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Abstract

The second spectrum Specs(M) is the collection of all second elements
of M . In this paper, we study the topology on Specs(M), which is a gener-
alization of the Zariski topology on the prime spectrum of lattice modules.
Besides some properties, Specs(M) is characterized and the interrelations
between the topological properties of Specs(M) and the algebraic properties
of M , are studied.
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1. Introduction

The Zariski topology for second spectrum of a module over a commutative ring is
being introduce and studied by Ansari-Toroghy, Farshadifar in [1]. As a general-
ization of most of the results in [1], we introduce the concept of second elements
of a lattice module M over a C-lattice L and also study the Zariski topology on
Specs(M), the collection of all second elements of a lattice module M .

The concept of second element of a comultiplication lattice module was in-
troduced in [10]. A lattice module M is said to be comultiplication if for every
element N of M , there exists an element a ∈ L such that N = (0M : a) and an
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element 0M 6= N ∈ M is said to be second, if for each a ∈ L, either aN = N or
aN = 0M .

There are many generalizations of the Zariski topology over the set of all
prime submodules of a R-module M (see [1, 5, 8, 9, 15, 17]). In [5], the Zariski
topology over the prime spectrum Spec(M) of a lattice module M over a C-
lattice L has been studied by Sachin Ballal and Villas Kharat. In [20], authors
introduced and studied the concept of quasi-prime elements as a generalization
of prime elements and also the Zariski topology on the quasi-prime spectrum of
a lattice module M over a C-lattice L.

The Zariski topology on the set Spec(L) of all prime elements in multiplica-
tive lattices is being studied in [18] by Thakare, Manjarekar and Maeda, and in
[19] by Thakare and Manjarekar as a generalization of the Zariski topology of a
commutative ring with unity.

A lattice L is said to be complete, if for any subset S of L, we have ∨S,∧S ∈ L.
A complete lattice L is said to be amultiplicative lattice, if there is defined a binary
operation ”.” called multiplication on L satisfying the following conditions:

(1) a.b = b.a, for all a, b, c ∈ L;

(2) a.(b.c) = (a.b).c, for all a, b, c ∈ L;

(3) a.(∨αbα) = ∨α(a.bα), for all a, bα ∈ L;

(4) a.1 = a, for all a ∈ L.

Henceforth, a.b will be simply denoted by ab. An element e ∈ L is said to be
meet principal (respectively, join principal) if it satisfies the identity a ∧ be =
((a : e)∧ b)e (respectively, ((ae∨ b) : e) = a∨ (b : e)), for all a, b ∈ L. An element
e ∈ L is said to be principal if it is both meet as well as join principal. If each
element of L is the join of principal elements of L, then L is called principally

generated.

An element a in L is called compact if a ≤
∨

α∈I bα(I is an indexed set) implies
a ≤ bα1 ∨ bα2 ∨ · · · ∨ bαn for some subset {α1, α2, . . . , αn} of I. By a C-lattice, we
mean a multiplicative lattice L, with least element 0L and greatest element 1L
which is compact as well as multiplicative identity, that is generated under joins
by a multiplicatively closed subset C of compact elements of L. Throughout this
paper, L will be a C-lattice.

An element p ∈ L is said to be proper if p < 1. A proper element m of
a multiplicative lattice L is said to be maximal if m < x ≤ 1 implies x = 1,
x ∈ L. A proper element m of a multiplicative lattice L is said to be minimal if
0 ≤ x < m implies x = 0, x ∈ L. A proper element p of a multiplicative lattice
L is said to be prime if ab ≤ p implies either a ≤ p or b ≤ p. A proper element
p of a multiplicative lattice L is said to be quasi-prime if a∧ b ≤ p implies either
a ≤ p or b ≤ p. For any a ∈ L, its radical is denoted by

√
a and defined as√

a = ∨{x ∈ L|xn ≤ a, for some n ∈ Z+} = ∧{p ∈ L|a ≤ p and p is a prime }.
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An element a ∈ L with
√
a = a is called semiprime or radical.

A complete lattice M is said to be lattice module over a multiplicative lattice
L, or L-module, if there is a multiplication between elements ofM and L, denoted
by aN ∈M , for a ∈ L and N ∈M , which satisfies the following properties:

1. (ab)N = a(bN);

2. (
∨

α aα)(
∨

β Nβ) = (
∨

αβ aαNβ);

3. 1LN = N ;

4. 0LN = 0M ; for all a, b, aα ∈ L, and for all N,Nβ ∈M .

The greatest element of M will be denoted by 1M and the smallest element will
be denoted by 0M . For N ∈ M , b ∈ L, denote (N : b) = ∨{K ∈ M |bK ≤ N}.
For a, b ∈ L, we write (a : b) = ∨{x ∈ L|bx ≤ a} and for A,B ∈ M , (A : B) =
∨{x ∈ L|Bx ≤ A}. An element A ∈ M is said to be weak meet principal if
(B : A)A = B ∧ A for all B ∈ M ; weak join principal if (bA : A) = b ∨ (0M : A)
for all b ∈ L; and weak principal if A is both weak meet principal and weak join
principal. An element N ∈ M is said to be compact if N ≤

∨
α∈I Aα(I is an

indexed set) implies N ≤ Aα1 ∨Aα2 ∨ · · · ∨Aαn for some subset {α1, α2, . . . , αn}
of I. If each element of M is the join of principal (compact) elements of M , then
M is called principally generated (compactly generated).

An element N < 1M in M is said to be prime if aX ≤ N implies X ≤ N or
a1M ≤ N , i.e., a ≤ (N : 1M ) for a ∈ L and X ∈ M . An element N < 1M in M
is said to be quasi-prime if (N : 1M ) is a quasi-prime element of L. Note that,
every prime element in M is quasi-prime. An element N < 1M of M is said to
be maximal if N ≤ B implies either N = B or B = 1M , B ∈ M . A non-zero
element K 6= 1M of M is said to be minimal if 0M ≤ N < K implies N = 0M ,
N ∈M .

Further, all these concepts and for more information on multiplicative lattices
and lattice modules, the reader may refer ([3–7, 10–13, 18, 19]).

2. Topology on Specs(M)

Here, we define the second element for a lattice module M over a C-lattice L.

Definition 2.1. Let M be a lattice module over a C-lattice L. A non-zero
element N ∈M is said to be second, if for a ∈ L, either aN = N or aN = 0M .

Note that, every minimal element of M is second.

Lemma 2.2. Let M be a lattice module over a C-lattice L and N ∈M . If N is

second then (0M : N) is a prime element of L.
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Proof. Suppose that N is a second element of M and abN = 0M for a, b ∈ L
with bN 6= 0M . Since N is second, bN = N and so aN = 0M , i.e., a ≤ (0M : N).
Consequently, (0M : N) is a prime element of L.

Converse of Lemma 2.2 is true for comultiplication lattice module (see [10]).

Lemma 2.3 [10]. LetM be a comultiplication lattice module over a multiplicative

lattice L and N ∈M . Then N is second if and only if (0M : N) is a prime element

in L.

Example 2.4. The lattice depicted in Figure (a) is a multiplicative lattice L
and the lattice depicted in Figure (b) is a lattice module M over a multiplicative
lattice L. Note that, X is a second element of M but Y,Z, P and 1M are not
second elements of M .

0L

a b

c d

1L

. 0L a b c d 1L
0L 0L 0L 0L 0L 0L 0L
a 0L a 0L a 0L a

b 0L 0L 0L 0L b b

c 0L a 0L a b c

d 0L 0L b b d d

1L 0L a b c d 1L

Figure (a). Multiplicative Lattice L.

0M

(Second)X

P

Y

Z

1M

. 0M X Y Z P 1M
0L 0M 0M 0M 0M 0M 0M
a 0M 0M 0M 0M 0M 0M
b 0M 0M X X X X

c 0M 0M X X X X

d 0M X Y Z P 1M
1L 0M X Y Z P 1M

Figure (b). Lattice Module M over L.

Example 2.5. The lattice depicted in Figure (a) is a multiplicative lattice L
and the lattice depicted in Figure (b) is a Lattice moduleM over a multiplicative
lattice L. Note that, all non-zero elements of M are second elements of M .



On the second spectrum of lattice modules 63

0L

a b

c d

1L

. 0L a b c d 1L
0L 0L 0L 0L 0L 0L 0L
a 0L a 0L a 0L a

b 0L 0L 0L 0L b b

c 0L a 0L a b c

d 0L 0L b b d d

1L 0L a b c d 1L

Figure (a). Multiplicative Lattice L.

0M

X

ZY

P

1M

. 0M X Y Z P 1M
0L 0M 0M 0M 0M 0M 0M
a 0M X Y Z P 1M
b 0M 0M 0M 0M 0M 0M
c 0M X Y Z P 1M
d 0M 0M 0M 0M 0M 0M
1L 0M X Y Z P 1M

Figure (b). Lattice Module M over L.

The following result is useful throughout the paper.

Lemma 2.6 [14]. Let M be a lattice module over a multiplicative lattice L. Then
for x ∈ L and A,B,C ∈M , following holds:

1. x ≤ (0M : (0M : x)).

2. A ≤ (0M : (0M : A)).

3. If A ≤ B then (C : B) ≤ (C : A).

4. (0M : A) = (0M : (0M : (0M : A))).

5. (A : B ∨ C) = (A : B) ∧ (A : C).

Let M be a lattice module over a C-lattice L. Consider the set Specs(M)
of second elements of a lattice module M . Since every minimal element of M
is second, Min(M) ⊆ Specs(M), where Min(M) is the set of all minimal ele-
ments of M . Also, Ds∗(N) = {S ∈ Specs(M)|S ≤ N}, for N ∈ M . Note that
Ds∗(1M ) = Specs(M), and Ds∗(0M ) is an empty set.
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Proposition 2.7. LetM be a lattice module over a C-lattice L and N,Ni,K ∈M
(i ∈ I). Then the following statements hold.

1. ∩i∈ID
s∗(Ni) = Ds∗(∧i∈INi).

2. Ds∗(N) ∪Ds∗(K) ⊆ Ds∗(N ∨K).

Proof. (1) Note that, Ds∗(∧i∈INi) ⊆ Ds∗(Ni) for each i, since ∧i∈INi ≤ Ni.
Hence Ds∗(∧i∈INi) ⊆ ∩i∈ID

s∗(Ni).

Now, suppose that K ∈ ∩i∈ID
s∗(Ni). Then for each i, K ∈ Ds∗(Ni) there-

fore K ≤ Ni. This implies K ≤ ∧i∈INi and so ∩i∈ID
s∗(Ni) ⊆ Ds∗(∧i∈INi).

Consequently, ∩i∈ID
s∗(Ni) = Ds∗(∧i∈INi).

(2) Since N,K ≤ N ∨ K, we have Ds∗(N),Ds∗(K) ⊆ Ds∗(N ∨ K) and so
Ds∗(N) ∪Ds∗(K) ⊆ Ds∗(N ∨K).

We note from Proposition 2.7 that, the set ζs∗(M) = {Ds∗(N)|N ∈ M}
forms a topology if and only if it is closed under finite union. In this case,
ζs∗(M) induces a topology τ s∗ on Specs(M), and we call it the Zariski topology.

Proposition 2.8. Let M be a lattice module over a C-lattice L and a, b ∈ L.
Then Ds∗((0M : a)) ∪Ds∗((0M : b)) = Ds∗((0M : ab)).

Proof. Note that Ds∗((0M : a)) ∪Ds∗((0M : b)) ⊆ Ds∗((0M : ab) for a, b ∈ L.

Now, suppose that S ∈ Ds∗((0M : ab)) with S /∈ Ds∗((0M : b)). We claim
that S ∈ Ds∗((0M : a)). By assumption S ≤ (0M : ab) and S � (0M : b), therefore
abS = 0M and bS 6= 0M . Since S is a second element of M and bS 6= 0M , we
have bS = S. Therefore abS = aS = 0M and so S ≤ (0M : a). Consequently,
S ∈ Ds∗((0M : a)).

From Proposition 2.7 and Proposition 2.8, we observe that, the set {Ds∗((0M :
a))|a ∈ L} forms a topology, say τ

′s on Specs(M).

It clear from Proposition 2.7 that, the collection {Ds∗(N)|N ∈M} need not
be closed under finite union. So for N ∈ M , we define a new set Ds(N) = {S ∈
Specs(M)|(0M : N) ≤ (0M : S)} and we have the following Theorem.

Theorem 2.9. Let M be a lattice module over a C-lattice L and N,Ni,K ∈M
(i ∈ I). Then the following statements hold.

1. Ds(1M ) = Specs(M), and Ds(0M ) is an empty set.

2. ∩i∈ID
s(Ni) = Ds(∧i∈I(0M : (0M : Ni))).

3. Ds(N) ∪Ds(K) = Ds(N ∨K).

Proof. (1) By definition Ds(1M ) = {S ∈ Specs(M)|(0M : 1M ) = 0L ≤ (0M :
S)} = Specs(M) and Ds(0M ) = {S ∈ Specs(M)|(0M : 0M ) = 1L ≤ (0M : S)} is
empty.
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(2) Suppose that S ∈ ∩i∈ID
s(Ni). Then S ∈ Ds(Ni), for each i ∈ I therefore

(0M : Ni) ≤ (0M : S), for each i ∈ I and so ∨i∈I(0M : Ni) ≤ (0M : S). Therefore
(0M : (0M : ∨i∈I(0M : Ni))) ≤ (0M : (0M : (0M : S))) = (0M : S) by Lemma
2.31(3) and Lemma 2.31(4) and hence S ∈ Ds(∧i∈I(0M : (0M : Ni) by Lemma
2.31(5).

Now, suppose that K ∈ Ds(∧i∈I(0M : (0M : Ni)). Then (0M : ∧i∈I(0M :
(0M : Ni)) ≤ (0M : K), and hence (0M : (0M : K)) ≤ (0M : (0M : ∧i∈I(0M : (0M :
Ni))) = ∧i∈I(0M : (0M : Ni)) by Lemma 2.31 (3) and Lemma 2.31(4). Therefore
(0M : (0M : K)) ≤ (0M : (0M : Ni)) for each i ∈ I and so (0M : Ni) ≤ (0M : K),
for each i ∈ I by Lemma 2.31(3) and Lemma 2.31(4). Thus K ∈ Ds(Ni) for each
i ∈ I and consequently, K ∈ ∩i∈ID

s(Ni).

(3) Note that Ds(N) ∪Ds(K) ⊆ Ds(N ∨K) for N,K ∈M .

Now, suppose that S ∈ Ds(N ∨ K). Then (0M : N ∨ K) ≤ (0M : S)
and so (0M : N) ∧ (0M : K) ≤ (0M : S) by Lemma 2.31(5). Since S is second,
(0M : S) is a prime element of L by Lemma 2.2, and hence quasi-prime. Therefore
(0M : N) ≤ (0M : S) or (0M : N) ≤ (0M : S) by definition of quasi-prime element
and so S ∈ Ds(N) or S ∈ Ds(K). Consequently, S ∈ Ds(N) ∪Ds(K).

Theorem 2.9 shows that, there exists a topology, say τ s on Specs(M) having
{Ds(N)|N ∈M} as a family of closed sets.

We denote Specsp(M) = {N ∈M |N is second and (0M : N) = p}, where p is
a prime element of L and for a ∈ L, Ds((0M : a)) = {S ∈ Specs(M)|(0M : (0M :
a)) ≤ (0M : S)}.

Lemma 2.10. Let M be a lattice module over a C-lattice L and N,K ∈ M .

Then the following statements hold.

1. If (0M : N) = (0M : K), then Ds(N) = Ds(K). Also, the converse is true if

N,K ∈ Specs(M).

2. Ds(N) = ∪p∈Ds((0M :N))Spec
s
p(M).

3. Ds(N) = Ds((0M : (0M : N))) = Ds∗((0M : (0M : N))). In particular, we

have Ds((0M : a)) = Ds∗((0M : a)) for a ∈ L.

Proof. (1) Suppose that (0M : N) = (0M : K) and S ∈ Ds(N). Then (0M :
N) ≤ (0M : S) and so (0M : K) ≤ (0M : S). Therefore S ∈ Ds(K) and so
Ds(N) ⊆ Ds(K). Similarly, Ds(K) ⊆ Ds(N).

Conversely, suppose that Ds(N) = Ds(K) and N,K ∈ Specs(M). Given
N ∈ Ds(N) and Ds(N) = Ds(K), therefore (0M : K) ≤ (0M : N) and (0M :
N) ≤ (0M : K). Consequently, (0M : N) = (0M : K).

(2) Suppose that P ∈ Ds(N). Then (0M : N) ≤ (0M : P ) = p. Therefore
P ∈ ∪p∈Ds((0M :N))Spec

s
p(M). Consequently, Ds(N) ⊆ ∪p∈Ds((0M :N))Spec

s
p(M).
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Now, suppose that K ∈ ∪p∈Ds((0M :N))Spec
s
p(M). Then there exists a ∈

Ds((0M : N)) with (0M : N) ≤ a = (0M : K) and hence K ∈ Ds(N), therefore
∪p∈Ds((0M :N)) ⊆ Ds(N). Consequently, Ds(N) = ∪p∈Ds((0M :N))Spec

s
p(M).

(3) Suppose that S ∈ Ds(N). Then (0M : N) ≤ (0M : S) and so (0M : (0M :
(0M : N))) ≤ (0M : (0M : (0M : S))) = (0M : S) by Lemma 2.31(3) and Lemma
2.31(4), therefore S ∈ Ds((0M : (0M : N))). ThusDs(N) ⊆ Ds((0M : (0M : N))).

Now, suppose that S ∈ Ds((0M : (0M : N))). Then (0M : (0M : (0M : N))) ≤
(0M : S), i.e., (0M : N) ≤ (0M : S) by Lemma 2.31(3) and hence S ∈ Ds(N).
Consequently, Ds(N) = Ds((0M : (0M : N))).

Next, suppose that K ∈ Ds(N). Then (0M : N) ≤ (0M : K) and so K ≤
(0M : (0M : K)) ≤ (0M : (0M : N)) by Lemma 2.31(2) and Lemma 2.31(3),
therefore K ∈ Ds∗((0M : (0M : N))). Thus Ds(N) ⊆ Ds∗((0M : (0M : N))).

Now, P ∈ Ds∗((0M : (0M : N))) implies P ≤ (0M : (0M : N)) and hence
(0M : (0M : (0M : N))) ≤ (0M : P ) by Lemma 2.31(3). Therefore (0M : N) ≤
(0M : P ) by Lemma 2.31(4) and so P ∈ Ds(N). Thus Ds∗((0M : (0M : N))) ⊆
Ds(N). Consequently, Ds(N) = Ds∗((0M : (0M : N))).

In what follows and thereafter, the map ψs : Specs(M) → Spec(L/(0M : 1M ))
defined by ψs(N) = (0M : N) is called the natural map of Specs(M), where M
is a lattice module over a C-lattice L.

Lemma 2.11. Let M be a lattice module over a C-lattice L. Then the natural

map ψs is continuous; more precisely, (ψs)−1D(a) = Ds((0M : a)) for a ∈ L with

(0M : 1M ) ≤ a.

Proof. Given S ∈ (ψs)−1(D(a)), there exists b ∈ D(a) with S = (ψs)−1(b).
Therefore ψs(S) = b and so (0M : S) = b. Thus a ≤ (0M : S) = b and hence a ≤
(0M : S) = b. We conclude that, (0M : (0M : a)) ≤ (0M : S) by Lemma 2.31(3)
and Lemma 2.31(4). Which implies that S ∈ Ds((0M : a)). Thus (ψs)−1(D(a)) ⊆
Ds((0M : a)).

Now, suppose that K ∈ Ds((0M : a)). Then (0M : (0M : a)) ≤ (0M : K).
But by Lemma 2.31(1), a ≤ (0M : (0M : a)), therefore a ≤ (0M : (0M : a)) ≤
(0M : K). HenceK ∈ (ψs)−1D(a). Consequently, (ψs)−1D(a) = Ds((0M : a)).

Theorem 2.12. LetM be a lattice module over a C-lattice L. Then the following

statements are equivalent.

1. The natural map ψs : Specs(M) → Spec(L/(0M : 1M )) is injective.

2. For N,K ∈ Specs(M), if Ds(N) = Ds(K) then N = K.

3. |Specsp(M)| ≤ 1 for p ∈ Spec(L).

Proof. (1) ⇒ (2) Suppose that the natural map ψs is injective and Ds(N) =
Ds(K) for N,K ∈ Specs(M). Then (0M : N) = (0M : K), by Lemma 2.10(1).
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Therefore (0M : N) = (0M : K), and hence ψs(N) = ψs(K), consequently, K =
N , since ψs is injective.

(2) ⇒ (3) Suppose that K,N ∈ Specsp(M) for some p ∈ Spec(L). Then (0M :
N) = (0M : K) = p and hence Ds(N) = Ds(K) by Lemma 2.10 (1) and N = K
by (2).

(3) ⇒ (1) Suppose that ψs(K) = ψs(N) = a for K,N ∈ Specs(M). Then
(0M : K) = (0M : N) = a. Therefore (0M : K) = (0M : N) = a and so K = N
by (3). Thus, ψs is injective.

Theorem 2.13. Let M be a lattice module over a C-lattice L. If the natural

map ψs is surjective, then it is both closed and open. More precisely, for every

N ∈M , ψs(Ds(N)) = D((0M : N)) and ψs(Specs(M)−Ds(N)) = Spec(L/(0M :
1M ))−D((0M : N)).

Proof. Suppose that ψs is surjective. By Lemma 2.11, we have
(ψs)−1(D((0M : N))) = Ds((0M : (0M : N))) again by Lemma 2.10(3), we have
Ds((0M : (0M : N))) = Ds(N), therefore (ψs)−1(D((0M : N))) = Ds(N). Since
ψs is surjective, ψs ◦ (ψs)−1(D((0M : N))) = ψs(Ds(N)), therefore ψs(Ds(N)) =
D((0M : N)) and hence ψs is closed. Similarly, ψs(Specs(M) − Ds(N)) =
Spec(L/(0M : 1M ))−D((0M : N)), i.e., ψs open.

Corollary 2.14. Let M be a lattice module over a C-lattice L. If the natural

map ψs is surjective, then it is bijective if and only if it is homeomorphism.

Now, we introduce an open base for the Zariski topology on Specs(M). For
each r ∈ L, define Xs(r) = Specs(M)−Ds((0M : r)). Then Xs(r) is an open set
of Specs(M).

Lemma 2.15. Let M be a lattice module over a C-lattice L. Then the set B =
{Xs(a)|a ∈ L} forms an open base for the Zariski topology on Specs(M).

Proof. Suppose that Specs(M) is non-empty and U is an open subset of
Specs(M). Then for N ∈ M , U = Specs(M) −Ds(N) = Specs(M) −Ds((0M :
(0M : N))) by Lemma 2.10(3). Therefore U = Specs(M)−Ds(N) = Specs(M)−
Ds((0M : (0M : N))) = Specs(M)−Ds((0M : ∨{x ∈ L|xN = 0M})) = Specs(M)
−Ds(∧{x∈L|xN=0M}(0M : x)) by Lemma 2.6(5). By Theorem 2.9(2), we have
Ds(∧{x∈L|xN=0M}(0M : x))=∩{x∈L|xN=0M}D

s((0M : x)), therefore U=Specs(M)
−Ds(∧{x∈L|xN=0M}(0M : x)) = Specs(M) − ∩{x∈L|xN=0M}D

s((0M : x)) =
∪{x∈L|xN=0M}(Spec

s(M)−Ds((0M : x))) = ∪{x∈L|xN=0M}X
s(x).

Theorem 2.16. LetM be a lattice module over a C-lattice L. Then for a ∈ L and

the natural map ψs : Specs(M) → Spec(L/(0M : 1M )), the following statements

hold.
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1. (ψs)−1(X(a)) = Xs(a), where X(a) = Spec(L)−D(a).

2. ψs(Xs(a)) ⊆ X(a) and if ψs is surjective, then ψs(Xs(a)) = X(a).

Proof. (1) Consider (ψs)−1(X(a)) = (ψs)−1(Spec(L) − D(a)) = Specs(M) −
(ψs)−1(D(a)) = Specs(M)−Ds((0M : a)) = Xs(a), where (ψs)−1D(a) = Ds((0M :
a)) for a ∈ L with (0M : 1M ) ≤ a by Lemma 2.11.

(2) Follows from (1).

Theorem 2.17. Let M be a lattice module over a C-lattice L. Then Xs(ab) =
Xs(a) ∩Xs(b) for a, b ∈ L.

Proof. By Theorem 2.16(1), we haveXs(ab) = (ψs)−1(X(ab)). ThereforeXs(ab)
= (ψs)−1(X(ab)) = (ψs)−1(Specs(L) − D(ab)) = Specs(M) − (ψs)−1(D(ab)) =
Specs(M) − Ds((0M : ab)) = Specs(M) − Ds∗((0M : ab)) by Lemma 2.11 and
Lemma 2.10(3). But by Proposition 2.8, we have Ds∗((0M : a))∪Ds∗((0M : b)) =
Ds∗((0M : ab)), therefore Xs(ab) = Specs(M) − Ds∗((0M : ab)) = Specs(M) −
(Ds∗((0M : a)) ∪ Ds∗((0M : b))) = (Specs(M) − Ds∗((0M : a)) ∩ (Specs(M) −
Ds∗((0M : b))) = (Specs(M) − Ds((0M : a)) ∩ (Specs(M) − Ds((0M : b))) =
Xs(a) ∩Xs(b).

A topological space Z is called quasi-compact if each of its open covers has
a finite subcover (see [16]). We recall that Spec(L) is quasi-compact if L is
compactly generated multiplicative lattice with 1L compact (see[18]).

Theorem 2.18. Let M be a lattice module over a C-lattice L and the natural

map ψs is surjective. Then for r ∈ L, the open set Xs(r) is quasi-compact. In

particular, the space Specs(M) is quasi-compact.

Proof. Suppose that the natural map ψs is surjective. By Lemma 2.15, the
set B = {Xs(a)|a ∈ L} is an open base for the Zariski topology on Specs(M).
Let {aλ ∈ L|λ ∈ Λ} be such that Specs(M) = ∪λ∈ΛX

s(aλ). Then by The-
orem 2.16(2), Spec(L) = X(1L) = ψs(Xs(1L)) = ψs(Specs(M) − Ds((0M :
1L))) = ψs(Specs(M)) = ψs(∪λ∈ΛX

s(aλ)) = ∪λ∈Λψ
s(Xs(aλ)) = ∪λ∈ΛX(aλ).

Since Spec(L) is quasi-compact, there exists a finite subset Λ
′

of Λ such that
Spec(L) ⊆ ∪

λ∈Λ′X(a,
λ
) therefore by Theorem 2.16(1), Specs(M) = Xs(1L) =

(ψs)−1(X(1L)) = (ψs)−1(Spec(L)) ⊆ (ψs)−1(∪λ∈Λ′X(a,λ))⊆ ∪λ∈Λ′ (ψs)−1(X(aλ))
= ∪λ∈Λ′Xs(aλ). Consequently, Spec

s(M) is a quasi-compact space.

The following Theorem follows from Lemma 2.15, Theorem 2.17 and Theorem
2.18.

Theorem 2.19. Let M be a lattice module over a C-lattice L and the natural

map ψs is surjective. Then the family of quasi-compact open sets of Specs(M) is
closed under finite intersection and forms an open base.



On the second spectrum of lattice modules 69

Note that, by Theorem 2.9(3), the collection {Ds(N)|N ∈M} is closed under
finite union. Therefore each closed set is of the form of Ds(N) for N ∈M .

A topological space Z is T0 if and only if the closures of distinct points are
distinct and a topological space Z is T1 if and only if every singleton subset is
closed (see [16]). Denote the closure of Y ⊆ Specs(M) by Cl(Y ), and the join of
all elements in Y by T (Y ).

Lemma 2.20. Let M be a lattice module over a C-lattice L and Y ⊆ Specs(M).
Then Ds(T (Y )) = Cl(Y ). Hence, Y is closed if and only if Ds(T (Y )) = Y .

Proof. Suppose that Y ⊆ Specs(M) is closed. Clearly, Y ⊆ Ds(T (Y )). Now,
suppose that Ds(N) is a closed subset of Specs(M) with Y ⊆ Ds(N). Then
(0M : N) ≤ (0M : K) for each K ∈ Y and so (0M : N) ≤ ∧K∈Y (0M : K). But
by Lemma 2.31(5), we have ∧K∈Y (0M : K) = (0M : ∨K∈YK), therefore (0M :
N) ≤ (0M : ∨K∈YK) = (0M : T (Y )). Thus (0M : N) ≤ (0M : T (Y )) ≤ (0M : Q)
for Q ∈ Ds(T (Y )). This implies Ds(T (Y )) ⊆ Ds(N) and hence Ds(T (Y )) is the
smallest closed subset of Specs(M) containing Y . Consequently, Ds(T (Y )) =
Cl(Y ).

Lemma 2.21 [10]. Let M be a lattice L-module. Then M is a comultiplication

lattice L-module if and only if N = (0M : (0M : N)) for every N ∈M .

Theorem 2.22. Let M be a comultiplication lattice module over a C-lattice L.
Then Specs(M) is a T0-space.

Proof. Suppose that N,K ∈ Specs(M). Then by Lemma 2.20 and Lemma
2.10(1), we have Cl({N}) = Cl({K}) if and only if Ds(N) = Ds(K) if and
only if (0M : N) = (0M : K) and by Lemma 2.6 and Lemma 2.21 we have
(0M : N) = (0M : K) if and only if N = K. This implies closures of distinct
points are distinct, and so Specs(M) is a T0-space.

Lemma 2.23. Let M be a lattice module over a C-lattice L and S ∈ Specs(M).
Then the following statements hold.

1. Cl({S}) = Ds(S).

2. K ∈ Cl({S}) implies Ds(K) ⊆ Ds(S). Also, the converse is true if K ∈
Specs(M).

Proof. (1) Suppose that Y = {S}. Then T (Y ) = ∨S∈Y S = S and therefore by
Lemma 2.20, Cl({S}) = Ds(T (Y )) = Ds(S).

(2) Suppose that K ∈ Cl({S}). Then by (1), we have K ∈ Ds(S) and so
by definition (0M : S) ≤ (0M : K). If P ∈ Ds(K), then (0M : K) ≤ (0M : P )
and so, we have (0M : S) ≤ (0M : K) ≤ (0M : P ) which implies P ∈ Ds(S)
and therefore Ds(K) ⊆ Ds(S). Conversely, suppose that K ∈ Specs(M) and
Ds(K) ⊆ Ds(S). Then K ∈ Ds(K) ⊆ Ds(S). Therefore (0M : S) ≤ (0M : K)
and hence K ∈ Cl({S}) by (1).
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Lemma 2.24. Let M be a principally generated lattice module over a C-lattice

L. If K ∈M is minimal then (0M : K) is a maximal element of L.

Proof. Suppose that K ∈M is minimal and c ∈ L with (0M : K) ≤ c. Since K
is minimal and cK ≤ K, we have either cK = K or cK = 0M . If cK = K, then
1L = (cK : K). Since M is principally generated, we have (cK : K) = c ∨ (0M :
K), therefore 1L = (cK : K) = c ∨ (0M : K) = c. Now, if cK = 0M , then c ≤
(0M : K) and hence c = (0M : K). This implies, for c ∈ L with (0M : K) ≤ c,
either 1L = c or c = (0M : K). Consequently, (0M : K) is a maximal element
of L.

Lemma 2.25 [10]. Let M be a principally generated comultiplication lattice mod-

ule over a multiplicative lattice L. Then M has a minimal element. In particular,

every nonzero element of M has a minimal element.

Lemma 2.26 [10]. Let M be a principally generated comultiplication lattice mod-

ule over a multiplicative lattice L. Then K ∈ M is minimal if and only if K =
(0M : p) 6= 0M for some maximal element p ∈ L.

Theorem 2.27. Let M be a principally generated comultiplication lattice module

over a C-lattice L and S ∈ Specs(M). Then {S} is closed in Specs(M) if and

only if S is minimal element of M and Specsp(M) = {S}.

Proof. Suppose that S is a minimal element of M and Specsp(M) = {S}. Then
by Lemma 2.24, (0M : S) is a maximal element of L. Now, suppose that K ∈
Cl({S}). Then by Lemma 2.23 (1), K ∈ Ds(S), and so (0M : S) ≤ (0M :
K). Since (0M : S) is a maximal element of L, we have p = (0M : S) =
(0M : K). Therefore S,K ∈ Specsp(M) = {S}. This implies S = K and hence
Cl({S}) = {S}.

Conversely, suppose that {S} is closed in Specs(M) and S is not minimal.
Then by Lemma 2.25, there exists a minimal element N ≤ S and so (0M : N) is a
maximal element of L by Lemma 2.24. Since every maximal element is prime, we
have (0M : N) is a prime element of L and therefore N ∈ Specs(M) by Lemma
2.3. Now, we have N,S ∈ Specs(M) with N ≤ S, therefore (0M : S) ≤ (0M : N)
by Lemma 2.6(3) and so N ∈ Ds(S) = Cl({S}) = {S} by Lemma 2.23. Hence
N = S, and so by Lemma 2.6(3) (0M : N) = (0M : S). Consequently, S is a
minimal element of M and Specsp(M) = {S}.

A topological space Z is irreducible if for any decomposition Z ⊆ A1 ∪ A2

with closed subsets Ai of Z with i = 1, 2, we have A1 = Z or A2 = Z. A subset Y
of Z is irreducible if it is irreducible as a subspace of Z. An irreducible component
of a topological space Z is a maximal irreducible subset of Z. A singleton subset
and its closure in Z are irreducible (see [2]).
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Lemma 2.28. Let M be a lattice module over a C-lattice L and S ∈ Specs(M).
Then Ds(S) is an irreducible closed subset of Specs(M).

Proof. Note that, for S ∈ Specs(M), the set {S} is irreducible and also that
Cl({S}) irreducible. But by Lemma 2.23(1), we have Cl({S}) = Ds(S). There-
fore Ds(S) is an irreducible closed subset of Specs(M).

Lemma 2.29 [11]. Let L be a multiplicative lattice and S ⊆ Spec(L). Then S is

irreducible if and only if the meet of all elements of S is prime.

Theorem 2.30. LetM be a lattice module over a C-lattice L and Y ⊆ Specs(M).
If T (Y ) is a second element of M , then Y is irreducible. Conversely, if Y is

irreducible, then K = {(0M : S)|S ∈ Y } is an irreducible subset of Spec(L) such

that T ′(K) = (0M : T (Y )) is a prime element of L, where T ′(K) is the meet of

all elements of K.

Proof. Suppose that Y ⊆ Y1 ∪ Y2, where Y1 and Y2 are two closed subsets
of Specs(M). Then by Lemma 2.23(1), and Lemma 2.28, there exist N,K ∈
Specs(M) such that Y1 = Ds(N) and Y2 = Ds(K). Therefore Y ⊆ Ds(N) ∪
Ds(K). By Theorem 2.9(3), we have Ds(N) ∪ Ds(K) = Ds(N ∨ K), so Y ⊆
Ds(N ∨ K). This implies (0M : (N ∨ K)) ≤ (0M : P ) for P ∈ Y and hence
(0M : (N∨K)) ≤ ∧P∈Y (0M : P ). But by Lemma 2.2(3), we have ∧P∈Y (0M : P ) =
(0M : ∨P∈Y P ) = (0M : T (Y )), therefore (0M : (N ∨K)) = (0M : N) ∧ (0M : K)
≤ (0M : T (Y )). Since T (Y ) is second, (0M : T (Y )) is prime by Lemma 2.2
and hence quasi-prime, therefore (0M : N) ∧ (0M : K) ≤ (0M : T (Y )) implies
either (0M : N) ≤ (0M : T (Y )) or (0M : K) ≤ (0M : T (Y )). Hence for P ∈ Y ,
(0M : N) ≤ (0M : T (Y )) ≤ (0M : P ) or (0M : K) ≤ (0M : T (Y )) ≤ (0M : P ).
This implies P ∈ Ds(N) or P ∈ Ds(K) and hence Y ⊆ Ds(N) = Y1 or Y ⊆
Ds(K) = Y2. Consequently, Y is irreducible.

Conversely, suppose that Y is irreducible. Then ψs(Y ) = K
′

= {(0M : S)|S ∈
Y } is an irreducible subset of Spec(L/(0M : 1M )), since ψs is continuous. There-
fore K = {(0M : S)|S ∈ Y } is an irreducible subset of Spec(L) and so T ′(K) =
∧S∈Y (0M : S) is a prime element of L by Lemma 2.29. But by Lemma 2.31(5),
∧S∈Y (0M : S) = (0M : ∨S∈Y S) = (0M : T (Y )), therefore T ′(K) = (0M : T (Y ))
is a prime element of L and so K = {(0M : S)|S ∈ Y } is an irreducible subset of
Spec(L) by Lemma 2.29.

Corollary 2.31. Let M be a comultiplication lattice module over a C-lattice L
and Specsp(M) is non-empty, for p ∈ Spec(L). Then the following statements

hold.

1. Specsp(M) is irreducible.

2. Specsp(M) is an irreducible closed subset of Specs(M), if p is a maximal

element of L.
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Proof. (1) Suppose that Specsp(M) is non-empty. Then (0M : T (Specsp(M)) =
(0M : ∨S∈Specsp(M)S) = ∧S∈Specsp(M)(0M : S) by Lemma 2.31(5). But (0M : S)

= p for S ∈ Specsp(M), therefore (0M : T (Specsp(M)) = ∧S∈Specsp(M)(0M : S)

= ∧S∈Specsp(M)p = p and hence (0M : T (Specsp(M)) is a prime element of L.

Therefore T (Specsp(M) is a second element of M by Lemma 2.3. Consequently,
Specsp(M) is irreducible by Theorem 2.30.

(2) Note that, Specsp(M) is irreducible by (1).
Now, suppose that Specsp(M) is non-empty with maximal element p ∈ L. Then
Specsp(M) = {S ∈ Specs(M)|(0M : S) = p}. By Lemma 2.6(1), we have p ≤
(0M : (0M : p)), therefore Specsp(M) = {S ∈ Specs(M)|p = (0M : (0M : p))
= (0M : S)} by maximality of p and so Specsp(M) = Ds((0M : p)) is closed
by Theorem 2.9. Consequently, Specsp(M) is an irreducible closed subset of
Specs(M).

Theorem 2.32. LetM be a lattice module over a C-lattice L and Y ⊆ Specs(M)
with (0M : T (Y )) = p is a prime element of L. Then Y is irreducible if Specsp(M)
is non-empty.

Proof. Suppose that Specsp(M) is non-empty and Y ⊆ Specs(M) with (0M :
T (Y )) = p is a prime element of L. Then (0M : T (Y )) = p = (0M : S) for
each S ∈ Specsp(M). Therefore Ds(S) = Ds(T (Y )) by Lemma 2.10(1) and so
Ds(S) = Ds(T (Y )) = Cl({Y }) by Lemma 2.20. Hence Cl({Y }) is irreducible by
Lemma 2.28. Consequently, Y is irreducible.

Let Y be a closed subset of a topological space. An element y ∈ Y is called a
generic point of Y , if Y = Cl({y}) (see [2]). By Proposition 2.23(1), we observe
that, S ∈ Specs(M) is a generic point of the irreducible closed subset Ds(S).

Theorem 2.33. Let M be a lattice module over a C-lattice L with the surjective

natural map ψs and Y ⊆ Specs(M). Then Y is an irreducible closed subset of

Specs(M) if and only if Y = Ds(S) for some S ∈ Specs(M). Hence, every

irreducible closed subset of Specs(M) has a generic point.

Proof. By Lemma 2.28, Y = Ds(S) is an irreducible closed subset of Specs(M).
Conversely, suppose that Y is an irreducible closed subset of Specs(M). Then

by Theorem 2.30, (0M : T (Y )) = p is a prime element of L. Since ψs is surjective,
there exists S ∈ Specs(M) with (0M : S) = (0M : T (Y )) = p, therefore Ds(S) =
Ds(T (Y )) by Lemma 2.10(1) and hence Ds(T (Y )) = Cl(Y ) by Lemma 2.20.
Thus Ds(S) = Cl(Y ). Since Y is closed, Cl(Y ) = Y . Consequently, Ds(S) = Y
for some S ∈ Specs(M).

Theorem 2.34. Let M be a principally generated comultiplication lattice module

over a C-lattice L. Then Specs(M) is a T1-space if and only if Specs(M) =
Min(M).
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Proof. Note that, Min(M) ⊆ Specs(M). Suppose that Specs(M) is a T1-space.
Then for S ∈ Specs(M), {S} is closed in Specs(M). Therefore S ∈ Min(M)
by Theorem 2.27 and so Specs(M) ⊆ Min(M). Consequently, Specs(M) =
Min(M).

Conversely, suppose that Specs(M) = Min(M) and S ∈ Specs(M). Then
(0M : S) = p is a prime element of L by Lemma 2.2, therefore S ∈ Specsp(M).
Now, suppose that N ∈ Specsp(M). Then N is second element with (0M : N) = p.
Since Specs(M) = Min(M), N is a minimal element of M . By Lemma 2.6(5),
(0M : S ∨ N) = (0M : S) ∧ (0M : N) = p ∧ p = p, therefore S ∨ N ∈ Specs(M)
by Lemma 2.3 and hence S ∨ N ∈ Min(M) since Specs(M) = Min(M). Thus
N = S ∨ N and so S ≤ N . Since N is a minimal element of M , N = S and
so {S} is closed in Specs(M) by Theorem 2.27. Thus every singleton subset is
closed and consequently, Specs(M) is T1-space.

Definition 2.35 [12]. Topological space Z is spectral space if Z satisfy the
conditions: (1) Z is a T0-space, (2) Z is quasi-compact, (3) The quasi-compact
open subsets of Z are closed under finite intersection and form an open base and
(4) Each irreducible closed subset of Z has a generic point.

The following Theorem follows immediately from Theorem 2.17, Theorem
2.18 and Theorem 2.33.

Theorem 2.36. Let M be a lattice module over a C-lattice L and ψs be the

surjective natural map. Then Specs(M) is spectral if and only if it is T0-space.
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