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Abstract

The second spectrum Spec®(M) is the collection of all second elements
of M. In this paper, we study the topology on Spec®(M), which is a gener-
alization of the Zariski topology on the prime spectrum of lattice modules.
Besides some properties, Spec®(M) is characterized and the interrelations
between the topological properties of Spec®(M) and the algebraic properties
of M, are studied.
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1. INTRODUCTION

The Zariski topology for second spectrum of a module over a commutative ring is
being introduce and studied by Ansari-Toroghy, Farshadifar in [1]. As a general-
ization of most of the results in [1], we introduce the concept of second elements
of a lattice module M over a C-lattice L and also study the Zariski topology on
Spec® (M), the collection of all second elements of a lattice module M.

The concept of second element of a comultiplication lattice module was in-
troduced in [10]. A lattice module M is said to be comultiplication if for every
element N of M, there exists an element a € L such that N = (0ps : a) and an
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element Op; # N € M is said to be second, if for each a € L, either aN = N or
aN = 0.

There are many generalizations of the Zariski topology over the set of all
prime submodules of a R-module M (see [1, 5, 8, 9, 15, 17]). In [5], the Zariski
topology over the prime spectrum Spec(M) of a lattice module M over a C-
lattice L has been studied by Sachin Ballal and Villas Kharat. In [20], authors
introduced and studied the concept of quasi-prime elements as a generalization
of prime elements and also the Zariski topology on the quasi-prime spectrum of
a lattice module M over a C-lattice L.

The Zariski topology on the set Spec(L) of all prime elements in multiplica-
tive lattices is being studied in [18] by Thakare, Manjarekar and Maeda, and in
[19] by Thakare and Manjarekar as a generalization of the Zariski topology of a
commutative ring with unity.

A lattice L is said to be complete, if for any subset S of L, we have VS, AS € L.
A complete lattice L is said to be a multiplicative lattice, if there is defined a binary

7"

operation ”.” called multiplication on L satisfying the following conditions:

(1) a.b =b.qa, for all a,b,c € L;

(2) a.(b.c) = (a.b).c, for all a,b,c € L;

(3) a.(Vaba) = Val(a.by), for all a,b, € L;
(4) a.l =a, for all a € L.

Henceforth, a.b will be simply denoted by ab. An element e € L is said to be
meet principal (respectively, join principal) if it satisfies the identity a A be =
((a:e) Ab)e (respectively, ((aeVb):e) =aV (b:e)), forall a,b € L. An element
e € L is said to be principal if it is both meet as well as join principal. If each
element of L is the join of principal elements of L, then L is called principally
generated.

An element a in L is called compact if a < '\/ ¢ bo(I is an indexed set) implies
a < bo, Vo, V- Vb, for some subset {a,aq,...,a,} of I. By a C-lattice, we
mean a multiplicative lattice L, with least element 07 and greatest element 1p,
which is compact as well as multiplicative identity, that is generated under joins
by a multiplicatively closed subset C' of compact elements of L. Throughout this
paper, L will be a C-lattice.

An element p € L is said to be proper if p < 1. A proper element m of
a multiplicative lattice L is said to be mazimal if m < z < 1 implies x = 1,
x € L. A proper element m of a multiplicative lattice L is said to be minimal if
0 <z < mimpliesx =0, z € L. A proper element p of a multiplicative lattice
L is said to be prime if ab < p implies either a < p or b < p. A proper element
p of a multiplicative lattice L is said to be quasi-prime if a Ab < p implies either
a < porb<p Foranya € L, its radical is denoted by /a and defined as
va=V{z € Ljz" < a, for some n € Z*} = A{p € Lla < p and p is a prime }.
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An element a € L with \/a = a is called semiprime or radical.

A complete lattice M is said to be lattice module over a multiplicative lattice
L, or L-module, if there is a multiplication between elements of M and L, denoted
by aN € M, for a € L and N € M, which satisfies the following properties:

1. (ab)N = a(bN);

. (\/a aa)(\/ﬁ NB) = (vag aaNg);

3. 1LN = N;

4. 0N = Oypy; for all a,b,a, € L, and for all N, Ng € M.

[\)

The greatest element of M will be denoted by 1;; and the smallest element will
be denoted by 0ps. For N € M, b € L, denote (N : b) = V{K € M|bK < N}.
For a,b € L, we write (a : b) = V{z € L|bx < a} and for A,B € M, (A: B) =
V{z € L|Bx < A}. An element A € M is said to be weak meet principal if
(B:A)A = BAA for all B € M; weak join principal if (bA: A) =bV (0p : A)
for all b € L; and weak principal if A is both weak meet principal and weak join
principal. An element N € M is said to be compact if N < \/ o7 Aa(] is an
indexed set) implies N < A,, V Ay, V-V A,,, for some subset {a,9,...,a,}
of I. If each element of M is the join of principal (compact) elements of M, then
M is called principally generated (compactly generated).

An element N < 1) in M is said to be prime if aX < N implies X < N or
alpyy < Nyie,a< (N :1py)forae L and X € M. An element N < 1p; in M
is said to be quasi-prime if (N : 1) is a quasi-prime element of L. Note that,
every prime element in M is quasi-prime. An element N < 1,7 of M is said to
be mazimal if N < B implies either N = B or B = 1)y, B € M. A non-zero
element K # 137 of M is said to be minimal if Opy < N < K implies N = 0y,
NeM.

Further, all these concepts and for more information on multiplicative lattices
and lattice modules, the reader may refer ([3—7, 10-13, 18, 19]).

2. ToroLocy ON Spec®(M)
Here, we define the second element for a lattice module M over a C-lattice L.

Definition 2.1. Let M be a lattice module over a C-lattice L. A non-zero
element N € M is said to be second, if for a € L, either aN = N or alN = 0.

Note that, every minimal element of M is second.

Lemma 2.2. Let M be a lattice module over a C-lattice L and N € M. If N is
second then (Opr : N) is a prime element of L.
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Proof. Suppose that N is a second element of M and abN = 0j; for a,b € L
with bN # 0p7. Since N is second, bN = N and so alN = 0yy, i.e., a < (057 : N).
Consequently, (057 : V) is a prime element of L. [ |

Converse of Lemma 2.2 is true for comultiplication lattice module (see [10]).

Lemma 2.3 [10]. Let M be a comultiplication lattice module over a multiplicative
lattice L and N € M. Then N is second if and only if (Ors : N) is a prime element
i L.

Example 2.4. The lattice depicted in Figure (a) is a multiplicative lattice L
and the lattice depicted in Figure (b) is a lattice module M over a multiplicative
lattice L. Note that, X is a second element of M but Y, Z, P and 1;; are not
second elements of M.

1n

. 10| al|b c d |1
Oz {0 | Or | O | Or | Or | Of
‘ ¢ a |0 a |0] a |0 a
b |00 |0 |0z| b | b
¢ b c |0r| a |0 ]| a b C
d |0, |0 | b | Db|d]|d
0y 1,10, | a | b c d | 1p
Figure (a). Multiplicative Lattice L.
1ar
zZ
R O | X |Y Z P | 1y
. Oz | Oar | Oas | Oaz | Opg | Ops | Opg
a OM OM OM OM OM OM
b |0y|O0y| X | X | X | X
(Second)X c [0y 0w X | X | X[ X
d |0y | X | Y Z P |1y
0r 1, | O | X Y Z P |1y

Figure (b). Lattice Module M over L.

Example 2.5. The lattice depicted in Figure (a) is a multiplicative lattice L
and the lattice depicted in Figure (b) is a Lattice module M over a multiplicative
lattice L. Note that, all non-zero elements of M are second elements of M.
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. |0 al|b C d | 1

Oz | 0z | 0 | Oz | O | O | O

‘ ¢ a |0 | a |0] a |0 a
b |0, |0,|0,|0L| b b

¢ b c |0, a 0] al|b C
d |0, (0| b | Db | d]|d

or, 1L OL a b C d 1L

Figure (a). Multiplicative Lattice L.

% oy X Y| Z P |1y

) ) 0L | Oaz | Oaz | Oaz | Oaz | Oaz | Ons
a |0y | X | Y | Z | P |1y

Oaz | Onz | Oz | Oz | Oz | O

* cloy | X | Y| Z | P |1y

d [0ar | Oaz | Oaz | Oaz | Oar | Oas

0r 1, | O | X Y Z P |1y

Figure (b). Lattice Module M over L.

The following result is useful throughout the paper.

Lemma 2.6 [14]. Let M be a lattice module over a multiplicative lattice L. Then
forx e L and A, B,C € M, following holds:

1. < (0pr: (0pr 2 @)).
2. A< (0pr:(0pr: A)).
3. If A< B then (C:B) < (C:A).
4. (0pr:A) = (0ar : (Opr = (0a7 = A))).
5. (A: BVC)=(A:B)A(A: Q).

Let M be a lattice module over a C-lattice L. Consider the set Spec®(M)
of second elements of a lattice module M. Since every minimal element of M
is second, Min(M) C Spec®(M), where Min(M) is the set of all minimal ele-
ments of M. Also, D¥*(N) = {S € Spec®(M)|S < N}, for N € M. Note that
D**(1pr) = Spec® (M), and D**(057) is an empty set.
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Proposition 2.7. Let M be a lattice module over a C-lattice L and N, N;, K € M
(1 € I). Then the following statements hold.

L. MierD**(N;) = D**(Nie1N;).
2. D¥*(N)UD™(K) C D*(NV K).

Proof. (1) Note that, D**(N;erN;) € D%*(N;) for each i, since AjefN; < N;j.
Hence Ds*(/\ie[Ni) - ﬂiejDs*(Ni).

Now, suppose that K € N;jc;D**(N;). Then for each i, K € D**(N;) there-
fore K < N;. This implies K < AjerN; and so NierD%*(N;) C D% (NierN;).
Consequently, N;c; D**(N;) = D** (N1 N;).

(2) Since N, K < NV K, we have D**(N), D**(K) C D**(N Vv K) and so
D**(N)UD**(K) C D**(N V K). [

We note from Proposition 2.7 that, the set (**(M) = {D**(N)|N € M}
forms a topology if and only if it is closed under finite union. In this case,
¢%*(M) induces a topology 75* on Spec®(M), and we call it the Zariski topology.

Proposition 2.8. Let M be a lattice module over a C-lattice L and a,b € L.
Then D**((0pr : @) U D¥*((0as : b)) = D**((0ps : ab)).

Proof. Note that D**((0ps : a)) U D%*((0pr : b)) € D**((0ps : ab) for a,b € L.
Now, suppose that S € D**((0ps : ab)) with S ¢ D**((0ps : b)). We claim
that S € D**((0p : a)). By assumption S < (0p7 : ab) and S £ (Ops : b), therefore
abS = 0p; and bS # 0p7. Since S is a second element of M and bS # 07, we
have bS = S. Therefore abS = aS = 0yp; and so S < (0p7 : a). Consequently,
S € D¥*((0pr : a)). |

From Proposition 2.7 and Proposition 2.8, we observe that, the set {D**((0p; :
a))|a € L} forms a topology, say 7 ° on Spec®(M).

It clear from Proposition 2.7 that, the collection {D**(N)|N € M} need not
be closed under finite union. So for N € M, we define a new set D*(N) = {S €
Spec®*(M)|(0pr : N) < (07 : S)} and we have the following Theorem.

Theorem 2.9. Let M be a lattice module over a C-lattice L and N,N;, K € M
(1 € I). Then the following statements hold.

1. D%(1pr) = Spec® (M), and D*(0pr) is an empty set.

2. NierD*(Ny) = D*(Nier (0 = (Ons = N3)))-

3. D°(N)UD*(K)=D*(NVK).
Proof. (1) By definition D*(157) = {S € Spec®*(M)|(0nr : 1ar) = 0 < (0pf :

S)} = Spec® (M) and D*(0p) = {S € Spec®*(M)|(0pr : 0pr) = 11 < (0p7 : S)} is
empty.
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(2) Suppose that S € N;erD*(N;). Then S € D3(N;), for each ¢ € I therefore
(Oar = N;) < (07 = S), for each @ € I and so Vier(0ar @ N;) < (0ps ¢ S). Therefore
(OM : (OM : \/ieI(OM : Nz))) < (OM : (OM : (OM : S))) = (OM : S) by Lemma
2.31(3) and Lemma 2.31(4) and hence S € D*(Aijer(0as = (Ops © N;) by Lemma
2.31(5).

Now, suppose that K € D*(Aicr(Oar : (Opr = N;)). Then (0pr : Nier(Ops :
(OM : Nz)) < (OM : K), and hence (OM : (OM : K)) < (OM : (OM : /\iEI(OM : (OM :
N;))) = Nier(Oar = (Oas : N;)) by Lemma 2.31 (3) and Lemma 2.31(4). Therefore
(Oar : (Ops 2 K)) < (Op7 : (Opz = N;)) for each i € I and so (0pr : N;) < (0pr : K),
for each i € I by Lemma 2.31(3) and Lemma 2.31(4). Thus K € D*(NV;) for each
i € I and consequently, K € N;crD*(IV;).

(3) Note that D*(N) U D*(K) C D5(N V K) for N,K € M.

Now, suppose that S € D*(N V K). Then (0py : NV K) < (0p : 5)
and so (Opr : N) A (0pr : K) < (0p7 : S) by Lemma 2.31(5). Since S is second,
(0p7 : S) is a prime element of L by Lemma 2.2, and hence quasi-prime. Therefore
(Oar = N) < (0p7:S) or (0pr : N) < (0p7 : S) by definition of quasi-prime element
and so S € D*(N) or S € D*(K). Consequently, S € D*(N)U D*(K). ]

Theorem 2.9 shows that, there exists a topology, say 7° on Spec®(M) having
{D*(N)|N € M} as a family of closed sets.

We denote Spec, (M) = {N € M|N is second and (0p; : N) = p}, where p is
a prime element of L and for a € L, D*((0ps : a)) = {S € Spec*(M)|(0pr : (0ps :
2)) < (Onr : 9)}.

Lemma 2.10. Let M be a lattice module over a C-lattice L and N, K € M.
Then the following statements hold.

1. If (Opr : N) = (0ps = K), then D?(N) = D*(K). Also, the converse is true if
N, K € Spec®*(M).

2. DS(N) = UpEDS((OM:N))SpeC;(M)-

3. D*(N) = D*((0pr : (Opr = N))) = D¥*((0ps : (0ps = N))). In particular, we
have D*((0pr : a)) = D**((0ps : a)) fora € L.

Proof. (1) Suppose that (0p; : N) = (0p7 : K) and S € D3(N). Then (0j/ :
N) < (0pr = S) and so (0pr : K) < (0pr : S). Therefore S € D*(K) and so
D*(N) C D*(K). Similarly, D*(K) C D%(N).

Conversely, suppose that D*(N) = D*(K) and N,K € Spec®*(M). Given
N € D*(N) and D*(N) = D*(K), therefore (0ps : K) < (0pr : N) and (0p :
N) < (0pr : K). Consequently, (0pr: N) = (0ps : K).

(2) Suppose that P € D*(N). Then (0ps : N) < (0pr : P) = p. Therefore
P € Upeps((op:n))Spec, (M). Consequently, D*(N) C Upeps((0,,:3))SPEC, (M).
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Now, suppose that K € Upecps(o,,:3))Spec,(M). Then there exists a €
D*((0ps : N)) with (0pr : N) < a = (0pr : K) and hence K € D*(N), therefore
UpeDs((0y:N)) € D*(N). Consequently, D*(N) = Upeps((0,,:3))SPeC, (M).

(3) Suppose that S € D*(N). Then (0pr : N) < (07 : S) and so (0p7 : (0ps :
(Oar : N))) < (0pr : (Opr = (0Opz = S))) = (0pr = S) by Lemma 2.31(3) and Lemma
2.31(4), therefore S € D*((0pr : (Opr : N))). Thus D¥(N) C D*((0ps : (0a7 : N))).

Now, suppose that S € D%((0ar : (Opz : N))). Then (0p7 : (Opr : (Ops : N))) <
(Opr = S), ie., (Opr = N) < (0pr = S) by Lemma 2.31(3) and hence S € D*(N).
Consequently, D3(N) = D*((0ps : (0pr : N))).

Next, suppose that K € D*(N). Then (0pr : N) < (0pr @ K) and so K <
(Oar = (Opr = K)) < (0pr @ (Opz = N)) by Lemma 2.31(2) and Lemma 2.31(3),
therefore K € D**((0p : (Opr : N))). Thus D*(N) C D%*((0par : (Op7 : N))).

Now, P € D*((0pr : (Opr : N))) implies P < (0ps : (Op7 = N)) and hence
(Oar : (Opr = (Opr = N))) < (0ps : P) by Lemma 2.31(3). Therefore (0ps : N) <
(Opz = P) by Lemma 2.31(4) and so P € D%(N). Thus D**((0ps : (0ps : N))) C
D*(N). Consequently, D*(N) = D**((0ps : (0ps : N))). ]

In what follows and thereafter, the map ¢° : Spec®*(M) — Spec(L/(0ns : 1a1))
defined by ¢*(N) = (0ps : N) is called the natural map of Spec®(M), where M

is a lattice module over a C-lattice L.

Lemma 2.11. Let M be a lattice module over a C-lattice L. Then the natural
map ° is continuous; more precisely, (*)~1D(@) = D*((0y : a)) for a € L with
(OM : 1M) S a.

Proof. Given S € (1*)~1(D(a)), there exists b € D(a) with S = (¢*)~(b).
Therefore 4*(S) = b and so (0p7 : S) = b. Thus @ < (057 : S) = b and hence a <
(Oar = S) = b. We conclude that, (07 : (07 : @) < (0pr : S) by Lemma 2.31(3)
and Lemma 2.31(4). Which implies that S € D*((0y : @)). Thus (¢*)"1(D(a)) C
D*((0ps : a)).

Now, suppose that K € D*((0ps : a)). Then (0pr : (Opr : a)) < (OM : K).
But by Lemma 2.31(1), a < (0as : (O : a)), therefore < (Opr: (Opr:a)) <
(0p : K). Hence K € (¢°)~1D(@). Consequently, (»*)~1D(@) = D((0p : a)). ®

Theorem 2.12. Let M be a lattice module over a C-lattice L. Then the following
statements are equivalent.

1. The natural map ° : Spec®(M) — Spec(L/(0pr = 1p1)) is injective.

2. For N,K € Spec®(M), if D5(N) = D*(K) then N = K.

3. |Specy(M)| <1 for p € Spec(L).

Proof. (1) = (2) Suppose that the natural map v¢* is injective and D*(N) =
D3(K) for N,K € Spec®(M). Then (0ps : N) = (0p : K), by Lemma 2.10(1).
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Therefore (0pr : N) = (0ps : K), and hence ¢*(N) = ¢*(K), consequently, K =
N, since 9 is injective.

(2) = (3) Suppose that K, N € Spec,(M) for some p € Spec(L). Then (0 :
N) = (0p : K) = p and hence D*(N) = D*(K) by Lemma 2.10 (1) and N = K
by (2).

(3) = (1) Suppose that ¥*(K) = ¢*(N) = @ for K, N € Spec®(M). Then
(Oar : K) = (0pr : N) = @. Therefore (0ps : K) = (0pr : N) =a and so K = N
by (3). Thus, 9° is injective. |

Theorem 2.13. Let M be a lattice module over a C-lattice L. If the natural
map V° is surjective, then it is both closed and open. More precisely, for every

N e M, ¢y*(D*(N)) = D((0pr : N)) and ¢*(Spec®(M)—D*(N)) = Spec(L/(0ps :

1yr)) = D((Ops = N)).

Proof. Suppose that ¢° is surjective. By Lemma 2.11, we have
(¥*) Y (D((0pr : N))) = D*((0p7 : (0ps : N))) again by Lemma 2.10(3), we have
D3((0p7 : (0p7 = N))) = D*(N), therefore (1°)~1(D((0ps : N))) = D*(N). Since

¥® is surjective, 1 o (¥*)"H(D((0p : N))) = 1*(D*(N)), therefore 1*(D*(N)) =

D((0pr : N)) and hence ¢*® is closed. Similarly, ¢*(Spec®(M) — D*(N)) =

Spec(L/(0pr : 1p1)) — D((0p7 : N)), i.e., ¥° open. |

Corollary 2.14. Let M be a lattice module over a C-lattice L. If the natural
map Y° is surjective, then it is bijective if and only if it is homeomorphism.

Now, we introduce an open base for the Zariski topology on Spec®(M). For
each r € L, define X*(r) = Spec®(M) — D*((0ps : 7)). Then X*(r) is an open set
of Spec®(M).

Lemma 2.15. Let M be a lattice module over a C-lattice L. Then the set B =
{X*(a)|la € L} forms an open base for the Zariski topology on Spec®(M).

Proof. Suppose that Spec®(M) is non-empty and U is an open subset of
Spec®(M). Then for N € M, U = Spec®*(M) — D*(N) = Spec®(M) — D*((0x :
(Oar : N))) by Lemma 2.10(3). Therefore U = Spec®(M)— D*(N) = Spec®(M) —
D*((0pr : (0p = N))) = Spec® (M) — D*((0pr : V{x € L|zN = 0pr})) = Spec® (M)
—D*(Awer|zn=0y3(0n : 7)) by Lemma 2.6(5). By Theorem 2.9(2), we have
D (M werlen=0y3 (00t @) =Nizerjen=0,}D*((Onr : 2)), therefore U= Spec*(M)
_Ds(/\{xEL\xNZOM}(OM : .Z')) = Specs(M) - ﬁ{966L|J;N:0M}l)s((O]V[ : ‘T)) =
UfzeLlaN=0y}(Spec® (M) — D*((0pr = 7)) = UzerjaN=0,1 X" (7). u

Theorem 2.16. Let M be a lattice module over a C-lattice L. Then fora € L and
the natural map ¢° : Spec®(M) — Spec(L/(0pr = 1a1)), the following statements
hold.
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. ()Y (X (@) = X*(a), where X(a) = Spec(L) — D(a).
2. ws( *(a)) C X (@) and if ¢° is surjective, then ¢*(X%(a)) = X(a).

Proof. (1) Consider (1*)” H(X (@) = (¥*)"'(Spec(L) — D(@)) = Spec’(M) —
(¥*)"1(D(@)) = Spec*(M)—D*((0xr = @) = X*(a), where (¢°) ' D (5) = DS((OM !
a)) for a € L with (0p : 157) < a by Lemma 2.11.

(2) Follows from (1). ]

Theorem 2.17. Let M be a lattice module over a C-lattice L. Then X*(ab) =
X*(a) N X*(b) for a,b e L.

Proof. By Theorem 2.16(1 ) we have X*(ab) = (¢*)~1 (X (ab)). Therefore XS( b)
= (¢*) 1 (X(ab)) = (¢*)~'(Spec*(L) — D(ab)) = Spec*(M) — (*)'(D(ab)) =
Spec® (M) — D*((0pr : ab)) = Spec®(M) — D**((0ps : ab)) by Lemma 2.11 and
Lemma 2.10(3). But by Proposition 2.8, we have D**((0p7 : a))UD**((0p7 : b)) =
D**((0ps : ab)), therefore X*®(ab) = Spec®(M) — D**((0pr : ab)) = Spec®(M) —
(D**((0ar = @)) U D*((0n : b)) = (Spec*(M) — D¥((0ar = a)) N (Spec*(M) —
D*((0n : b)) = (Spec®(M) = D*((0ar : a)) N (Spec*(M) — D*((0n = b)) =
X*(a )ﬂXs(b) |

A topological space Z is called quasi-compact if each of its open covers has
a finite subcover (see [16]). We recall that Spec(L) is quasi-compact if L is
compactly generated multiplicative lattice with 17, compact (see[18]).

Theorem 2.18. Let M be a lattice module over a C-lattice L and the natural
map V° is surjective. Then for r € L, the open set X*(r) is quasi-compact. In
particular, the space Spec®(M) is quasi-compact.

Proof. Suppose that the natural map ° is surjective. By Lemma 2.15, the
set B = {X®(a)la € L} is an open base for the Zariski topology on Spec®(M).
Let {ay € LIA € A} be such that Spec®*(M) = UyeaX®(ayr). Then by The-
orem 2.16(2), Spec(L) = X(15) = ¥*(X*(11)) = ¥*(Spec*(M) — D*((0p

1)) = ¢*(Spec’(M)) = P*(UreaX*(ar)) = Uneatp®(X*(an)) = UreaX(ay).
Since Spec(L) is quasi-compact, there exists a finite subset A" of A such that
Spec(L) C U,y X(a}) therefore by Theorem 2.16(1), Spec*(M) = X*(11) =
(¥*)"H(X (1)) = (¥°) " (Spec(L)) € () (Uyepr X (@})) € Upep (%)~ (X (@)

= Uycar X?(an). Consequently, Spec®(M) is a quasi-compact space. [

The following Theorem follows from Lemma 2.15, Theorem 2.17 and Theorem
2.18.

Theorem 2.19. Let M be a lattice module over a C-lattice L and the natural
map V*° is surjective. Then the family of quasi-compact open sets of Spec® (M) is
closed under finite intersection and forms an open base.
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Note that, by Theorem 2.9(3), the collection {D*(N)|N € M} is closed under
finite union. Therefore each closed set is of the form of D*(N) for N € M.

A topological space Z is Tj if and only if the closures of distinct points are
distinct and a topological space Z is T} if and only if every singleton subset is
closed (see [16]). Denote the closure of Y C Spec®(M) by CI(Y'), and the join of
all elements in Y by T'(Y).

Lemma 2.20. Let M be a lattice module over a C-lattice L and'Y C Spec®(M).
Then D*(T'(Y)) = CI(Y). Hence, Y is closed if and only if D*(T'(Y)) =Y.

Proof. Suppose that Y C Spec®(M) is closed. Clearly, Y C D*(T(Y)). Now,
suppose that D*(N) is a closed subset of Spec®(M) with Y C D*(N). Then
(Oar = N) < (0ps @ K) for each K € Y and so (0p7 : N) < Agey(0pr : K). But
by Lemma 2.31(5), we have Agey(Oar @ K) = (Opr : Viey K), therefore (0y :
N) < (0p : VireyK) = (0p7 : T(Y)). Thus (0pr : N) < (0pr : T(Y)) < (0pr : Q)
for @ € D*(T'(Y')). This implies D*(T'(Y)) € D*(N) and hence D*(T'(Y)) is the
smallest closed subset of Spec®(M) containing Y. Consequently, D*(T(Y)) =
ClLY). |

Lemma 2.21 [10]. Let M be a lattice L-module. Then M is a comultiplication
lattice L-module if and only if N = (Opr : (Opr : N)) for every N € M.

Theorem 2.22. Let M be a comultiplication lattice module over a C-lattice L.
Then Spec®* (M) is a Ty-space.

Proof. Suppose that N, K € Spec®(M). Then by Lemma 2.20 and Lemma
2.10(1), we have CI({N}) = CI({K}) if and only if D°(N) = D*(K) if and
only if (Op7 : N) = (Opr : K) and by Lemma 2.6 and Lemma 2.21 we have
(Opr : N) = (07 : K) if and only if N = K. This implies closures of distinct
points are distinct, and so Spec®(M) is a Ty-space. [

Lemma 2.23. Let M be a lattice module over a C-lattice L and S € Spec®(M).
Then the following statements hold.

1. Cl({S}) = D*(S).
2. K € CIl({S}) implies D°(K) C D*(S). Also, the converse is true if K €
Spec®(M).

Proof. (1) Suppose that Y = {S}. Then T'(Y) = VgeyS = S and therefore by
Lemma 2.20, CI1({S}) = D*(T(Y)) = D*(S).

(2) Suppose that K € CI({S}). Then by (1), we have K € D?*(S) and so
by definition (07 : S) < (0pr : K). If P € D5(K), then (0p : K) < (057 : P)
and so, we have (0p : S) < (0ps : K) < (0ps : P) which implies P € D*(S)
and therefore D*(K) C D*(S). Conversely, suppose that K € Spec®(M) and
D*(K) C D*(S). Then K € D*(K) C D*(S). Therefore (05 : S) < (057 : K)
and hence K € CI({S}) by (1). |
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Lemma 2.24. Let M be a principally generated lattice module over a C-lattice
L. If K € M is minimal then (Opr : K) is a mazimal element of L.

Proof. Suppose that K € M is minimal and ¢ € L with (0p7 : K) < ¢. Since K
is minimal and cK < K, we have either cK = K or cK = 0yp;. If cK = K, then
1 = (¢K : K). Since M is principally generated, we have (cK : K) =cV (0pr :
K), therefore 1;, = (¢cK : K) = ¢V (0p : K) = ¢. Now, if ¢cK = 0jy, then ¢ <
(0ps : K) and hence ¢ = (0p7 : K). This implies, for ¢ € L with (0p7 : K) < ¢,
either 17, = c or ¢ = (0ps : K). Consequently, (05 : K) is a maximal element
of L. |

Lemma 2.25 [10]. Let M be a principally generated comultiplication lattice mod-
ule over a multiplicative lattice L. Then M has a minimal element. In particular,
every nonzero element of M has a minimal element.

Lemma 2.26 [10]. Let M be a principally generated comultiplication lattice mod-
ule over a multiplicative lattice L. Then K € M is minimal if and only if K =
(Oar : p) # Opr for some mazximal element p € L.

Theorem 2.27. Let M be a principally generated comultiplication lattice module
over a C-lattice L and S € Spec®(M). Then {S} is closed in Spec®*(M) if and
only if S is minimal element of M and Spec,(M) = {S}.

Proof. Suppose that S is a minimal element of M and Spec,(M) = {S}. Then
by Lemma 2.24, (0p; : S) is a maximal element of L. Now, suppose that K €
Cl({S}). Then by Lemma 2.23 (1), K € D*(S), and so (0pr : S) < (O :
K). Since (0p; : S) is a maximal element of L, we have p = (0 : S) =
(Onr : K). Therefore S, K € Specy(M) = {S}. This implies S = K and hence
Cl({S}) = {5}

Conversely, suppose that {S} is closed in Spec®(M) and S is not minimal.
Then by Lemma 2.25, there exists a minimal element N < S and so (0p7 : N) is a
maximal element of L by Lemma 2.24. Since every maximal element is prime, we
have (0p7 : N) is a prime element of L and therefore N € Spec®(M) by Lemma
2.3. Now, we have N, S € Spec®(M) with N < S, therefore (057 : S) < (0p7 : N)
by Lemma 2.6(3) and so N € D*(S) = CI({S}) = {S} by Lemma 2.23. Hence
N = S, and so by Lemma 2.6(3) (057 : N) = (05 : S). Consequently, S is a
minimal element of M and Spec, (M) = {S}. ]

A topological space Z is irreducible if for any decomposition Z C Ay U Ay
with closed subsets A; of Z with i = 1,2, we have A; = Z or Ay = Z. A subset Y
of Z is irreducible if it is irreducible as a subspace of Z. An irreducible component
of a topological space Z is a maximal irreducible subset of Z. A singleton subset
and its closure in Z are irreducible (see [2]).
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Lemma 2.28. Let M be a lattice module over a C-lattice L and S € Spec®(M).
Then D*(S) is an irreducible closed subset of Spec®(M).

Proof. Note that, for S € Spec®(M), the set {S} is irreducible and also that
Cl({S}) irreducible. But by Lemma 2.23(1), we have CI({S}) = D*(S). There-
fore D*(S) is an irreducible closed subset of Spec®(M). ]

Lemma 2.29 [11]. Let L be a multiplicative lattice and S C Spec(L). Then S is
irreducible if and only if the meet of all elements of S is prime.

Theorem 2.30. Let M be a lattice module over a C-lattice L andY C Spec®(M).
If T(Y) is a second element of M, then Y is irreducible. Conversely, if Y is
irreducible, then K = {(0pr : S)|S € Y} is an irreducible subset of Spec(L) such
that T'(K) = (0pr : T(Y)) is a prime element of L, where T'(K) is the meet of
all elements of K.

Proof. Suppose that Y C Y; U Ys, where Y; and Y, are two closed subsets
of Spec’(M). Then by Lemma 2.23(1), and Lemma 2.28, there exist N, K €
Spec®(M) such that Y7 = D*(N) and Y = D*(K). Therefore Y C D*(N) U
D*(K). By Theorem 2.9(3), we have D*(N)U D*(K) = D*(NV K), so Y C
D*(N Vv K). This implies (0p7 : (N V K)) < (0p7 : P) for P € Y and hence
(Oar : (NVK)) < Apey(0pr = P). But by Lemma 2.2(3), we have Apey (O : P) =
(OM : \/peyp) = (OM : T(Y)), therefore (OM : (N\/K)) = (OM : N) VAN (OM : K)
< (0pr : T(Y)). Since T(Y) is second, (0ps : T(Y)) is prime by Lemma 2.2
and hence quasi-prime, therefore (0pr : N) A (0pr : K) < (057 : T(Y)) implies
either (Opr : N) < (0pr : T(Y)) or (0pr : K) < (0p7 : T(Y)). Hence for P € Y,
(Opr : N) < (0pr :T(Y)) < (0ps : P)or (Opr : K) < (0pr : T(Y)) < (0pr = P).
This implies P € D*(N) or P € D*(K) and hence Y C D*(N) =Y, or Y C
D*(K) =Y;. Consequently, Y is irreducible.

Conversely, suppose that Y is irreducible. Then ¢*(Y) = K' = {(0y7 : 5)|S €
Y} is an irreducible subset of Spec(L/(0pr : 1ar)), since ¥* is continuous. There-
fore K = {(0ps : S)|S € Y} is an irreducible subset of Spec(L) and so T"(K) =
Asey (0p7 @ S) is a prime element of L by Lemma 2.29. But by Lemma 2.31(5),
/\SEY(OM : S) = (OM : \/Seys) = (OM : T(Y)), therefore T’(K) = (OM : T(Y))
is a prime element of L and so K = {(0y : S)|S € Y} is an irreducible subset of
Spec(L) by Lemma 2.29. ]

Corollary 2.31. Let M be a comultiplication lattice module over a C-lattice L
and Spec;(M) is non-empty, for p € Spec(L). Then the following statements
hold.

1. Spec, (M) is irreducible.

2. Specy(M) is an irreducible closed subset of Spec®(M), if p is a mazimal
element of L.
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Proof. (1) Suppose that Spec, (M) is non-empty. Then (0 : T'(Specy(M)) =
(Om : Vsespees(an)S) = Asespees(v)(0ar 1 S) by Lemma 2.31(5). But (Oa : S)
= p for S5 € Specy(M), therefore (0pr : T(Specy(M)) = Asespees(m)(Om = S)
= Asespecs(v)P = p and hence (0 : T(Specy(M)) is a prime element of L.
Therefore T'(Spec, (M) is a second element of M by Lemma 2.3. Consequently,
Spec, (M) is irreducible by Theorem 2.30.
(2) Note that, Spec, (M) is irreducible by (1).

Now, suppose that Spec;,(M ) is non-empty with maximal element p € L. Then
Specy(M) = {S € Spec®(M)|(0p : S) = p}. By Lemma 2.6(1), we have p <
(Oar = (Oar = p)), therefore Spec, (M) = {S € Spec*(M)|p = (Or : (Onr : p))
= (Opr @ S)} by maximality of p and so Spec,(M) = D*((0p : p)) is closed
by Theorem 2.9. Consequently, Specf,(M ) is an irreducible closed subset of
Spec®(M). ]

Theorem 2.32. Let M be a lattice module over a C-lattice L andY C Spec® (M)
with (Oar : T(Y')) = p is a prime element of L. Then Y is irreducible if Specy (M)
18 non-empty.

Proof. Suppose that Spec,(M) is non-empty and Y C Spec®(M) with (0p :
T(Y)) = p is a prime element of L. Then (0ps : T(Y)) = p = (0pr : S) for
each S € Spec,(M). Therefore D*(S) = D*(T(Y)) by Lemma 2.10(1) and so
D*(S) =D*(T(Y)) = Ci({Y'}) by Lemma 2.20. Hence CI({Y}) is irreducible by
Lemma 2.28. Consequently, Y is irreducible. [ |

Let Y be a closed subset of a topological space. An element y € YV is called a
generic point of Y, if Y = Cl({y}) (see [2]). By Proposition 2.23(1), we observe
that, S € Spec®(M) is a generic point of the irreducible closed subset D*(S).

Theorem 2.33. Let M be a lattice module over a C-lattice L with the surjective
natural map ¢¥* and Y C Spec®*(M). Then Y is an irreducible closed subset of
Spec®(M) if and only if Y = D*(S) for some S € Spec®(M). Hence, every
irreducible closed subset of Spec®*(M) has a generic point.

Proof. By Lemma 2.28, Y = D?*(S) is an irreducible closed subset of Spec®(M).

Conversely, suppose that Y is an irreducible closed subset of Spec®(M). Then
by Theorem 2.30, (0p; : T(Y)) = p is a prime element of L. Since v is surjective,
there exists S € Spec® (M) with (0p7 : S) = (0pr : T(Y)) = p, therefore D?(S) =
D*(T(Y)) by Lemma 2.10(1) and hence D*(T(Y)) = CI(Y) by Lemma 2.20.
Thus D*(S) = CI(Y'). Since Y is closed, Cl(Y) =Y. Consequently, D*(S) =Y
for some S € Spec®(M). |

Theorem 2.34. Let M be a principally generated comultiplication lattice module
over a C-lattice L. Then Spec®(M) is a Ty-space if and only if Spec’(M) =
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Proof. Note that, Min(M) C Spec®(M). Suppose that Spec®(M) is a Tj-space.
Then for S € Spec®(M), {S} is closed in Spec®*(M). Therefore S € Min(M
by Theorem 2.27 and so Spec®(M) C Min(M). Consequently, Spec®(M) =

Conversely, suppose that Spec®(M) = Min(M) and S € Spec®(M). Then
(Ops : S) = p is a prime element of L by Lemma 2.2, therefore S € Specy(M).
Now, suppose that N € Spec;(M). Then N is second element with (0y : V) = p.
Since Spec®*(M) = Min(M), N is a minimal element of M. By Lemma 2.6(5),
(Opr : SVN)=(0pr : S)A(Ops : N) =p Ap = p, therefore SV N € Spec®(M)
by Lemma 2.3 and hence SV N € Min(M) since Spec®(M) = Min(M). Thus
N =SV N and so S < N. Since N is a minimal element of M, N = S and
so {S} is closed in Spec®(M) by Theorem 2.27. Thus every singleton subset is
closed and consequently, Spec®(M) is Ti-space. [

Definition 2.35 [12]. Topological space Z is spectral space if Z satisfy the
conditions: (1) Z is a Typ-space, (2) Z is quasi-compact, (3) The quasi-compact
open subsets of Z are closed under finite intersection and form an open base and
(4) Each irreducible closed subset of Z has a generic point.

The following Theorem follows immediately from Theorem 2.17, Theorem
2.18 and Theorem 2.33.

Theorem 2.36. Let M be a lattice module over a C-lattice L and ° be the
surjective natural map. Then Spec®(M) is spectral if and only if it is Ty-space.
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