N_i)))$ by Lemma 2.31(5).

Now, suppose that $K \in D^s(\wedge_{i \in I}(0_M : (0_M : N_i)))$. Then $(0_M : \wedge_{i \in I}(0_M : (0_M : N_i)) \leq (0_M : K)$, and hence $(0_M : (0_M : K)) \leq (0_M : (0_M : \wedge_{i \in I}(0_M : (0_M : N_i))) = \wedge_{i \in I}(0_M : (0_M : N_i))$ by Lemma 2.31 (3) and Lemma 2.31(4). Therefore $(0_M : (0_M : K)) \leq (0_M : (0_M : N_i))$ for each $i \in I$ and so $(0_M : N_i) \leq (0_M : K)$, for each $i \in I$ by Lemma 2.31(3) and Lemma 2.31(4). Thus $K \in D^s(N_i)$ for each $i \in I$ and consequently, $K \in \cap_{i \in I} D^s(N_i)$.

(3) Note that $D^{s}(N) \cup D^{s}(K) \subseteq D^{s}(N \vee K)$ for $N, K \in M$.

Now, suppose that $S \in D^s(N \vee K)$. Then $(0_M : N \vee K) \leq (0_M : S)$ and so $(0_M : N) \wedge (0_M : K) \leq (0_M : S)$ by Lemma 2.31(5). Since S is second, $(0_M : S)$ is a prime element of L by Lemma 2.2, and hence quasi-prime. Therefore $(0_M : N) \leq (0_M : S)$ or $(0_M : N) \leq (0_M : S)$ by definition of quasi-prime element and so $S \in D^s(N)$ or $S \in D^s(K)$. Consequently, $S \in D^s(N) \cup D^s(K)$.

Theorem 2.9 shows that, there exists a topology, say τ^s on $Spec^s(M)$ having $\{D^s(N)|N \in M\}$ as a family of closed sets.

We denote $Spec_p^s(M) = \{N \in M | N \text{ is second and } (0_M : N) = p\}$, where p is a prime element of L and for $a \in L$, $D^s((0_M : a)) = \{S \in Spec^s(M) | (0_M : (0_M : a)) \le (0_M : S)\}$.

Lemma 2.10. Let M be a lattice module over a C-lattice L and $N, K \in M$. Then the following statements hold.

- 1. If $(0_M : N) = (0_M : K)$, then $D^s(N) = D^s(K)$. Also, the converse is true if $N, K \in Spec^s(M)$.
- 2. $D^{s}(N) = \bigcup_{p \in D^{s}((0_{M}:N))} Spec_{p}^{s}(M).$
- 3. $D^{s}(N) = D^{s}((0_{M} : (0_{M} : N))) = D^{s*}((0_{M} : (0_{M} : N)))$. In particular, we have $D^{s}((0_{M} : a)) = D^{s*}((0_{M} : a))$ for $a \in L$.

Proof. (1) Suppose that $(0_M : N) = (0_M : K)$ and $S \in D^s(N)$. Then $(0_M : N) \leq (0_M : S)$ and so $(0_M : K) \leq (0_M : S)$. Therefore $S \in D^s(K)$ and so $D^s(N) \subseteq D^s(K)$. Similarly, $D^s(K) \subseteq D^s(N)$.

Conversely, suppose that $D^s(N) = D^s(K)$ and $N, K \in Spec^s(M)$. Given $N \in D^s(N)$ and $D^s(N) = D^s(K)$, therefore $(0_M : K) \leq (0_M : N)$ and $(0_M : N) \leq (0_M : K)$. Consequently, $(0_M : N) = (0_M : K)$.

(2) Suppose that $P \in D^s(N)$. Then $(0_M : N) \leq (0_M : P) = p$. Therefore $P \in \bigcup_{p \in D^s((0_M:N))} Spec_p^s(M)$. Consequently, $D^s(N) \subseteq \bigcup_{p \in D^s((0_M:N))} Spec_p^s(M)$.

Now, suppose that $K \in \bigcup_{p \in D^s((0_M:N))} Spec_p^s(M)$. Then there exists $a \in D^s((0_M:N))$ with $(0_M:N) \leq a = (0_M:K)$ and hence $K \in D^s(N)$, therefore $\bigcup_{p \in D^s((0_M:N))} \subseteq D^s(N)$. Consequently, $D^s(N) = \bigcup_{p \in D^s((0_M:N))} Spec_p^s(M)$.

(3) Suppose that $S \in D^{s}(N)$. Then $(0_{M}: N) \leq (0_{M}: S)$ and so $(0_{M}: (0_{M}: (0_{M}: N))) \leq (0_{M}: (0_{M}: (0_{M}: S))) = (0_{M}: S)$ by Lemma 2.31(3) and Lemma 2.31(4), therefore $S \in D^{s}((0_{M}: (0_{M}: N)))$. Thus $D^{s}(N) \subseteq D^{s}((0_{M}: (0_{M}: N)))$.

Now, suppose that $S \in D^{s}((0_{M} : (0_{M} : N)))$. Then $(0_{M} : (0_{M} : (0_{M} : N))) \leq (0_{M} : S)$, i.e., $(0_{M} : N) \leq (0_{M} : S)$ by Lemma 2.31(3) and hence $S \in D^{s}(N)$. Consequently, $D^{s}(N) = D^{s}((0_{M} : (0_{M} : N)))$.

Next, suppose that $K \in D^{s}(N)$. Then $(0_{M} : N) \leq (0_{M} : K)$ and so $K \leq (0_{M} : (0_{M} : K)) \leq (0_{M} : (0_{M} : N))$ by Lemma 2.31(2) and Lemma 2.31(3), therefore $K \in D^{s*}((0_{M} : (0_{M} : N)))$. Thus $D^{s}(N) \subseteq D^{s*}((0_{M} : (0_{M} : N)))$.

Now, $P \in D^{s*}((0_M : (0_M : N)))$ implies $P \leq (0_M : (0_M : N))$ and hence $(0_M : (0_M : (0_M : N))) \leq (0_M : P)$ by Lemma 2.31(3). Therefore $(0_M : N) \leq (0_M : P)$ by Lemma 2.31(4) and so $P \in D^s(N)$. Thus $D^{s*}((0_M : (0_M : N))) \subseteq D^s(N)$. Consequently, $D^s(N) = D^{s*}((0_M : (0_M : N)))$.

In what follows and thereafter, the map $\psi^s : Spec^s(M) \to Spec(L/(0_M : 1_M))$ defined by $\psi^s(N) = \overline{(0_M : N)}$ is called the *natural map* of $Spec^s(M)$, where M is a lattice module over a C-lattice L.

Lemma 2.11. Let M be a lattice module over a C-lattice L. Then the natural map ψ^s is continuous; more precisely, $(\psi^s)^{-1}D(\overline{a}) = D^s((0_M : a))$ for $a \in L$ with $(0_M : 1_M) \leq a$.

Proof. Given $S \in (\psi^s)^{-1}(\underline{D}(\overline{a}))$, there exists $\overline{b} \in \underline{D}(\overline{a})$ with $S = (\psi^s)^{-1}(\overline{b})$. Therefore $\psi^s(S) = \overline{b}$ and so $(\overline{0}_M : S) = \overline{b}$. Thus $\overline{a} \leq (\overline{0}_M : S) = \overline{b}$ and hence $a \leq (0_M : S) = b$. We conclude that, $(0_M : (0_M : a)) \leq (0_M : S)$ by Lemma 2.31(3) and Lemma 2.31(4). Which implies that $S \in D^s((0_M : a))$. Thus $(\psi^s)^{-1}(D(\overline{a})) \subseteq D^s((0_M : a))$.

Now, suppose that $K \in D^s((0_M : a))$. Then $(0_M : (0_M : a)) \leq (0_M : K)$. But by Lemma 2.31(1), $a \leq (0_M : (0_M : a))$, therefore $\overline{a} \leq (0_M : (0_M : a)) \leq (0_M : K)$. Hence $K \in (\psi^s)^{-1}D(\overline{a})$. Consequently, $(\psi^s)^{-1}D(\overline{a}) = D^s((0_M : a))$.

Theorem 2.12. Let M be a lattice module over a C-lattice L. Then the following statements are equivalent.

- 1. The natural map $\psi^s : Spec^s(M) \to Spec(L/(0_M : 1_M))$ is injective.
- 2. For $N, K \in Spec^{s}(M)$, if $D^{s}(N) = D^{s}(K)$ then N = K.
- 3. $|Spec_p^s(M)| \leq 1$ for $p \in Spec(L)$.

Proof. (1) \Rightarrow (2) Suppose that the natural map ψ^s is injective and $D^s(N) = D^s(K)$ for $N, K \in Spec^s(M)$. Then $(0_M : N) = (0_M : K)$, by Lemma 2.10(1).

Therefore $\overline{(0_M:N)} = \overline{(0_M:K)}$, and hence $\psi^s(N) = \psi^s(K)$, consequently, K = N, since ψ^s is injective.

(2) \Rightarrow (3) Suppose that $K, N \in Spec_p^s(M)$ for some $p \in Spec(L)$. Then $(0_M : N) = (0_M : K) = p$ and hence $D^s(N) = D^s(K)$ by Lemma 2.10 (1) and N = K by (2).

 $\frac{(3) \Rightarrow (1)}{(0_M:K)} = \frac{\text{Suppose that } \psi^s(K) = \psi^s(N) = \overline{a} \text{ for } K, N \in Spec^s(M). \text{ Then } (0_M:K) = \overline{(0_M:N)} = \overline{a}. \text{ Therefore } (0_M:K) = (0_M:N) = a \text{ and so } K = N \text{ by } (3). \text{ Thus, } \psi^s \text{ is injective.}$

Theorem 2.13. Let M be a lattice module over a C-lattice L. If the natural map ψ^s is surjective, then it is both closed and open. More precisely, for every $N \in M$, $\psi^s(D^s(N)) = D(\overline{(0_M : N)})$ and $\psi^s(Spec^s(M) - D^s(N)) = Spec(L/(0_M : 1_M)) - D(\overline{(0_M : N)})$.

Proof. Suppose that ψ^s is surjective. By Lemma 2.11, we have

 $(\psi^{s})^{-1}(D((0_{M}:N))) = D^{s}((0_{M}:(0_{M}:N))) \text{ again by Lemma 2.10(3), we have } D^{s}((0_{M}:(0_{M}:N))) = D^{s}(N), \text{ therefore } (\psi^{s})^{-1}(D((0_{M}:N))) = D^{s}(N). \text{ Since } \psi^{s} \text{ is surjective, } \psi^{s} \circ (\psi^{s})^{-1}(D((0_{M}:N))) = \psi^{s}(D^{s}(N)), \text{ therefore } \psi^{s}(D^{s}(N)) = D((0_{M}:N)) \text{ and hence } \psi^{s} \text{ is closed. Similarly, } \psi^{s}(Spec^{s}(M) - D^{s}(N)) = Spec(L/(0_{M}:1_{M})) - D((0_{M}:N)), \text{ i.e., } \psi^{s} \text{ open.}$

Corollary 2.14. Let M be a lattice module over a C-lattice L. If the natural map ψ^s is surjective, then it is bijective if and only if it is homeomorphism.

Now, we introduce an open base for the Zariski topology on $Spec^{s}(M)$. For each $r \in L$, define $X^{s}(r) = Spec^{s}(M) - D^{s}((0_{M} : r))$. Then $X^{s}(r)$ is an open set of $Spec^{s}(M)$.

Lemma 2.15. Let M be a lattice module over a C-lattice L. Then the set $B = \{X^s(a) | a \in L\}$ forms an open base for the Zariski topology on $Spec^s(M)$.

Proof. Suppose that $Spec^{s}(M)$ is non-empty and U is an open subset of $Spec^{s}(M)$. Then for $N \in M$, $U = Spec^{s}(M) - D^{s}(N) = Spec^{s}(M) - D^{s}((0_{M} : (0_{M} : N)))$ by Lemma 2.10(3). Therefore $U = Spec^{s}(M) - D^{s}(N) = Spec^{s}(M) - D^{s}((0_{M} : (0_{M} : N))) = Spec^{s}(M) - D^{s}((0_{M} : \vee \{x \in L | xN = 0_{M}\})) = Spec^{s}(M) - D^{s}((\wedge_{\{x \in L | xN = 0_{M}\}}(0_{M} : x)))$ by Lemma 2.6(5). By Theorem 2.9(2), we have $D^{s}(\wedge_{\{x \in L | xN = 0_{M}\}}(0_{M} : x)) = \cap_{\{x \in L | xN = 0_{M}\}}D^{s}((0_{M} : x))$, therefore $U = Spec^{s}(M) - D^{s}(\wedge_{\{x \in L | xN = 0_{M}\}}(0_{M} : x)) = Spec^{s}(M) - \cap_{\{x \in L | xN = 0_{M}\}}D^{s}((0_{M} : x)) = \cup_{\{x \in L | xN = 0_{M}\}}D^{s}((0_{M} : x)) = \cup_{\{x \in L | xN = 0_{M}\}}X^{s}(x).$

Theorem 2.16. Let M be a lattice module over a C-lattice L. Then for $a \in L$ and the natural map $\psi^s : Spec^s(M) \to Spec(L/(0_M : 1_M)))$, the following statements hold.

- 1. $(\psi^s)^{-1}(X(\overline{a})) = X^s(a)$, where $X(\overline{a}) = Spec(\overline{L}) D(\overline{a})$. 2. $\psi^s(X^s(a)) \subseteq X(\overline{a})$ and if ψ^s is surjective, then $\psi^s(X^s(a)) = X(\overline{a})$.
- **Proof.** (1) Consider $(\psi^s)^{-1}(X(\overline{a})) = (\psi^s)^{-1}(Spec(\overline{L}) D(\overline{a})) = Spec^s(M) (\psi^s)^{-1}(D(\overline{a})) = Spec^s(M) D^s((0_M : a)) = X^s(a)$, where $(\psi^s)^{-1}D(\overline{a}) = D^s((0_M : a))$ for $a \in L$ with $(0_M : 1_M) \leq a$ by Lemma 2.11. (2) Follows from (1).

Theorem 2.17. Let M be a lattice module over a C-lattice L. Then $X^{s}(ab) = X^{s}(a) \cap X^{s}(b)$ for $a, b \in L$.

Proof. By Theorem 2.16(1), we have $X^{s}(ab) = (\psi^{s})^{-1}(X(\overline{ab}))$. Therefore $X^{s}(ab) = (\psi^{s})^{-1}(X(\overline{ab})) = (\psi^{s})^{-1}(Spec^{s}(\overline{L}) - D(\overline{ab})) = Spec^{s}(M) - (\psi^{s})^{-1}(D(\overline{ab})) = Spec^{s}(M) - D^{s}((0_{M}:ab)) = Spec^{s}(M) - D^{s*}((0_{M}:ab))$ by Lemma 2.11 and Lemma 2.10(3). But by Proposition 2.8, we have $D^{s*}((0_{M}:a)) \cup D^{s*}((0_{M}:b)) = D^{s*}((0_{M}:ab))$, therefore $X^{s}(ab) = Spec^{s}(M) - D^{s*}((0_{M}:ab)) = Spec^{s}(M) - (D^{s*}((0_{M}:a)) \cup D^{s*}((0_{M}:b))) = (Spec^{s}(M) - D^{s*}((0_{M}:a)) \cap (Spec^{s}(M) - D^{s*}((0_{M}:b))) = (Spec^{s}(M) - D^{s}((0_{M}:a)) \cap (Spec^{s}(M) - D^{s*}((0_{M}:b))) = X^{s}(a) \cap X^{s}(b).$

A topological space Z is called *quasi-compact* if each of its open covers has a finite subcover (see [16]). We recall that Spec(L) is quasi-compact if L is compactly generated multiplicative lattice with 1_L compact (see[18]).

Theorem 2.18. Let M be a lattice module over a C-lattice L and the natural map ψ^s is surjective. Then for $r \in L$, the open set $X^s(r)$ is quasi-compact. In particular, the space $Spec^s(M)$ is quasi-compact.

Proof. Suppose that the natural map ψ^s is surjective. By Lemma 2.15, the set $B = \{X^s(a) | a \in L\}$ is an open base for the Zariski topology on $Spec^s(M)$. Let $\{a_\lambda \in L | \lambda \in \Lambda\}$ be such that $Spec^s(M) = \bigcup_{\lambda \in \Lambda} X^s(a_\lambda)$. Then by Theorem 2.16(2), $Spec(\overline{L}) = X(\overline{1_L}) = \psi^s(X^s(1_L)) = \psi^s(Spec^s(M) - D^s((0_M : 1_L))) = \psi^s(Spec^s(M)) = \psi^s(\bigcup_{\lambda \in \Lambda} X^s(a_\lambda)) = \bigcup_{\lambda \in \Lambda} \psi^s(X^s(a_\lambda)) = \bigcup_{\lambda \in \Lambda} X(\overline{a_\lambda})$. Since $Spec(\overline{L})$ is quasi-compact, there exists a finite subset Λ' of Λ such that $Spec(\overline{L}) \subseteq \bigcup_{\lambda \in \Lambda'} X(\overline{a_\lambda})$ therefore by Theorem 2.16(1), $Spec^s(M) = X^s(1_L) = (\psi^s)^{-1}(X(\overline{1_L})) = (\psi^s)^{-1}(Spec(\overline{L})) \subseteq (\psi^s)^{-1}(\bigcup_{\lambda \in \Lambda'} X(\overline{a_\lambda'})) \subseteq \bigcup_{\lambda \in \Lambda'} (\psi^s)^{-1}(X(\overline{a_\lambda})) = \bigcup_{\lambda \in \Lambda'} X^s(a_\lambda)$. Consequently, $Spec^s(M)$ is a quasi-compact space.

The following Theorem follows from Lemma 2.15, Theorem 2.17 and Theorem 2.18.

Theorem 2.19. Let M be a lattice module over a C-lattice L and the natural map ψ^s is surjective. Then the family of quasi-compact open sets of $Spec^s(M)$ is closed under finite intersection and forms an open base.

Note that, by Theorem 2.9(3), the collection $\{D^s(N)|N \in M\}$ is closed under finite union. Therefore each closed set is of the form of $D^s(N)$ for $N \in M$.

A topological space Z is T_0 if and only if the closures of distinct points are distinct and a topological space Z is T_1 if and only if every singleton subset is closed (see [16]). Denote the closure of $Y \subseteq Spec^s(M)$ by Cl(Y), and the join of all elements in Y by T(Y).

Lemma 2.20. Let M be a lattice module over a C-lattice L and $Y \subseteq Spec^{s}(M)$. Then $D^{s}(T(Y)) = Cl(Y)$. Hence, Y is closed if and only if $D^{s}(T(Y)) = Y$.

Proof. Suppose that $Y \subseteq Spec^{s}(M)$ is closed. Clearly, $Y \subseteq D^{s}(T(Y))$. Now, suppose that $D^{s}(N)$ is a closed subset of $Spec^{s}(M)$ with $Y \subseteq D^{s}(N)$. Then $(0_{M}:N) \leq (0_{M}:K)$ for each $K \in Y$ and so $(0_{M}:N) \leq \wedge_{K \in Y}(0_{M}:K)$. But by Lemma 2.31(5), we have $\wedge_{K \in Y}(0_{M}:K) = (0_{M}: \vee_{K \in Y}K)$, therefore $(0_{M}:N) \leq (0_{M}: \vee_{K \in Y}K) = (0_{M}:T(Y))$. Thus $(0_{M}:N) \leq (0_{M}:T(Y)) \leq (0_{M}:Q)$ for $Q \in D^{s}(T(Y))$. This implies $D^{s}(T(Y)) \subseteq D^{s}(N)$ and hence $D^{s}(T(Y))$ is the smallest closed subset of $Spec^{s}(M)$ containing Y. Consequently, $D^{s}(T(Y)) = Cl(Y)$.

Lemma 2.21 [10]. Let M be a lattice L-module. Then M is a comultiplication lattice L-module if and only if $N = (0_M : (0_M : N))$ for every $N \in M$.

Theorem 2.22. Let M be a comultiplication lattice module over a C-lattice L. Then $Spec^{s}(M)$ is a T_{0} -space.

Proof. Suppose that $N, K \in Spec^{s}(M)$. Then by Lemma 2.20 and Lemma 2.10(1), we have $Cl(\{N\}) = Cl(\{K\})$ if and only if $D^{s}(N) = D^{s}(K)$ if and only if $(0_{M} : N) = (0_{M} : K)$ and by Lemma 2.6 and Lemma 2.21 we have $(0_{M} : N) = (0_{M} : K)$ if and only if N = K. This implies closures of distinct points are distinct, and so $Spec^{s}(M)$ is a T_{0} -space.

Lemma 2.23. Let M be a lattice module over a C-lattice L and $S \in Spec^{s}(M)$. Then the following statements hold.

- 1. $Cl(\{S\}) = D^{s}(S)$.
- 2. $K \in Cl(\{S\})$ implies $D^{s}(K) \subseteq D^{s}(S)$. Also, the converse is true if $K \in Spec^{s}(M)$.

Proof. (1) Suppose that $Y = \{S\}$. Then $T(Y) = \bigvee_{S \in Y} S = S$ and therefore by Lemma 2.20, $Cl(\{S\}) = D^s(T(Y)) = D^s(S)$.

(2) Suppose that $K \in Cl(\{S\})$. Then by (1), we have $K \in D^s(S)$ and so by definition $(0_M : S) \leq (0_M : K)$. If $P \in D^s(K)$, then $(0_M : K) \leq (0_M : P)$ and so, we have $(0_M : S) \leq (0_M : K) \leq (0_M : P)$ which implies $P \in D^s(S)$ and therefore $D^s(K) \subseteq D^s(S)$. Conversely, suppose that $K \in Spec^s(M)$ and $D^s(K) \subseteq D^s(S)$. Then $K \in D^s(K) \subseteq D^s(S)$. Therefore $(0_M : S) \leq (0_M : K)$ and hence $K \in Cl(\{S\})$ by (1). **Lemma 2.24.** Let M be a principally generated lattice module over a C-lattice L. If $K \in M$ is minimal then $(0_M : K)$ is a maximal element of L.

Proof. Suppose that $K \in M$ is minimal and $c \in L$ with $(0_M : K) \leq c$. Since K is minimal and $cK \leq K$, we have either cK = K or $cK = 0_M$. If cK = K, then $1_L = (cK : K)$. Since M is principally generated, we have $(cK : K) = c \lor (0_M : K)$, therefore $1_L = (cK : K) = c \lor (0_M : K) = c$. Now, if $cK = 0_M$, then $c \leq (0_M : K)$ and hence $c = (0_M : K)$. This implies, for $c \in L$ with $(0_M : K) \leq c$, either $1_L = c$ or $c = (0_M : K)$. Consequently, $(0_M : K)$ is a maximal element of L.

Lemma 2.25 [10]. Let M be a principally generated comultiplication lattice module over a multiplicative lattice L. Then M has a minimal element. In particular, every nonzero element of M has a minimal element.

Lemma 2.26 [10]. Let M be a principally generated comultiplication lattice module over a multiplicative lattice L. Then $K \in M$ is minimal if and only if $K = (0_M : p) \neq 0_M$ for some maximal element $p \in L$.

Theorem 2.27. Let M be a principally generated comultiplication lattice module over a C-lattice L and $S \in Spec^{s}(M)$. Then $\{S\}$ is closed in $Spec^{s}(M)$ if and only if S is minimal element of M and $Spec_{p}^{s}(M) = \{S\}$.

Proof. Suppose that S is a minimal element of M and $Spec_p^s(M) = \{S\}$. Then by Lemma 2.24, $(0_M : S)$ is a maximal element of L. Now, suppose that $K \in Cl(\{S\})$. Then by Lemma 2.23 (1), $K \in D^s(S)$, and so $(0_M : S) \leq (0_M : K)$. Since $(0_M : S)$ is a maximal element of L, we have $p = (0_M : S) = (0_M : K)$. Therefore $S, K \in Spec_p^s(M) = \{S\}$. This implies S = K and hence $Cl(\{S\}) = \{S\}$.

Conversely, suppose that $\{S\}$ is closed in $Spec^{s}(M)$ and S is not minimal. Then by Lemma 2.25, there exists a minimal element $N \leq S$ and so $(0_{M} : N)$ is a maximal element of L by Lemma 2.24. Since every maximal element is prime, we have $(0_{M} : N)$ is a prime element of L and therefore $N \in Spec^{s}(M)$ by Lemma 2.3. Now, we have $N, S \in Spec^{s}(M)$ with $N \leq S$, therefore $(0_{M} : S) \leq (0_{M} : N)$ by Lemma 2.6(3) and so $N \in D^{s}(S) = Cl(\{S\}) = \{S\}$ by Lemma 2.23. Hence N = S, and so by Lemma 2.6(3) $(0_{M} : N) = (0_{M} : S)$. Consequently, S is a minimal element of M and $Spec_{p}^{s}(M) = \{S\}$.

A topological space Z is irreducible if for any decomposition $Z \subseteq A_1 \cup A_2$ with closed subsets A_i of Z with i = 1, 2, we have $A_1 = Z$ or $A_2 = Z$. A subset Y of Z is irreducible if it is irreducible as a subspace of Z. An irreducible component of a topological space Z is a maximal irreducible subset of Z. A singleton subset and its closure in Z are irreducible (see [2]). **Lemma 2.28.** Let M be a lattice module over a C-lattice L and $S \in Spec^{s}(M)$. Then $D^{s}(S)$ is an irreducible closed subset of $Spec^{s}(M)$.

Proof. Note that, for $S \in Spec^{s}(M)$, the set $\{S\}$ is irreducible and also that $Cl(\{S\})$ irreducible. But by Lemma 2.23(1), we have $Cl(\{S\}) = D^{s}(S)$. Therefore $D^{s}(S)$ is an irreducible closed subset of $Spec^{s}(M)$.

Lemma 2.29 [11]. Let L be a multiplicative lattice and $S \subseteq Spec(L)$. Then S is irreducible if and only if the meet of all elements of S is prime.

Theorem 2.30. Let M be a lattice module over a C-lattice L and $Y \subseteq Spec^{s}(M)$. If T(Y) is a second element of M, then Y is irreducible. Conversely, if Y is irreducible, then $K = \{(0_M : S) | S \in Y\}$ is an irreducible subset of Spec(L) such that $T'(K) = (0_M : T(Y))$ is a prime element of L, where T'(K) is the meet of all elements of K.

Proof. Suppose that $Y \subseteq Y_1 \cup Y_2$, where Y_1 and Y_2 are two closed subsets of $Spec^s(M)$. Then by Lemma 2.23(1), and Lemma 2.28, there exist $N, K \in$ $Spec^s(M)$ such that $Y_1 = D^s(N)$ and $Y_2 = D^s(K)$. Therefore $Y \subseteq D^s(N) \cup$ $D^s(K)$. By Theorem 2.9(3), we have $D^s(N) \cup D^s(K) = D^s(N \vee K)$, so $Y \subseteq$ $D^s(N \vee K)$. This implies $(0_M : (N \vee K)) \leq (0_M : P)$ for $P \in Y$ and hence $(0_M : (N \vee K)) \leq \wedge_{P \in Y}(0_M : P)$. But by Lemma 2.2(3), we have $\wedge_{P \in Y}(0_M : P) =$ $(0_M : \vee_{P \in Y} P) = (0_M : T(Y))$, therefore $(0_M : (N \vee K)) = (0_M : N) \wedge (0_M : K)$ $\leq (0_M : T(Y))$. Since T(Y) is second, $(0_M : T(Y))$ is prime by Lemma 2.2 and hence quasi-prime, therefore $(0_M : N) \wedge (0_M : K) \leq (0_M : T(Y))$ implies either $(0_M : N) \leq (0_M : T(Y))$ or $(0_M : K) \leq (0_M : T(Y))$. Hence for $P \in Y$, $(0_M : N) \leq (0_M : T(Y)) \leq (0_M : P)$ or $(0_M : K) \leq (0_M : T(Y)) \leq (0_M : P)$. This implies $P \in D^s(N)$ or $P \in D^s(K)$ and hence $Y \subseteq D^s(N) = Y_1$ or $Y \subseteq$ $D^s(K) = Y_2$. Consequently, Y is irreducible.

Conversely, suppose that Y is irreducible. Then $\psi^s(Y) = K' = \{(0_M : S) | S \in Y\}$ is an irreducible subset of $Spec(L/(0_M : 1_M))$, since ψ^s is continuous. Therefore $K = \{(0_M : S) | S \in Y\}$ is an irreducible subset of Spec(L) and so $T'(K) = \bigwedge_{S \in Y} (0_M : S)$ is a prime element of L by Lemma 2.29. But by Lemma 2.31(5), $\bigwedge_{S \in Y} (0_M : S) = (0_M : \bigvee_{S \in Y} S) = (0_M : T(Y))$, therefore $T'(K) = (0_M : T(Y))$ is a prime element of L and so $K = \{(0_M : S) | S \in Y\}$ is an irreducible subset of Spec(L) by Lemma 2.29.

Corollary 2.31. Let M be a comultiplication lattice module over a C-lattice L and $Spec_p^s(M)$ is non-empty, for $p \in Spec(L)$. Then the following statements hold.

- 1. $Spec_n^s(M)$ is irreducible.
- 2. $Spec_p^s(M)$ is an irreducible closed subset of $Spec^s(M)$, if p is a maximal element of L.

Proof. (1) Suppose that $Spec_p^s(M)$ is non-empty. Then $(0_M : T(Spec_p^s(M)) = (0_M : \bigvee_{S \in Spec_p^s(M)}S) = \wedge_{S \in Spec_p^s(M)}(0_M : S)$ by Lemma 2.31(5). But $(0_M : S) = p$ for $S \in Spec_p^s(M)$, therefore $(0_M : T(Spec_p^s(M))) = \wedge_{S \in Spec_p^s(M)}(0_M : S) = \wedge_{S \in Spec_p^s(M)}p = p$ and hence $(0_M : T(Spec_p^s(M)))$ is a prime element of L. Therefore $T(Spec_p^s(M))$ is a second element of M by Lemma 2.3. Consequently, $Spec_p^s(M)$ is irreducible by Theorem 2.30.

(2) Note that, $Spec_p^s(M)$ is irreducible by (1).

Now, suppose that $Spec_p^s(M)$ is non-empty with maximal element $p \in L$. Then $Spec_p^s(M) = \{S \in Spec^s(M) | (0_M : S) = p\}$. By Lemma 2.6(1), we have $p \leq (0_M : (0_M : p))$, therefore $Spec_p^s(M) = \{S \in Spec^s(M) | p = (0_M : (0_M : p)) = (0_M : S)\}$ by maximality of p and so $Spec_p^s(M) = D^s((0_M : p))$ is closed by Theorem 2.9. Consequently, $Spec_p^s(M)$ is an irreducible closed subset of $Spec^s(M)$.

Theorem 2.32. Let M be a lattice module over a C-lattice L and $Y \subseteq Spec^{s}(M)$ with $(0_{M} : T(Y)) = p$ is a prime element of L. Then Y is irreducible if $Spec_{p}^{s}(M)$ is non-empty.

Proof. Suppose that $Spec_p^s(M)$ is non-empty and $Y \subseteq Spec^s(M)$ with $(0_M : T(Y)) = p$ is a prime element of L. Then $(0_M : T(Y)) = p = (0_M : S)$ for each $S \in Spec_p^s(M)$. Therefore $D^s(S) = D^s(T(Y))$ by Lemma 2.10(1) and so $D^s(S) = D^s(T(Y)) = Cl(\{Y\})$ by Lemma 2.20. Hence $Cl(\{Y\})$ is irreducible by Lemma 2.28. Consequently, Y is irreducible.

Let Y be a closed subset of a topological space. An element $y \in Y$ is called a *generic point* of Y, if $Y = Cl(\{y\})$ (see [2]). By Proposition 2.23(1), we observe that, $S \in Spec^{s}(M)$ is a generic point of the irreducible closed subset $D^{s}(S)$.

Theorem 2.33. Let M be a lattice module over a C-lattice L with the surjective natural map ψ^s and $Y \subseteq Spec^s(M)$. Then Y is an irreducible closed subset of $Spec^s(M)$ if and only if $Y = D^s(S)$ for some $S \in Spec^s(M)$. Hence, every irreducible closed subset of $Spec^s(M)$ has a generic point.

Proof. By Lemma 2.28, $Y = D^s(S)$ is an irreducible closed subset of $Spec^s(M)$. Conversely, suppose that Y is an irreducible closed subset of $Spec^s(M)$. Then by Theorem 2.30, $(0_M : T(Y)) = p$ is a prime element of L. Since ψ^s is surjective, there exists $S \in Spec^s(M)$ with $(0_M : S) = (0_M : T(Y)) = p$, therefore $D^s(S) =$ $D^s(T(Y))$ by Lemma 2.10(1) and hence $D^s(T(Y)) = Cl(Y)$ by Lemma 2.20. Thus $D^s(S) = Cl(Y)$. Since Y is closed, Cl(Y) = Y. Consequently, $D^s(S) = Y$ for some $S \in Spec^s(M)$. ■

Theorem 2.34. Let M be a principally generated comultiplication lattice module over a C-lattice L. Then $Spec^{s}(M)$ is a T_{1} -space if and only if $Spec^{s}(M) = Min(M)$. **Proof.** Note that, $Min(M) \subseteq Spec^{s}(M)$. Suppose that $Spec^{s}(M)$ is a T_{1} -space. Then for $S \in Spec^{s}(M)$, $\{S\}$ is closed in $Spec^{s}(M)$. Therefore $S \in Min(M)$ by Theorem 2.27 and so $Spec^{s}(M) \subseteq Min(M)$. Consequently, $Spec^{s}(M) = Min(M)$.

Conversely, suppose that $Spec^{s}(M) = Min(M)$ and $S \in Spec^{s}(M)$. Then $(0_{M} : S) = p$ is a prime element of L by Lemma 2.2, therefore $S \in Spec_{p}^{s}(M)$. Now, suppose that $N \in Spec_{p}^{s}(M)$. Then N is second element with $(0_{M} : N) = p$. Since $Spec^{s}(M) = Min(M)$, N is a minimal element of M. By Lemma 2.6(5), $(0_{M} : S \lor N) = (0_{M} : S) \land (0_{M} : N) = p \land p = p$, therefore $S \lor N \in Spec^{s}(M)$ by Lemma 2.3 and hence $S \lor N \in Min(M)$ since $Spec^{s}(M) = Min(M)$. Thus $N = S \lor N$ and so $S \leq N$. Since N is a minimal element of M, N = S and so $\{S\}$ is closed in $Spec^{s}(M)$ by Theorem 2.27. Thus every singleton subset is closed and consequently, $Spec^{s}(M)$ is T_{1} -space.

Definition 2.35 [12]. Topological space Z is spectral space if Z satisfy the conditions: (1) Z is a T_0 -space, (2) Z is quasi-compact, (3) The quasi-compact open subsets of Z are closed under finite intersection and form an open base and (4) Each irreducible closed subset of Z has a generic point.

The following Theorem follows immediately from Theorem 2.17, Theorem 2.18 and Theorem 2.33.

Theorem 2.36. Let M be a lattice module over a C-lattice L and ψ^s be the surjective natural map. Then $Spec^s(M)$ is spectral if and only if it is T_0 -space.

References

- H. Ansari-Toroghy and F. Farshadifar, The Zariski topology on the second spectrum of a module, Algebr. Colloq. 21 (2014) 671–688. doi:10.1142/S1005386714000625
- [2] M.F. Atiyah and I.G. Macdonald, Introduction to Commutative Algebra (Addison-Wesley, 1969).
- [3] E.A. AL-Khouja, Maximal elements and prime elements in lattice modules, Damascus Univ. Basic Sci. 19 (2003) 9–20.
- [4] S. Ballal and V. Kharat, On generalization of prime, weakly prime and almost prime elements in multiplicative lattices, Int. J. Algebra 8 (2014) 439–449. doi:10.12988/ija.2014.4434
- [5] S. Ballal and V. Kharat, Zariski topology on lattice modules, Asian Eur. J. Math. 8 1550066 (2015) (10 pages). doi:10.1142/S1793557115500667.
- [6] S. Ballal and V. Kharat, On φ-absorbing primary elements in lattice modules, Algebra (2015) 183930 (6 pages). doi:10.1155/2015/183930

- [7] S. Ballal, M. Gophane and V. Kharat, On weakly primary elements in multiplicative lattices, Southeast Asian Bull. Math. 40 (2016) 49–57.
- [8] M. Behboodi and M.R. Haddadi, Classical Zariski topology of modules and spectral spaces I, Int. Electron. J. Algebra 4 (2008) 104–130.
- M. Behboodi and M.R. Haddadi, Classical Zariski topology of modules and spectral spaces II, Int. Electron. J. Algebra 4 (2008) 131–148.
- [10] F. Callialp, U. Tekir and G. Ulucak, *Comultiplication lattice modules*, Iranian Journal of Science and Technology, A2 39 (2015) 213–220.
- [11] F. Çallialp, G. Ulucak and U. Tekir, On the Zariski topology over an L-module M, Turk. J. Math. doi:10.3906/mat-1502-31
- M. Hochster, Prime ideal structure in commutative rings, Trans. Amer. Math. Soc. 142 (1969) 43–60. doi:10.1090/S0002-9947-1969-0251026-X
- [13] V. Joshi and S. Ballal, A note on n-Baer multiplicative lattices, Southeast Asian Bull. Math. 39 (2015) 67–76.
- [14] J.A. Johnson, a-adic completions of Noetherian lattice modules, Fund. Math. 66 (1970) 341–371.
- [15] C.P. Lu, The Zariski topology on the prime spectrum of a module, Houston J. Math. 25 (1999) 417–425.
- [16] J.R. Munkres, Topology, Second Ed. (Prentice Hall, New Jersey, 1999).
- [17] R.L. McCasland, M.E. Moore and P.F. Smith, On the spectrum of a module over a commutative ring, Comm. Algebra 25 (1997) 79–103. doi:10.1080/00927879708825840
- [18] N.K. Thakare, C.S. Manjarekar and S. Maeda, Abstract spectral theory II: minimal characters and minimal spectrums of multiplicative lattices, Acta Sci. Math. 52 (1988) 53–67.
- [19] N.K. Thakare and C.S. Manjarekar, Abstract spectral theory: Multiplicative lattices in which every character is contained in a unique maximal character, in: Algebra and Its Applications (Marcel Dekker, New York, 1984), pp. 265–276.
- [20] N. Phadatare, S. Ballal and V. Kharat, On the quasi-prime spectrum of lattice modules, (Communicated).

Received 31 August 2016 Revised 8 January 2017