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Abstract

The lattice of all regular-solid varieties of semirings splits in two com-
plete sublattices: the sublattice of all idempotent regular-solid varieties of
semirings and the sublattice of all normal regular-solid varieties of semirings.
In this paper, we discuss the idempotent part.
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1. Introduction

Varieties of semirings are varieties of algebras of type (2, 2), where both binary
operations are associative and satisfy the two usual distributive laws. Single
semirings as well as classes of semirings form important structures in Automata
and Formal Languages Theories [5]. To get more insight into the complete lat-
tice of all varieties of semirings, all solid and all pre-solid varieties of semirings
were determined [1, 2]. Now, we are interested in the complete lattice of all
regular-solid varieties of semirings by characterizing all regular-solid varieties of
idempotent semirings. To achieve our aim, we recall some basic concepts.

Let F and G be the both binary operation symbols and let W(2,2)(X2) be
the set of all binary terms of type (2, 2) built up by variables from the alphabet
X2 = {x, y}. Hypersubstitutions of type (2, 2) are mappings

σ : {F,G} → W(2,2)(X2).
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The set of all hypersubstitutions of type (2, 2) will be denoted by Hyp. A hyper-
substitution σ ∈ Hyp can be extended on the set W(2,2)(X) of all terms of type
(2, 2), where X is an arbitrary countably infinite alphabet of variables, by the
following steps:

(i) σ̂[t] := t, if t ∈ X,

(ii) σ̂[t] := σ(f)(σ̂[t1], σ̂[t2]), if t = f(t1, t2) ∈ W(2,2)(X) with f ∈ {F,G}, where

σ(f) can be interpreted as the term operation σ(f)F(2,2)(X) induced by the
term σ(f) on the free algebra F(2,2)(X) := (W(2,2)(X); (F ,G)) with f :
(W(2,2)(X))2 → W(2,2)(X), (t1, t2) 7→ f(t1, t2).

It is easy to prove that the algebra (Hyp; ◦h, σid), is a monoid with ◦h (where
σ1 ◦h σ2 := σ̂1 ◦ σ2 and ◦ is the usual mapping composition) as binary operation
and σid, defined by σid(f) := f(x, y) for all f ∈ {F,G}, as an identity element.
Hypersubstitutions can be applied to algebras as follows: given an algebra A =
(A; (FA,GA)) of type (2, 2) and a hypersubstitution σ ∈ Hyp, one defines the
algebra σ(A) := (A; (σ(F)A, σ(G)A)). This algebra of type (2, 2) is called the
derived algebra by A and σ.

The hypersubstitution σ ∈ Hyp such that σ(F ) = t and σ(G) = s will be
denoted by σt,s. For all variables u and v, the term F (u, v) and G(u, v) will be
denoted by u+ v and uv, respectively.

A hypersubstitution σ ∈ Hyp is called a regular hypersubstitution if σ maps
both F and G to binary terms containing both variables x and y. It is easy to
verify that the set Reg of all regular hypersubstitutions of type (2, 2) forms a
submonoid of the monoid Hyp. An identity s ≈ t in a variety V of semirings
is called a regular hyperidentity if for every σ ∈ Reg, the equation σ̂[s] ≈ σ̂[t]
belongs to the set IdV of all identities satisfied in V . A variety V of semirings
is called regular-solid if all identities in V are satisfied as regular hyperidentities.
For more information about hypersubstitutions and varieties of algebras see in
[3, 7].

In the next section, we will provide some necessary conditions for a variety
of semirings to be a regular-solid one. This leads to a description of the lattice
of all regular-solid varieties of semirings. The last section will be devoted to the
determination of the lattice of all regular-solid varieties of idempotent semirings.

2. Some Properties

A variety V of semirings is medial if x + y + z + u ≈ x + z + y + u ∈ IdV

and xyzu ≈ xzyu ∈ IdV , idempotent if x + x ≈ x ≈ x2 ∈ IdV , distributive if
xy + z ≈ (x+ z)(y + z) ∈ IdV and x+ yz ≈ (x+ y)(x+ z) ∈ IdV.
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An equation s ≈ t is called normal if either both terms s and t are equal to
the same variable or none of them is a variable, that is, if s = t or the complexity
(number of occurrences of operation symbols) of both terms s and t is greater or
equal to 1. A variety in which all identities are normal is called a normal variety.

Now, we can derive some necessary conditions for varieties of semirings to be
regular-solid.

Proposition 1. Let V be a regular-solid variety of semirings. The following pro-

perties are:

(1) V is medial, distributive and satisfies the identities:

(i) x2yz ≈ xy2z ≈ xyz2 ≈ xyz,

(ii) 2x+ y + z ≈ x+ 2y + z ≈ x+ y + 2z ≈ x+ y + z.

(2) V is either idempotent or normal.

Proof. (1) It is clear that the usual distributive laws are satisfied in V . The
application of the regualar hypersubstitutions σxy,x+y to them gives the other
distributive laws since V is a regular-solid variety of semirings. Moreover, apply-
ing the regular hypersubstitutions σxy,xy and σyx,yx to the distributive law

x(y + z) ≈ xy + xz,

of V , we get the identities

xyz ≈ xyxz and zyx ≈ zxyx, respectively, in V.

It is folklore that the identities xyz ≈ xyxz ≈ xzyz imply the medial law
xyzu ≈ xzyu and the identities xyz ≈ x2yz ≈ xy2z ≈ xyz2. The application
of the regular hypersubstitution σxy,x+y to these identities gives the remaining
identities.

(2) Suppose that t ≈ x is an identity in V which is not normal. This provides
xk ≈ x ∈ IdV for some k ≥ 2 (by using the regular hypersubstitution σxy,xy and
identifying all variables with x). From the identity x2yz ≈ xyz ∈ IdV , we get
x4 ≈ x3 ∈ IdV and together with xk ≈ x ∈ IdV , we obtain the idempotent law
x2 ≈ x ∈ IdV . Therefore, V is idempotent by using the regular hypersubstitution
σxy,x+y.

Proposition 1 (2), leads to a description of the complete lattice Reg(Sr) of all
regular-solid varieties of semirings. Denoting by L(2, 2) the lattice of all varieties
of type (2, 2), we have:

Corollary 2. The lattice Reg(Sr) splits into two complete sublattices of L(2, 2),
the sublattice RegIdem(Sr) of all idempotent regular-solid varieties of semirings

and the sublattice RegN (Sr) of all normal regular-solid varieties of semirings.
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Proof. The lattice LN (2, 2) of all normal varieties of type (2, 2) and the lat-
tice LIdem(2, 2) of all idempotent varieties of type (2, 2) are complete sublattices
of L(2, 2) (see [4, 7]). Therefore, since RegN (Sr) = Reg(Sr) ∩ LN (2, 2) (the
intersection of two complete sublattices) and since RegIdem(Sr) = Reg(Sr) ∩
LIdem(2, 2) (the intersection of two complete sublattices), it arises that both lat-
tices RegIdem(Sr) and RegN (Sr) are complete sublattices. By Proposition 1 (2)
the lattices RegIdem(Sr) and RegN (Sr) are disjoint and their union is Reg(Sr).

3. All Regular-Solid Varieties of Idempotent Semirings

In this section, the lattice of all regular-solid varieties of idempotent semirings
will be determined. An equation s ≈ t is outermost if the terms s and t start
with the same variable (we write leftmost(s) = leftmost(t)) and end also with
the same variable (we write rightmost(s) = rightmost(t)). A variety V is called
outermost if all equations in IdV are outermost. A variety V of semirings is
commutative if x + y ≈ y + x ∈ IdV and xy ≈ yx ∈ IdV . The following result
gives a description of idempotent regular-solid varieties of semirings.

Proposition 3. Each idempotent regular-solid variety of semirings is either out-

ermost or commutative.

Proof. Let V be an idempotent regular-solid variety of semirings. Assume that
V is not outermost. We will show that V is commutative. Since V is not out-
ermost, without loss of generality, we can assume that there exists an equation
s ≈ t in IdV such that leftmost(s) = x 6= y = leftmost(t). Applying the regular
hypersubstitution σxy,xy to the identity s ≈ t ∈ IdV , we get the following identity
s1 ≈ t1 in V (where leftmost(s1) = x 6= y = leftmost(t1)). Let us consider the

function h : X → W(2,2)(X), w 7→

{

x if w = x

y otherwise.
It is well known that this function can be uniquely extended to an endomorphism
h on F(∈,∈)(X ). Then, h(s1) ≈ h(t1) ∈ IdV and h(s1)yx ≈ h(t1)yx ∈ IdV , so
xyx ≈ yx ∈ IdV because of the idempotent law. Applying the regular hyper-
substitution σyx,yx to the latter identity, the following equations xy ≈ xyx ≈ yx

hold in V as identities. The application of σxy,x+y to xy ≈ yx shows that V is
commutative.

Now, we determine the commutative part of RegIdem(Sr). Proposition 1 (1)
shows that every regular-solid variety of idempotent semirings is a subvariety of
the variety VMID of all medial idempotent and distributive semirings. But the
subvariety lattice of VMID is fully described by Pastjin in [6] as follows:

Let us consider the two-element algebras (using the same notations as in [6]):
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A = ({0, 1}; e21, e
2
1), e

2
1 is the binary projection {0, 1}2 → {0, 1} on the

first input;
A◦ = ({0, 1}; e22, e

2
2), e

2
2 is the binary projection {0, 1}2 → {0, 1} on the

second input;
B = ({0, 1}; e21,∧), where ∧ denotes the conjunction;
B◦ = ({0, 1}; e22,∧);
B• = ({0, 1}; ∧, e21);
B•◦= ({0, 1}; ∧, e22);
F = ({0, 1}; e21,

2
2);

F◦ = ({0, 1}; e22, e
2
1);

J = ({0, 1}; ∧,∨), where ∨ denotes the disjunction;
L = ({0, 1}; ∧,∧).

The algebra J generates the varietyDL of all distributive lattices and L generates
the variety SL of bi-semilattices. Then we have

Lemma 4 [6]. The subvariety lattice of the variety VMID of all medial idempotent

and distributive semirings is a Boolean lattice with 10 atoms and 10 dual atoms,

i.e., with 210 elements. The atoms are exactly the varieties V (A), V (A◦), V (B),
V (B◦), V (B•), V (B•◦), V (F), V (F◦),DL and SL, where V (K) is the variety

generated by a given algebra K of type (2, 2).

Therefore, each subvariety of VMID is a join of some of these 10 atoms.
An equation s ≈ t is said to be regular if both terms s and t use the same variables
and a variety of semirings is regular if all identities in that variety are regular.
The lattice of all regular-solid varieties of commutative and idempotent semirings
is determined as follows:

Theorem 5. The two-element lattice

SL

T

is the lattice of all regular-solid varieties of commutative and idempotent semir-

ings, where T = Mod{x ≈ y} is the trivial variety of type (2, 2).

Proof. Let V be a regular-solid variety of commutative and idempotent semir-
ings. By Proposition 1 (1), the variety V is a commutative subvariety of VMID.
So V is either trivial or a join of some commutative atoms listed in Lemma 4.
This means that either V is trivial or V ∈ {SL,DL, SL∨DL}. But the varieties
DL and SL ∨DL are not regular-solid. Indeed, the application of σx+xy,x+xy to
the commutative identity xy ≈ yx gives the identity x+xy ≈ y+yx which cannot
be satisfied in DL because of the absorption laws. IdSL is the set of all regular
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identities of type (2, 2). It is clear that applying regular hypersubstitution to any
regular identity, one gets a regular identity. So SL is regular-solid.

We are now interested in the outermost part of RegIdem(Sr). Some defini-
tions and facts will be referred.

Definition. A variety V of semirings is s-outermost if for any identity s ≈ t ∈
IdV , the equations s ≈ t as well as σ̂x+y,yx[s] ≈ σ̂x+y,yx[t] are outermost.

This definition coincides with that one given in [1] and it is clear that every
outermost regular-solid variety of semirings is s-outermost since the hypersubsti-
tution σx+y,yx is regular.

A variety V of semirings is said to be a solid variety if for all s ≈ t ∈ IdV

and for all σ ∈ Hyp, we get σ̂[s] ≈ σ̂[t] ∈ IdV . It is well known that the variety
RA(2,2) generated by all projection algebras of type (2, 2) is a variety of semirings
and it is defined by RA(2,2) = Mod{(xy)z ≈ x(yz) ≈ xz, (x+y)+z ≈ x+(y+z) ≈
x+ z, (x+ y)(z + u) ≈ xz + yu, x2 ≈ x ≈ x+ x} [1]. It is already proved:

Lemma 6 [1]. The lattice of all solid varieties of semirings is the four-element

chain represented by T ⊂ RA(2,2) ⊂ VBE ⊂ VMID, where

RA(2,2) = V (A) ∨ V (A◦) ∨ V (F) ∨ V (F◦) and

VBE = RA(2,2) ∨ SL ∨ V (B) ∨ V (B◦) ∨ V (B•) ∨ V (B•◦).

Moreover, it holds

Lemma 7 [1]. The variety RA(2,2) is the least s-outermost variety of semirings.

Now, we can prove:

Lemma 8. Let V be an outermost regular-solid variety of idempotent semirings.

If V is different from RA(2,2) then V is regular i.e all equations in IdV are regular.

Proof. We will prove that if V is not regular then V = RA(2,2). Since V is outer-
most regular-solid variety of semirings, V is s-outermost and we have RA(2,2) ⊆ V

(Lemma 7). It left to prove that V ⊆ RA(2,2) i.e Id(RA(2,2)) ⊆ IdV . Since V

is not regular, there exists an identity s ≈ t in IdV such that, without loss of
generality, a variable xi occurs in s but not in t. Applying σxy,xy to s ≈ t and
identifying all variables different from xi with x, we get xxix ≈ x ∈ IdV because
V is outermost and idempotent. Therefore, xyz ≈ xz ∈ IdV . The application
of σxy,x+y to this identity gives x + y + z ≈ x + z ∈ IdV . Moreover, using the
previous identity, the distributivity and the idempotency, the basis identities of
RA(2,2) are also identities in V . This finishes the proof of Id(RA(2,2)) ⊆ IdV .
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Now, we have all tools to prove our main result:

Theorem 9. The lattice of all regular-solid varieties of idempotent semirings is

the lattice

VMID

VBE

SL ∨ RA(2,2)

SL

T

RA(2,2)

Proof. Let V be a regular-solid variety of idempotent semirings. Then V is
either commutative or outermost (Proposition 3).

If V is commutative then V ∈ {T , SL} (Theorem 5). Otherwise, V is out-
ermost. Then V = RA(2,2) or V is regular (Lemma 8). Therefore, V = RA(2,2)

or SL ⊆ V since Id(SL) is the set of all regular identities of type (2, 2). More-
over, V is s-outermost and thus RA(2,2) ⊆ V (Lemma 7). Altogether, we have
V = RA(2,2) or RA(2,2) ∨ SL ⊆ V .

Let σi, i = 1, 2, 3, 4, be hypersubstitutions defined by

σ1: F 7→ F (y, x) σ2: F 7→ G(x, y) σ3 : F 7→ G(x, y) σ4 : F 7→ G(y, x)
G 7→ G(x, y) G 7→ F (x, y) G 7→ F (y, x) G 7→ F (x, y).

Then B◦ = σ1(B), B = σ1(B
◦), B• = σ2(B), B = σ2(B

•), B•◦ = σ3(B) and
B = σ4(B

•◦). Since a regular-solid variety has to contain all its derived algebras
by using regular hypersubstitutions, all of the varieties V (B), V (B◦), V (B•) and
V (B•◦) are contained in the variety V if it contains one of them. It follows
that VBE is the only one dual atom of VMID which is a regular-solid variety of
semirings, since VBE is solid and DL 6⊂ VBE (Lemma 4 and Lemma 6).

Therefore, V ∈ {RA(2,2), RA(2,2) ∨ SL, VBE , VMID}. Each element of the
previous set is a regular-solid variety of semirings (by using Theorem 5, Lemma
6 and the fact that RA(2,2) ∨ SL is a join of two regular-solid varieties).
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