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Abstract

For a ring A with an involution ∗, the zero-divisor graph of A, Γ∗(A), is
the graph whose vertices are the nonzero left zero-divisors in A such that
distinct vertices x and y are adjacent if and only if xy∗ = 0. In this paper, we
study the zero-divisor graph of a Rickart ∗-ring having no nonzero nilpotent
element. The distance, diameter, and cycles of Γ∗(A) are characterized
in terms of the collection of prime strict ideals of A. In fact, we prove
that the clique number of Γ∗(A) coincides with the cellularity of the hull-
kernel topological space Σ(A) of the set of prime strict ideals of A, where
cellularity of the topological space is the smallest cardinal number m such
that every family of pairwise disjoint non-empty open subsets of the space
have cardinality at most m.
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1. Introduction

An involution ‘∗’, on an associative ring A is a mapping ∗ : A → A such that
(a + b)∗ = a∗ + b∗, (ab)∗ = b∗a∗ and (a∗)∗ = a, for all a, b ∈ A. A ring with
an involution ∗ is called a ∗-ring. Clearly, identity mapping is an involution if
and only if the ring is commutative. An element e in a ∗-ring A is a projection

if it is self-adjoint (i.e., e = e∗) and idempotent (i.e., e2 = e). By Ã, we denote
the set of all projections in A. Let S be a nonempty subset of A. We write
r(S) = {a ∈ A | sa = 0, ∀ s ∈ S}, the right annihilator of S in A. A Rickart

∗-ring is a ∗-ring in which right annihilator of every element is generated, as a
right ideal, by a projection in A. Every Rickart ∗-ring contains a unity. For each
element a in a Rickart ∗-ring, there is a unique projection e such that ae = a
and ax = 0 if and only if ex = 0; called the right projection of a, RP (a). In
fact, r({a}) = (1−RP (a))A. Similarly, the left projection, LP (a), is defined for
each element a in a Rickart ∗-ring. The set of projections in a Rickart ∗-ring A
forms a lattice, denoted by L(Ã), under the partial order ‘e ≤ f if and only if
e = fe’. In that case, e ∨ f = f + RP (e(1 − f)) and e ∧ f = e − LP (e(1 − f))
(see Berberian [5]). An ideal(subring) I is a ∗-ideal(∗-subring) if x ∈ I implies
x∗ ∈ I. An ideal I of a Rickart ∗-ring A is called a strict ideal if x ∈ I implies
RP (x) ∈ I. A proper strict ideal P of a Rickart ∗-ring A is called prime strict, if
for strict ideals I, J of A, IJ ⊆ P implies I ⊆ P or J ⊆ P . Let Σ(A) denote the
set of all prime strict ideals of a Rickart ∗-ring A. Thakare et al. [19] studied the
hull-kernel topology on Σ(A), where A is a reduced Rickart ∗-ring (i.e., a Rickart
∗-ring having no nonzero nilpotent element).

Being motivated from Beck [4], Anderson et al. [3] defined the zero-divisor
graph for a commutative ring. Further study of this graph, such as connectedness,
diameter, girth, etc. is found in [1, 2, 11]. Later on, Redmond [18] generalized the
concept of the zero-divisor graph to a non-commutative ring in the following way:
Let R be a ring. Then the undirected zero-divisor graph of R, denoted by Γ(R), is
the graph whose vertices are the non-zero zero-divisors of R, and there is an edge
between two distinct vertices a and b if and only if either ab = 0 or ba = 0. This
concept is then generalized to semigroups by DeMeyer et al. in [7, 8], to semirings
by Dolžan in [6]. Further, this concept is well studied in ordered structures such
as lattices, meet-semilattices, posets (see [9, 13, 15, 16]). Recently, Sen Gupta
et al. [10] defined a new graph for a ring with unity by extending the definition
of the usual zero-divisor graph. In [17], the authors extended the concept of a
zero-divisor graph to ∗-rings as follows: Let A be a ∗-ring. We associate a simple
undirected graph Γ∗(A) to A whose vertex set is V (Γ∗(A)) = {a(6= 0) ∈ A |
ab = 0, for some nonzero b ∈ A} (i.e., nonzero left zero-divisors) and two distinct
vertices x and y are adjacent if and only if xy∗ = 0. The zero-divisor graph of a
∗-ring A is denoted by Γ∗(A). In the case of reduced Rickart ∗-rings, this graph
is the same as the graph introduced by Nimbhorkar in [12].
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In this paper, we continue our study of the zero-divisor graphs of Rickart ∗-
rings that was started in [14]. Here particularly we deal with the reduced Rickart
∗-rings. The open subsets of the hull-kernel topological space Σ(A) of the set of
prime strict ideals of A are used to give algebraic and topological characterizations
of distances, diameters, and cycles. We show that the clique number of Γ∗(A)
and the cellularity of Σ(A) coincide. In fact, we have obtained the main results
of Samei [11] to reduced Rickart ∗-rings.

For undefined concepts in Rickart ∗-rings and graphs, see [5, 20] respectively.

2. Main results

We recall some definitions that are used in the sequel.
Let A be a reduced Rickart ∗-ring and Σ(A) be the set of all prime strict

ideals in A. Then for x ∈ A and any subset S of A, we define H(S) = {P ∈
Σ(A) | S ⊆ P}, H(x) = H({x}), B(S) = {P ∈ Σ(A) | S * P}, B(x) = B({x})
and < x >= the ideal generated by x. For any subset T of Σ(A), the kernel of T
is the set K(T ) =

⋂
{P | P ∈ T}, and the hull of C ⊆ A is H(C).

At the outset, we list the following observations made in [19, page 67].

Lemma 2.1. Let A be a reduced Rickart ∗-ring and Σ(A) is the set of all prime

strict ideals in A. Then

(1) B(x) = B(RP (x)) = B(< RP (x) >).

(2)
⋃

i∈Λ B(xi) = B({xi|i ∈ Λ}), B(I ∩ J) = B(I) ∩B(J), B(0) = ∅
and B(A) = B(1) = Σ(A).

(3) H(x) = H(< x >) = H(< RP (x) >), H(0) = Σ(A),H(A) = H(1) = ∅,
H(∪Ei) = ∩H(Ei) and H(I ∩ J) = H(I) ∪H(J), where each Ei, I and J
are ideals of A.

(4) Every prime strict ideal contains e or 1−e but not both, for any projection e.

(5)
⋂

{P | P ∈ Σ(A)} = {0}.

We note from the above Lemma 2.1 that the sets {B(x) | x ∈ A} form a
basis for open sets and define a topology on Σ(A) called the hull-kernel topology.
The complement of B(x) is H(x) for any x ∈ A.

Remark 2.2. Following are the simple properties of a reduced Rickart ∗-ring A.

(1) For a, b ∈ A, ab = 0 if and only if ba = 0. For, let ab = 0. Then (ba)2 =
baba = 0. Since A is reduced, we get ba = 0.

(2) Every projection in A is central. For, if e is a projection, then e(1 − e) =
(1 − e)e = 0 and (ex(1 − e))2 = ex(1 − e)ex(1 − e) = 0 for any x ∈ A.
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As is reduced, ex(1 − e) = 0. Therefore ex = exe and ex∗ = ex∗e, i.e.,
xe = exe = ex, for all x ∈ A. Thus e is a central projection.

(3) For any a ∈ A, RP (a) = RP (a∗), since every projection is central, we
have RP (a) = LP (a). This together with RP (a∗) = LP (a) gives RP (a) =
RP (a∗).

(4) RP (xy) = RP (x)RP (y), for any x, y ∈ A. For, since RP (x) and RP (y)
both are central, we get xyRP (x)RP (y) = xRP (x)yRP (y) = xy. Let
xyz = 0. By definition of RP (x), we get RP (x)yz = 0. This together
with centrality of RP (x) imply that yRP (x)z = 0. Again by definition
of right projection, we get RP (y)RP (x)z = 0, i.e., RP (x)RP (y)z = 0.
Note that product of two commuting projections is a projection. Therefore
by Remark 2.2(2), the projection RP (x)RP (y) satisfies the conditions of
RP (xy), hence RP (xy) = RP (x)RP (y).

(5) For any projection e ∈ A, the ideal < e > is a strict ideal. For, if x ∈< e >,
then xe = x. Hence RP (x) = RP (xe) = RP (x)e ∈< e >.

Lemma 2.3. Let A be a reduced Rickart ∗-ring. Then the following statements

hold.

(1) Every strict ideal is a ∗-ideal.

(2) Let P be a strict ideal. Then P is a prime strict ideal if and only if ab ∈ P
implies a ∈ P or b ∈ P .

Proof. (1) Let I be a strict ideal of A and a ∈ I. Hence RP (a) ∈ I. Then
a∗ = a∗RP (a∗) = a∗RP (a) ∈ I, by Remark 2.2(3). Thus I is a ∗-ideal.

(2) Let P be a strict ideal. Suppose that P is a prime strict ideal and
ab ∈ P with a /∈ P . We claim that b ∈ P . Since ab ∈ P and P is a strict
ideal, we get RP (ab) ∈ P . By Remark 2.2(4), RP (ab) = RP (a)RP (b). Observe
that < RP (a) > · < RP (b) >=< RP (a)RP (b) >. Thus I =< RP (a) > and
J =< RP (b) > are two strict ideals (by Remark 2.2(5)) such that IJ ⊆ P with
I * P . Since P is a prime strict ideal, we get J ⊆ P . Hence RP (b) ∈ P . Thus
b = bRP (b) ∈ P . Conversely, suppose that ab ∈ P implies a ∈ P or b ∈ P . Let I
and J be strict ideals of A such that IJ ⊆ P with I * P . We claim that J ⊆ P .
On the contrary assume that J * P . Let a, b ∈ A be such that a ∈ I \ P and
b ∈ J \P . Then ab ∈ IJ ⊆ P with a, b /∈ P , a contradiction. Hence J ⊆ P . Thus
P is a prime strict ideal.

For a ∗-ring A, two graphs Γ∗(A) and Γ(A) need not be isomorphic, see
Example 2.6.

Theorem 2.4. For a reduced Rickart ∗-ring A, Γ∗(A) ∼= Γ(A).
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Recall that, a graph G is said to be connected if there is a path between any
two distinct vertices of G. For two vertices x and y of G, we define d(x, y) to be
the length of the shortest path from x to y ((d(x, x) = 0 and d(x, y) = ∞ if there
is no such path). The diameter of G is defined as diam(G) = sup{d(x, y) | x
and y are vertices of G}. The girth of G, denoted by gr(G), is the length of the
shortest cycle in G (gr(G) = ∞ if G contains no cycle). A subset S of V (G) is
called a clique if any two distinct vertices of S are adjacent; the clique number,
ω(G), is the least upper bound of the size of the cliques in G.

Theorem 2.5. Let A be a reduced Rickart ∗-ring such that V (Γ∗(A)) 6= ∅. Then

Γ∗(A) is connected with diam(Γ∗(A)) ≤ 3.

Proof. Since A is a reduced ring, by Remark 2.2(1), ab = 0 if and only if ba = 0
if and only if ab∗ = 0. Hence the proof follows by Redmond [18, Theorem 3.2].

Following example shows that Rickartness is necessary in Theorem 2.4 and
Theorem 2.5.

Example 2.6. Let A = Z3 ×Z3 with (a, b)∗ = (b, a) as an involution. Then A is
a reduced but not a Rickart ∗-ring (since (0, 1)∗(0, 1) = (0, 0) with (0, 1) 6= (0, 0)).
Here V (Γ∗(A)) = V (Γ(A)) = {a = (0, 1), b = (1, 0), c = (0, 2), d = (2, 0)}. Figure
1 shows that Γ∗(A) and Γ(A) are non-isomorphic.

b c

da

Γ(A)

b c

d a

Γ∗(A)

Figure 1.

Next result gives an equivalent condition for adjacency in Γ∗(A).

Lemma 2.7. Let A be a reduced Rickart ∗-ring such that V (Γ∗(A)) 6= ∅. Then

the vertices a and b are adjacent in Γ∗(A) if and only if B(a) ∩B(b) = ∅.

Proof. Suppose a and b are adjacent in Γ∗(A). Let P be any prime strict ideal
of A. Then ab∗ = 0 ∈ P . Since P is a prime strict ideal, we get either a ∈ P
or b∗ ∈ P . Since P is a strict ideal, b∗ ∈ P whenever b ∈ P . Hence every prime
strict ideal either contains a or b. Therefore B(a)∩B(b) = ∅. Conversely, suppose
that B(a) ∩ B(b) = ∅. Hence for any prime strict ideal P , we have either a ∈ P
or b ∈ P , i.e., a ∈ P or b∗ ∈ P . Consequently ab∗ ∈ P , for all P ∈ Σ(A), hence
ab∗ ∈

⋂
{P | P ∈ Σ(A)} = {0}. Thus ab∗ = 0.



36 A.A. Patil and B.N. Waphare

Observe that, for each projection e in a reduced Rickart ∗-ring, by Lemma
2.1(4), we have B(e) = H(1− e). This leads to the following:

Corollary 2.8. Let A be a reduced Rickart ∗-ring such that V (Γ∗(A)) 6= ∅. Then

the vertices a and b are adjacent in Γ∗(A) if and only if B(a) ⊆ H(b).

Remark 2.9. In a reduced Rickart ∗-ring, H(1 − RP (a)) = set of prime strict
ideals containing 1−RP (a) = B(RP (a)) = B(a).

The following result characterizes the distance between two vertices. We use
the notation a ↔ b to indicate that a and b are adjacent.

Proposition 2.10. Let A be a reduced Rickart ∗-ring and a, b, c ∈ V (Γ∗(A)) be

distinct vertices. Then

(1) c is adjacent to both a and b if and only if B(a) ∪B(b) ⊆ H(c).

(2) d(a, b) = 1 if and only if B(a) ∩B(b) = ∅.

(3) d(a, b) = 2 if and only if B(a) ∩B(b) 6= ∅ and B(a) ∪B(b) 6= Σ(A).

(4) d(a, b) = 3 if and only if B(a) ∩B(b) 6= ∅ and B(a) ∪B(b) = Σ(A).

Proof. (1) Suppose that c is adjacent to both a and b. By Corollary 2.8, B(a) ⊆
H(c) and B(b) ⊆ H(c). Hence B(a) ∪ B(b) ⊆ H(c). Conversely, suppose that
B(a) ∪ B(b) ⊆ H(c). Hence B(a) ⊆ H(c) and B(b) ⊆ H(c). Consequently,
B(a) ∩B(c) = ∅ and B(b) ∩B(c) = ∅. By Lemma 2.7, c is adjacent to a and c is
adjacent to b.

(2) Follows from Lemma 2.7.

(3) Suppose that d(a, b) = 2. Let a ↔ d ↔ b be a path of length 2. Since
a and b are non-adjacent, B(a) ∩ B(b) 6= ∅. Here d is adjacent to both a and
b, hence by (1) above, B(a) ∪ B(b) ⊆ H(d). Therefore B(a) ∪ B(b) 6= Σ(A),
otherwise H(d) = Σ(A) which yields d ∈

⋂
P∈Σ(A) P = {0} giving d = 0, a

contradiction. Thus B(a) ∩ B(b) 6= ∅ and B(a) ∪ B(b) 6= Σ(A). Conversely,
suppose that B(a) ∩ B(b) 6= ∅ and B(a) ∪ B(b) 6= Σ(A). By (2) above, a and b
are non-adjacent. Let P ∈ Σ(A) be such that P /∈ B(a) ∪ B(b). Since a ∈ P ,
we get RP (a) ∈ P . By Lemma 2.1(4), 1 − RP (a) /∈ P . Similarly, RP (b) ∈ P
and 1 − RP (b) /∈ P . Therefore (1 − RP (a))(1 − RP (b)) /∈ P . Consequently,
c = (1 − RP (a))(1 − RP (b)) 6= 0. Then a ↔ c ↔ b is a path. Therefore
d(a, b) = 2.

(4) Follows from (2), (3) above and Theorem 2.5.

Now, in the following result, we characterize the diameter of Γ∗(A).

Theorem 2.11. For a finite reduced Rickart ∗-ring A following statements hold:
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(1) diam(Γ∗(A)) = 1 if and only if A = Z2 ⊕ Z2 with identity mapping as an

involution.

(2) diam(Γ∗(A)) = 2 if and only if |V (Γ∗(A))| ≥ 3 and L(Ã) contains exactly

two atoms.

(3) diam(Γ∗(A)) = 3 if and only if L(Ã) contains at least three atoms.

Proof. (1) One way is clear. Conversely, suppose that diam(Γ∗(A)) = 1. There-
fore Γ∗(A) is a complete graph. Let e be a non-trivial projection in A (since
V (Γ∗(A)) 6= ∅, such e exists). Then A = eA⊕(1−e)A. By completeness of Γ∗(A),
we get eA = Z2 and (1 − e)A = Z2. Thus A = Z2 ⊕ Z2. Further, by Remark
2.2(5), eA is strict ideal. Hence for x ∈ eA \ {e}, we have RP (x) = RP (x∗) = e.
This gives x∗ = x∗e ∈ eA, which gives x∗ = x. Therefore the involution on eA
and (1− e)A, and hence on A is identity.

(2) Let diam(Γ∗(A)) = 2. Clearly |V (Γ∗(A))| ≥ 3. Also, for a finite Rickart ∗-
ring A with V (Γ∗(A)) 6= ∅, the lattice L(Ã) contains at least two atoms. Suppose
e, f and g are three atoms in L(Ã), hence ef = fg = eg = 0. If e + f = 1, then
g = eg + fg = 0, a contradiction. Hence e + f 6= 1. Similarly, f + g 6= 1 and
e + g 6= 1. This gives (1 − e)(1 − f) 6= 0, otherwise e + f = 1. If there is a
projection h such that (1− e) ↔ h ↔ (1− f) is a path, then h = he = hf implies
h = hf = hef = 0. Thus 1 − e and 1 − f are nonadjacent and there is no path
of length 2 joining them, hence d(1 − e, 1 − f) ≥ 3, a contradiction to the fact
that diam(Γ∗(A)) = 2. Therefore L(Ã) contains exactly two atoms. Conversely,
suppose that |V (Γ∗(A))| ≥ 3 and L(Ã) contains exactly two atoms, say e1 and e2.
Let a and b be any two vertices of Γ∗(A). We consider the following two cases.

Case (i) Suppose RP (a) and RP (b) have common atom, say e1, i.e., e1 ≤
RP (a) and e1 ≤ RP (b). Then e1 ≤ RP (a)RP (b), hence RP (a)RP (b) 6= 0. On
the other hand, e2 ≤ 1−RP (a) and e2 ≤ 1−RP (b) which gives (1−RP (a))(1−
RP (b)) 6= 0. Hence RP (a) ↔ (1−RP (a))(1−RP (b)) ↔ RP (b) is a path joining
RP (a) and RP (b). Thus d(a, b) = 2.

Case (ii) Suppose RP (a) and RP (b) don’t have common atom. Without
loss of generality, assume that e1 ≤ RP (a) and e2 ≤ RP (b). Then e2RP (a) =
e1RP (b) = 0. This gives e1RP (a)RP (b) = e2RP (a)RP (b) = 0, hence e1 �
RP (a)RP (b) and e2 � RP (a)RP (b). Since L(Ã) contains exactly two atoms, we
must have RP (a)RP (b) = 0. Hence d(a, b) = 1.

Thus diam(Γ∗(A)) ≤ 2. Since |V (Γ∗(A))| ≥ 3 and L(Ã) contains exactly two
atoms, there exists two vertices x and y such that RP (x) and RP (y) contains a
common atom in L(Ã). Hence by Case(i) above, we get d(x, y) = 2. Therefore
diam(Γ∗(A)) = 2.

(3) If diam(Γ∗(A)) = 3, then by (2), L(Ã) contains at least three atoms.
Conversely, if L(Ã) contains three atoms, then as in the proof of (2), d(1 − e,
1− f) = 3. By Theorem 2.5, diam(Γ∗(A)) = 3.
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It is known that the girth of the zero-divisor graph is either 3 or 4 (if it
contains a cycle); see [17]. The following theorem characterizes the diameter and
the girth of Γ∗(A) in terms of the number of prime strict ideals of A.

Theorem 2.12. Let A be a reduced Rickart ∗-ring such that V (Γ∗(A)) 6= ∅.

(1) If A ≇ Z2⊕Z2 with identity involution, then diam(Γ∗(A)) = min{|Σ(A)|, 3}.

(2) If |Σ(A)| = 2, then gr(Γ∗(A)) = 4 or ∞; otherwise gr(Γ∗(A)) = 3.

Proof. (1) Since V (Γ∗(A)) 6= ∅, we get |Σ(A)| ≥ 2. Also, A ≇ Z2 ⊕ Z2 which
gives diam(Γ∗(A)) 6= 1. Further, by Theorem 2.5, diam(Γ∗(A)) ≤ 3. It is
enough to show that diam(Γ∗(A)) = 3 if and only if |Σ(A)| ≥ 3. Suppose
that |Σ(A)| ≥ 3 and P1, P2, P3 be three distinct prime strict ideals of A. Since
Σ(A) is Hausdorff [19, Lemma 3.4], there are ai ∈ A such that Pi ∈ B(ai) and
B(ai) ∩ B(aj) = ∅, for i 6= j and i, j ∈ {1, 2, 3}. By Lemma 2.7, we have ai
and aj are adjacent in Γ∗(A) for i 6= j. This implies that gr(Γ∗(A)) = 3. By
Remark 2.9, P1 ∈ H(1−RP (a1)) and P2 ∈ H(1−RP (a2)). Since a1a3 = a2a3 =
0 ∈ P3 and a3 /∈ P3, we have a1, a2 ∈ P3. Hence 1 − RP (a1), 1 − RP (a2) /∈ P3.
Therefore P3 ∈ B(1 − RP (a1)) ∩ B(1 − RP (a2)). Since B(a1) ∩ B(a2) = ∅,
we get H(RP (a1)) ∪ H(RP (a2)) = Σ(A). This together with H(RP (ai)) =
B(1 − RP (ai)) for i = 1, 2, gives B(1 − RP (a1)) ∪ B(1 − RP (a2)) = Σ(A). By
Proposition 2.10, d(1 − RP (a1), 1 − RP (a2)) = 3. Therefore diam(Γ∗(A)) = 3.
Conversely, suppose that diam(Γ∗(A)) = 3. Let a ↔ a1 ↔ a2 ↔ b is a path
of length 3 in Γ∗(A). Since V (Γ∗(A)) 6= ∅ and A ≇ Z2 ⊕ Z2, A has at least
two prime strict ideals. On the contrary assume that P1 and P2 are the only
prime strict ideals of A. Observe that, for no vertex x we have B(x) = {P1, P2}.
Without loss of generality, assume that B(a) = {P1}. Since a is adjacent to a1
and nonadjacent to b, we must have B(a1) = {P2} and B(b) = {P1}. Which
gives B(a1) ∩ B(b) = ∅, i.e., a1 is adjacent to b, a contradiction to the fact that
d(a, b) = 3. Therefore |Σ(A)| ≥ 3.

(2) By the proof of part (1), |Σ(A)| ≥ 3 implies that gr(Γ∗(A)) = 3. Now
suppose |Σ(A)| = 2, say Σ(A) = {P1, P2}. Since V (Γ∗(A)) 6= ∅, A contains
at least one non-trivial projection, say, e. Further, A is a reduced ring, hence
e is central. Therefore A = eA ⊕ (1 − e)A. Next, we claim that eA does not
contain nonzero zero-divisor. On the contrary assume that, xy = 0 for some
nonzero x, y ∈ eA. Then x and y are adjacent in Γ∗(A), giving B(x)∩B(y) = ∅.
Since Σ(A) = {P1, P2} and H(e) /∈ {∅,Σ(A)}, without loss of generality assume
that, H(e) = {P1}. Then x, y ∈ eA ⊆ P1. Since H(x),H(y) /∈ {∅,Σ(A)}, we
get H(x) = H(y) = {P1}, hence B(x) = B(y) = {P2}, a contradiction to the
fact that B(x) ∩ B(y) = ∅. Therefore eA does not contain nonzero zero-divisor.
Similarly, (1 − e)A does not contain nonzero zero-divisor. If either |eA| = 2 or
|(1− e)A| = 2, then gr(Γ∗(A)) = ∞; else it is easy to see that gr(Γ∗(A)) = 4.
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The associated number e(a)- the eccentricity of a denoted by e(a), of a vertex
of a graph G is defined to be e(a) = max{d(a, b) | a 6= b}.

Remark 2.13. Note that, for any vertex a of Γ∗(A), d(a, b) ≤ 3 for any b ∈
V (Γ∗(A)) \ {a}. Therefore e(a) ≤ 3.

Theorem 2.14. In a reduced Rickart ∗-ring A,

(1) e(a) = 1 if and only if a is a projection and |Σ(A)| = | < a > | = 2.
If e(a) 6= 1. Then

(2) e(a) = 2 if and only if |B(a)| = 1.

(3) e(a) = 3 if and only if |B(a)| > 1.

Proof. (1) Let e(a) = 1, i.e., a is adjacent to all the other vertices of Γ∗(A). If
a is not a projection, then we get a contradiction since a and RP (a) are always
nonadjacent in Γ∗(A). Therefore a is a projection. Let b ∈< a > with b 6= a, hence
b = ab. Since a and b are adjacent, we get ab = 0. Consequently, b = ab = 0.
Therefore | < a > | = 2. Also, by Remark 2.2(5), < a > is a strict ideal of A.
Next, let P be a prime strict ideal containing a and y ∈ P \ {a}. Since P is
prime strict ideal, we have RP (y) 6= 1. If R(y) 6= 0, then a is adjacent to both
RP (y) and 1 − RP (y), which gives a = 0, a contradiction. Hence RP (y) = 0,
consequently y = 0. Therefore P = {0, a}. Thus {0, a} is a prime strict ideal.
Now, let P1 ∈ B(a). Then for any x ∈ V (Γ∗(A)) \ {a}, aRP (x) = 0. Hence
aRP (x) ∈ P1 with a /∈ P1 and since P1 is a prime strict ideal, we have RP (x) ∈ P1

which yields x ∈ P1, for all x ∈ V (Γ∗(A)) \ {a}. Therefore V (Γ∗(A)) \ {a} ⊆ P1.
On the other hand, for any nonzero y ∈ P1, RP (y) 6= 1 and y(1 − RP (y)) = 0.
Hence y ∈ V (Γ∗(A)). Therefore P1 = {0} ∪ [V (Γ∗(A)) \ {a}]. Thus |Σ(A)| = 2.
Conversely, suppose that a is a projection and |Σ(A)| = | < a > | = 2. Let P1

and P2 be two prime strict ideals of A with a ∈ P1 \ P2. Hence 1− a ∈ P2. Then
for any x ∈ P1, RP (x)(1 − a) ∈ P1 ∩ P2 = {0}, which gives RP (x) = RP (x)a.
This yields x = xa ∈< a >. Therefore P1 = {0, a}. Since | < a > | = 2, there is
no b different from a such that RP (b) = a. Hence for any b ∈ V (Γ∗(A)) \ {a}, we
get RP (b) ∈ P2. This gives RP (b)a ∈ P1 ∩ P2 = {0}, giving RP (b)a = 0, i.e., b
and a are adjacent. Thus e(a) = 1.

For (2) and (3), suppose that e(a) 6= 1. Then by Theorem 2.11, e(a) = 2
or 3.

Let |B(a)| = 1 and P ∈ Σ(A) be such that a /∈ P . As e(a) 6= 1 there exists
b ∈ V (Γ∗(A)) \ {a} such that a and b are non-adjacent. Hence B(a) ∩B(b) 6= ∅.
Now B(a) ∩ B(b) ⊆ B(a) which is a singleton set, hence we get B(a) ⊆ B(b).
Therefore B(a) ∪B(b) = B(b) 6= Σ(A). By Theorem 2.11, e(a) = 2.

Now suppose |B(a)| > 1 and P1, P2 ∈ Σ(A) such that a /∈ P1 ∪ P2. Let
b ∈ P1 \ P2 then b ∈ P1 and b /∈ P2. Therefore P2 ∈ B(a) ∩ B(b), which gives
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d(a, b) 6= 1. Let P ∈ B(ab), i.e., ab /∈ P . Since P is a prime strict ideal,
we have a /∈ P and b /∈ P . Hence P ∈ B(a). Thus B(ab) ⊆ B(a) which
gives B(a) ∪ B(1 − RP (a)RP (b)) = Σ(A). If RP (a)(1 − RP (a)RP (b)) = 0,
then RP (a) = RP (a)RP (b) ∈ P1 giving a ∈ P1, a contradiction. Hence a
and 1 − RP (a)RP (b) are non-adjacent in Γ∗(A). By Theorem 2.11, d(a, (1 −
aRP (b))) = 3. Thus e(a) = 3.

A graph G is triangulated if each vertex of G is a vertex of a triangle. Let
Z(A) be the set of zero-divisors in A. Now, we characterize the triangulated
zero-divisor graphs.

Theorem 2.15. For a reduced Rickart ∗-ring A,

(1) Γ∗(A) is triangulated if and only if |H(a)| > 1, for all a ∈ V (Γ∗(A)).

(2) If 2 /∈ Z(A), then every vertex of Γ∗(A) is a 4-cycle-vertex.

Proof. (1) Suppose that Γ∗(A) is triangulated. On the contrary, assume that
there is a vertex a such that a belongs to unique prime strict ideal, say, Q of A,
i.e., |H(a)| = 1. Since Γ∗(A) is triangulated, there exists b, c ∈ V (Γ∗(A)) such
that ab∗ = bc∗ = ca∗ = 0. Therefore B(a)∩B(b) = B(a)∩B(c) = B(b)∩B(c) = ∅.
This gives B(a) ⊆ H(b) and B(c) ⊆ H(a) ∩H(b), hence H(a) ∩H(b) 6= ∅. Also,
H(a) ∩H(b) ⊆ H(a) and H(a) is a singleton set. Therefore H(a) ⊆ H(b). Now
Σ(A) = B(a) ∪H(a) ⊆ H(b) gives H(b) = Σ(A). Hence b ∈

⋂
P∈Σ(A) P = {0}

giving b = 0, a contradiction. Therefore |H(a)| > 1, for all a ∈ V (Γ∗(A)).
Conversely, suppose that |H(a)| > 1, for all a ∈ V (Γ∗(A)). Let a ∈ V (Γ∗(A))

and P1, P2 be two distinct prime strict ideals containing a. Let e = RP (a) and
I = (1 − e)A, i.e., I = r({a}). Then e ∈ P1, P2. Since A = eA ⊕ (1 − e)A,
if P1 ∩ I = {0} and P2 ∩ I = {0}, we get P1 ⊆ eA and P2 ⊆ eA. Then for
any x ∈ P1, we get x = xe ∈ P2, i.e; P1 ⊆ P2. Similarly P2 ⊆ P1. This gives
P1 = P2, a contradiction. Hence P1 ∩ I 6= {0} or P2 ∩ I 6= {0}. Without loss of
generality, suppose P1∩ I 6= {0}. Let b ∈ P1∩ I with b 6= 0 and f = RP (b). Then
(1 − e)f = f giving ef = 0, hence a and b are adjacent. If (1 − e)(1 − f) = 0,
then 1 − e = (1 − e)f ∈ P1. Which gives 1 = 1 − e + e ∈ P1, a contradiction.
Hence (1 − e)(1 − f) 6= 0 and a ↔ b ↔ (1 − e)(1 − f) ↔ a is a triangle. Thus
every vertex is a vertex of a triangle.

(2) Suppose that 2 /∈ Z(A). Let a ∈ V (Γ∗(A)). Then there exists nonzero
b ∈ A such that ab∗ = 0. Since A is reduced and 2 /∈ Z(A), we get 2a 6= b, a 6= 2b.
Therefore a, b, 2a, 2b all are distinct with ab∗ = 0 = (2a)b∗ = (2a)(2b)∗ = 2a(2b)∗.
Thus a ↔ b ↔ 2a ↔ 2b ↔ a is a 4-cycle containing a.

If a and b are two vertices in Γ∗(A), by c(a, b) we mean the length of the
smallest cycle containing a and b. For every two vertices a and b, all possible
cases for c(a, b) are given in the following theorem.
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Theorem 2.16. Let A be a reduced Rickart ∗-ring, a, b ∈ V (Γ∗(A)) and 2 /∈
Z(A).

(1) c(a, b) = 3 if and only if B(a) ∩B(b) = ∅ and RP (a) +RP (b) 6= 1.

(2) c(a, b) = 4 if and only if either B(a) ∩ B(b) = ∅ and RP (a) + RP (b) = 1
or B(a) ∩B(b) 6= ∅ and d(a, b) = 2.

(3) c(a, b) = 6 if and only if d(a, b) = 3.

Proof. (1) Suppose that B(a) ∩B(b) = ∅ and RP (a) +RP (b) 6= 1. Then a and
b are adjacent, hence RP (a)RP (b) = 0. If (1 − RP (a))(1 − RP (b)) = 0, then
RP (a) + RP (b) = 1, a contradiction. Therefore (1 − RP (a))(1 − RP (b)) 6= 0
which yields a ↔ (1 − RP (a))(1 − RP (b)) ↔ b ↔ a a 3−cycle containing a
and b. Thus c(a, b) = 3. Conversely, suppose that c(a, b) = 3. Then a and
b are adjacent, hence B(a) ∩ B(b) = ∅. Let a ↔ b ↔ c be a 3-cycle. Then
RP (a)RP (b) = RP (a)RP (c) = RP (b)RP (c) = 0. If RP (a) + RP (b) = 1, then
RP (c) = RP (a)RP (c) +RP (b)RP (c) = 0, giving c = 0, a contradiction. There-
fore RP (a) +RP (b) 6= 1.

(2) Let c(a, b) = 4. Suppose B(a) ∩ B(b) = ∅. If RP (a) + RP (b) 6= 1, then
by (1) above, c(a, b) = 3, a contradiction. Hence RP (a) + RP (b) = 1. Now
suppose that B(a) ∩ B(b) 6= ∅. Then a and b are non-adjacent. This together
with c(a, b) = 4 gives d(a, b) = 2. Conversely, suppose that B(a) ∩B(b) = ∅ and
RP (a) + RP (b) = 1. Since 2 /∈ Z(A), we get a ↔ b ↔ 2a ↔ 2b ↔ a a 4-cycle
containing a and b. Next, we will show that there is no cycle of length 3 which
contains a and b. If c(a, b) = 3, then by (1) above, we have RP (a) +RP (b) 6= 1,
a contradiction. Therefore c(a, b) = 4. Suppose B(a) ∩B(b) 6= ∅ and d(a, b) = 2.
Let a ↔ c ↔ b be a path. Then a ↔ c ↔ b ↔ 2c ↔ a is a 4-cycle containing a
and b. Hence c(a, b) = 4.

(3) Suppose d(a, b) = 3. Let a ↔ c ↔ d ↔ b be a path. Then RP (c)RP (b) 6=
0 (as d(a, b) = 3) which gives a ↔ c ↔ d ↔ b ↔ (1−RP (b)) ↔ RP (c)RP (b) ↔ a
a 6-cycle containing a and b. Since d(a, b) = 3, we get c(a, b) = 6. Conversely,
suppose that c(a, b) = 6. Then by (1) and (2) above, we get d(a, b) 6= 1, 2.
Therefore d(a, b) = 3.

The cellularity of a topological space X is denoted by c(X) and it is the
smallest cardinal numberm such that every family of pairwise disjoint non-empty
open subsets of X has cardinality at most m. Next we show that the clique
number of Γ∗(A) and the cellularity of Σ(A) coincide.

Theorem 2.17. Let A be a reduced Rickart ∗-ring. Then ω(Γ∗(A)) = c(Σ(A)).

Proof. Let C be a clique in Γ∗(A). Then for every a, b ∈ C, ab∗ = 0, i.e.,
B(a) ∩B(b) = ∅. Then the collection C = {B(a) | a ∈ C} is a family of pairwise
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disjoint non-empty open subsets of Σ(A). Hence ω(Γ∗(A)) ≤ c(Σ(A)). Next,
suppose that C = {Aλ | λ ∈ Λ} is a collection of pairwise disjoint non-empty
open subsets of Σ(A). For every Aλ ∈ C there exists aλ ∈ A such that ∅ 6=
B(RP (aλ)) ⊆ Aλ. Clearly for every Aλ, A

′

λ ∈ C, we have aλa
′

λ
∗ = 0. Hence

B = {aλ | λ ∈ Λ} is a clique in Γ∗(A). This implies that c(Σ(A)) ≤ ω(Γ∗(A)).
Therefore ω(Γ∗(A)) = c(Σ(A)).
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[6] D. Dolžan and P. Oblak, The zero divisor graphs of rings and semirings, Int. J.
Algebra Comput. 22 1250033 (2012) 20pp.
doi:10.1142/S0218196712500336

[7] F. DeMeyer, T. McKenzie and K. Schneider, The zero-divisor graph of a commuta-

tive semigroup, Semigroup Forum 65 (2002) 206–214.
doi:10.1007/s002330010128

[8] F. DeMeyer and L. DeMeyer, Zero divisor graph of Semigroups, J. Algebra 283

(2005) 190–198.
doi:10.1016/j.jalgebra.2004.08.028
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