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Abstract

In this paper we develop a variety theory for unranked tree languages and
unranked algebras. In an unranked tree any symbol may label a node with
any number of successors. Such trees appear in markup languages such as
XML and as syntactic descriptions of natural languages. In the correspond-
ing algebras each operation is defined for any number of arguments, but in
the regular algebras used as tree recognizers the operations are finite-state
computable. We develop the basic theory of regular algebras for a setting
in which algebras over different operator alphabets are considered together.
Using syntactic algebras of unranked tree languages we establish a bijection
between varieties of unranked tree languages and varieties of regular alge-
bras. As varieties of unranked tree languages are usually defined by means
of congruences of term algebras, we introduce also varieties of congruences
and a general device for defining such varieties. Finally, we show that the
natural unranked counterparts of several varieties of ranked tree languages
form varieties in our sense.
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1. INTRODUCTION

In its prevalent form the theory of tree automata and tree languages (cf. [8, 12,
13]) deals with trees in which the nodes are labeled with symbols from a ranked
alphabet that may be viewed as a finite set of operation symbols. When trees are
defined as terms, finite tree automata become essentially finite algebras. Hence,
Universal Algebra offers the theory a good formal framework and there is also a
link to term rewriting. However, when trees are used as representations of XML
documents or of parses of sentences of a natural language, fixing the possible
ranks of symbols is awkward. It is in particular the study of XML that propels
the current work on unranked tree languages (cf. [5, 8, 16, 17, 22]).

Actually unranked trees appeared in the theory of tree languages already
in the 1960s when Thatcher [28] defined recognizable unranked tree languages
and established a connection between them and context-free grammars. Rec-
ognizability was defined using “pseudoautomata” (attributed to J.R. Biichi and
J.B. Wright). Here pseudoautomata reappear as our “regular algebras”. In [18]
Pair and Quere consider hedges, i.e., finite sequences of unranked trees, and hedge
languages recognized by a new type of algebras. Hedges have become a much used
notion (cf. [4, 5, 27]), but we consider just unranked trees.

In Section 2 we introduce some general notation and unranked trees. Besides
an unranked alphabet, called the operator alphabet, we also use a leaf alphabet
for labeling leaves. The use of two alphabets is natural also in typical applications.
In Section 3 we develop the basic theory of unranked algebras allowing algebras to
have different operator alphabets. The next section introduces regular algebras in
terms of which recognizability will be defined. We derive a representation for the
variety of regular algebras (VRA) generated by a given class of regular algebras
akin to Tarski’s classical HSP-theorem (cf. [3, 6, 7, 10]). At the end of Section 4
we introduce congruences that reflect the regularity of algebras.

In Section 5 we introduce syntactic congruences and syntactic algebras of
subsets of unranked algebras. For unranked tree languages these notions are then
obtained by viewing them as subsets of term algebras. In Section 6 we define the
recognizable unranked tree languages. An unranked tree language is recognizable
if and only if its syntactic algebra is regular, and the syntactic algebra is the
least unranked algebra recognizing it. We also show that the syntactic algebra
of any effectively given recognizable unranked tree language can be effectively
constructed. This is not quite obvious as the operations are infinite objects and
there are infinitely many trees of any given height > 1.

In Section 7 we consider varieties of unranked tree languages (VUTSs) and
varieties of regular congruences (VRCs) by means of which VUTSs can be defined.
Then we introduce consistent systems of congruences (CSCs) that yield VRCs
and VUTs that we call quasi-principal as they replace the principal varieties of
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the ranked case. In Section 8 we establish a bijection between the VRAs and
VUTs. Section 9 contains several examples of VUTs that are natural unranked
counterparts of some (general) varieties of ranked tree languages.

Parts of this work parallels the theory of general ranked varieties. Familiarity
with the paper [25] may be helpful, but it is not assumed. Several straightforward
proofs have been omitted.

2. GENERAL PRELIMINARIES AND UNRANKED TREES

We may write X := Y when X is defined to be Y, and X :< Y means that X
is defined by condition Y. For any integer n > 0, let [n] := {1,...,n}. For a
relation p C A x B, the fact that (a,b) € p is also expressed by apb. For any
a€ Aand A C A let ap := {b | apb} and A'p := {b € B | (Ja € A" )apb}.
The converse of pis p~! := {(b,a) | apb}. The composition of p C A x B and
PP CBxCispop :={(a,c)|ac Ajce C,(3Ibe B)apb and bp'c}. The set
of equivalence relations on a set A is denoted by Eq(A), and for any 6 € Eq(A),
let A/0 :={ab | a € A}. Let Ag := {(a,a) | a € A} and V4 := A x A. For
a mapping ¢ : A — B, the image ¢(a) of a € A is also denoted by ayp, and
if HC A and K C B, we may write Hp and Ko~ ! for p(H) and ¢ }(K),
respectively. Especially homomorphisms are treated this way as right operators
and the composition of ¢ : A — B and v : B — C'is written as ¢. The identity
map A — A,a +— a, is denoted by 14. For any sets Aj,..., A, (n > 1) and any
i € [n], let m; denote the i projection Ay x -+ x A, — A;, (ay,...,a,) — a;.

For any finite alphabet X, the set X* of all words (finite strings) over X
forms with respect to concatenation the free monoid generated by X in which
the empty word ¢ is the identity. Subsets of X* are called languages over X.
Here it is convenient to define a language L C X™* to be recognizable, or reqular,
if L = Fo~! for a finite monoid M, a homomorphism ¢ : X* — M and some
F C M. For algebraic expositions of the theory of finite automata and regular
languages cf. [11, 20, 21], for example.

The unranked trees to be considered are finite and node-labeled, and their
branches have a specified left-to-right order. We use two alphabets, an operator
alphabet and a leaf alphabet, for labeling our trees. A symbol from the operator
alphabet may label any node of a tree, while the symbols of the leaf alphabet
appear at leaves only. In what follows, X, ), I' and ¥ denote operator alphabets,
and X, Y and Z leaf alphabets. All alphabets are finite, operator alphabets are
also nonempty, and leaf alphabets are disjoint from operator alphabets.

The set Tx(X) of unranked XX -trees is the smallest set T' of strings such
that (1) X UX C T, and (2) f(t1,...,tm) € T whenever f € ¥, m > 0 and
ti,...,tm € T. Subsets of Tx(X) are called unranked XX -tree languages. Often
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we speak simply about ¥ X -trees and X X -tree languages, or just about (unranked)
trees and (unranked) tree languages without specifying the alphabets.

Any u € X UX represents a tree with just one node which is labeled with
u, and f(t1,...,ty) is interpreted as a tree formed by adjoining the m trees
represented by t1,...,t, to a new f-labeled root in this left-to-right order. The
height hg(t) and the root root(t) of a ¥ X-tree ¢ are defined by (1) hg(u) = 0 and
root(u) = u for v € ¥ U X, and (2) hg(t) = max{hg(t1),...,hg(tn)} + 1 and
root(t) = f for t = f(t1,...,tm).

Let £ be a special symbol not in ¥ or X. A XX -context is a 3(X U {£})-tree
in which £ appears exactly once. Let Cx;(X) denote the set of all ¥ X-contexts. If
p,q € Cx(X) and t € Tx(X), then p(q) € Cx(X) and p(t) € Tx(X) are obtained
from p by replacing the £ in it with ¢ and ¢, respectively.

Let us demonstrate by a couple of examples that the use of two alphabets is
quite natural. Figure 1 shows the tree representation of a small XML document.
Here invoices, invoice and line belong to the operator alphabet while text
is a generic name for leaf symbols.

invoices
invoice invoice
/\ ‘
line line line
| | |
text text text

Figure 1. Unranked tree representing the structure of an XML document.

In Example 3.2 of [17] and Example 1 of [9] the unranked trees are Boolean
expressions over the alphabet {V, A, 0,1} in which disjunctions and conjunctions
may appear with any arities. It would be natural to split the alphabet into
Y ={V,A} and X = {0,1}; 0 and 1 may label leaves only.

3. UNRANKED ALGEBRAS

In the following, the set A of elements of an algebra will also be regarded as an
alphabet and the set of all finite sequences of elements of A is denoted by A*. An
m-tuple (ai,...,am) € A™ (m > 0) may be written as the word a; ... a,, and
subsets of A* are viewed as languages.

Definition 3.1. An wunranked X-algebra A consists of a nonempty set A (of
elements of A) and an operation f4 : A* — A for each f € ¥. We write simply
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A = (A,Y). The algebra A is finite if A is a finite set, and it is trivial if A is a
singleton. We may also speak just about X-algebras or (unranked) algebras.

These are essentially the “pseudoalgebras” of Biichi and Wright (1960) used
by Thatcher [28]. In what follows, A = (4,%), B = (B,%), B = (B,Q), C =
(C,T), etc. are always unranked algebras with the operator alphabets shown.
The classical counterparts of the following concepts, results and proofs, can be
found in any universal algebra text such as [3, 6, 7] or [10], for example. The
prefix g appearing in some names stands for “generalized”.

If Q C 3, an Q-algebra B = (B, Q) is an Q-subalgebra of A = (A, X)if BC A
and fg(w) = fa(w) for all f € Q and w € B*. Then we also call B a g-subalgebra
of A without specifying Q, and B is an Q-closed subset of A, i.e., f4(w) € B for
all f € Qand w € B*. Q-closed subsets are nonempty since Q # () and f4(c) € B
for any f € Q. A Y¥-subalgebra of a X-algebra is called just a subalgebra.

A pair of mappings ¢ : X — Q, ¢ : A — B forms a g-morphism from A =
(A, %) to B = (B,Q), written as (¢,¢) : A — B, if

falar,...;am)p = u(fplarp, ..., amp)

forall f € ¥, m >0 and ay,...,a, € A. A g-morphism is a g-epimorphism, a
g-monomorphism or a g-isomorphism if both maps are, respectively, surjective,
injective or bijective. Two algebras A and B are g-isomorphic, A =, B in symbols,
if there is a g-isomorphism (¢,¢) : A — B, and B is a g-image of A, if there is a
g-epimorphism from A onto B. Furthermore, we write A <, B if A is a g-image of
a g-subalgebra of B. If ¢, : A* — B* is the extension of ¢ to a monoid morphism,
then (¢, ) is a g-morphism if fa(w)e = ¢(f)g(weps) for all f € ¥ and w € A*.

For A= (A,X) and B = (B, %), a morphism ¢ : A — Bisamap ¢: A — B
such that fa(w)p = fe(wey) for all f € ¥ and w € A*. It may be viewed as
the g-morphism (1x,¢) : A — B. Epi-, mono- and isomorphisms are defined as
usual. The algebras A and B are isomorphic, A =2 B, if there is an isomorphism
p: A— B,and A < B if A is an epimorphic image of some subalgebra of 5.

A g-congruence of A = (A,Y) is a pair (0,0), where 0 € Eq(X) and 6 €
Eq(A), such that for any f,g € ¥, m >0 and ay,...,Gm,b1,...,b;m € A, if fog
and aj 0by,..., a4y, 0by,, then fa(ay,...,am) 0 ga(by,...,by). The set GCon(A)
of all g-congruences on A contains at least (Ay, A4) and (o, V4), where o is any
equivalence on Y. With respect to the order defined by

(o,w) < (0',w') & o Co'andw C W/ ((o,w), (0’'w’) € GCon(A)),

GCon(A) forms a complete lattice in which joins and meets are formed com-
ponentwise in Eq(X) and Eq(A), respectively. The congruences of A are the
equivalences 6 € Eq(A) such that (Ay,0) € GCon(A). Their set is denoted by
Con(A). Note that § € Con(A) if (w,#) € GCon(A) for some w € Eq(X).



184 M. STEINBY, E. JURVANEN AND A. CANO

For any g-congruence (o,0) of A= (A,X), the g-quotient algebra A/(0,0) =
(A/0,%/0) is defined by setting (fo)4/(s0)(a10,...,amb) = fa(a1,...,an)0 for
all f € X, m>0,and ay,...,an € A. Inparticular, (fo)4/(,0)(¢) = fa(e)d. The
quotient algebra A/ = (A/0,%), where 0 € Con(A) and f4/6(a10,...,a,0) =
falar,...,an)0 for all f € ¥, m >0 and ay,...,a, € A, may be regarded as a
special g-quotient of A; if we identify ¥ and ¥ /Ay, then A/0 = A/(Ay,0).

The g-subalgebras, g-morphisms, g-congruences and g-quotients of unranked
algebras have all the same basic properties as their classical counterparts, and
they can be proved the same way. Some of them are listed in the following lemma.

Lemma 3.2. Let A= (A,X), B=(B,Q) and C = (C,T") be unranked algebras,
and (v, ) : A— B and (3,1) : B — C be g-morphisms.

(a) The product (13, p10) : A — C is also a g-morphism. Moreover, if (1,¢) and
(5¢,) are g-epi-, g-mono- or g-isomorphisms, then so is (3¢, ).

(b) If R is a W-subalgebra of B, with ¥ C ), then Rp~! is a 1= *(¥)-subalgebra
of A.

(c) If S is a U-subalgebra of A, with W C3, then Sy is a 1(¥V)-subalgebra of B.

(d) For any g-congruence (0,6) of A, the maps 6y : A — A/f,a — ab, and
oy X — X/o, f— fo, define a g-epimorphism (oy,0y) : A — A/(0,0).

(e) The kernel ker(c, ) := (kere,ker ) of a g-morphism (1,p) : A — B is a
g-congruence of A, and A/ker(t,¢) =, B if (1,¢) is a g-epimorphism.

For any mapping » : I' = X xQ, the sc-product of A = (A,X) and B = (B, )
is the I'-algebra s(A, B) = (A x B,T") defined as follows: For any f € ', m > 0
and (a1, b1),..., (@m,bm) € A X B, let

f%(A,B)((ala bl)a T (ama bm)) = (gA(al, e 7am)7 hB(bh cen 7bm))7

where (g,h) = »(f). The products s»(Ay,...,A,) of n > 0 unranked algebras
are defined similarly. Without specifying sz, we call any such product a g-product.
For n = 0, the g-product s(Aj,...,A,) is the appropriate trivial algebra.

The direct product Ay x...x A, of 3-algebras Ay, ..., A, may be reconstrued
as the g-product »(Ay,..., A,) with 2: X >SN x ... x X, f—=(f,...,f).

For any mapping ¢ : ¥ — €, the g-product ¢(B) = (B, X) of just one factor
B = (B,Q), in which f,z) = «(f)p for any f € X, is called a g-derived algebra
of B. This notion has similar properties as the derived algebras considered in
[10, 15], for example. In particular, we have the following obvious fact.

Lemma 3.3. If (¢,¢) : A — B is a g-morphism from a ¥-algebra A = (A, %) to
an Q-algebra B = (B,Q), then ¢ : A — «(B) is a morphism of ¥-algebras.
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We define generalized subdirect decompositions with just finite algebras in
mind. A gsd-representation of A = (A,Y) with factors Ay = (A1,%4),...,4, =
(A, %) is a g-monomorphism (¢, ¢) : A — 3(Ayq,..., A,), where also » : I' —
Y1 X -+ X X, is injective, such that Apm; = A; and Ywem; = X; for every
i € [n]. Note that m; denotes both of the projections ¥j x --- x ¥,, — ¥; and
A x---x Ay — A; (i € [n]). Such a gsd-representation is proper if for no i € [n],
both om; : A — A; and wem; : X — 3; are injective. A finite unranked algebra is
gsd-irreducible if it has no proper gsd-representation.

The next two lemmas and Proposition 3.6 can be proved essentially the same
way as their classical counterparts are proved in universal algebra.

Lemma 3.4. Let (1,9) : A — 3(A1,..., An) be a gsd-representation of an
unranked algebra A = (A,X) with factors A1 = (A1,%1),...,Ap = (An, X))
(n >0). For every i € [n], (txem;, om;) : A — A; is a g-epimorphism. Moreover,
if we write (04, 60;) := ker(vsem;, om;) for each i € [n], then

(a) (04,0;) € GCon(A) and A/(0;,6;) =4 A;, and
(b) (0’1,01) VANIRVAN (O’n,en) = (AE,AA).

If the representation is proper, then (o;,0;) > (Ax, A4) for every i € [n].

Lemma 3.5. If an unranked algebra A = (A,X) has g-congruences (o1,601),. ..,
(On,0y) such that (o1,01) A -+ A (on,0n) = (As,A4), then

(Is,0) : A— 2(A/(01,01), ..., A/ (0n,0n))

is a gsd-representation of A for x: X — X /oy X -+ X X/op, fr (for,..., fon),
and o : A — A/O1 X -+ X A)On, a — (ab1,...,a0y). If (04,0;) > (Axg,Ay) for
every i € [n], then this gsd-representation is proper.

The next proposition corresponds to two fundamental results by G. Birkhoff.

Proposition 3.6. Let A= (A,X) be a finite unranked algebra.

(a) A is gsd-irreducible if and only if |A| = |3| = 1 or it has a least nontrivial
g-congruence, i.e., [J(GCon(A)\ {(Ax,A4)}) > (Ax,A4).

(b) A has a gsd-representation with finitely many factors each of which is a
gsd-irreducible g-image of A.

Note that a trivial X-algebra A = (A,X) is gsd-irreducible exactly in case
|X| < 2. If |¥| =2, then (Vy, Ay) is the least nontrivial g-congruence of A.

The unranked XX -term algebra Ts(X) = (Tx(X), %) is defined by fr, (x)(e) =
f for any f € %, and frx)(t1,--- tm) = f(t1,...,tm) for any m > 0 and
t1,...,tm € Tx(X). We may speak simply about (unranked) term algebras.
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A g-morphism (¢,¢) : Tu(X) — Ta(Y) between unranked term algebras
replaces each label f € ¥ with «(f) € Q and each leaf labeled with a symbol
x € X with the QY-tree xp. Thus they are the unranked analogs of the inner
alphabetic tree homomorphisms of [14]. For any given ¢ : ¥ — Q and any leaf
alphabet X, we define a mapping tx : T5(X) — Tq(X) of this type as follows:

(1) ix(z) =z forz € X, vx(f) =u(f) for f € X, and
(2) tx(t) =u(f)ex(t1), .- tx(tm)) for t = f(t1, ... tm)-

Then (¢,tx) : To(X) — Ta(X) is a g-morphism that transforms any ¥ X-tree to
an QX-tree by replacing any f € ¥ with «(f) but preserving every x € X.

The following proposition can be proved by obvious modifications in the same
way that usual term algebras are shown to be freely generated.

Proposition 3.7. The term algebra T, (X) is freely generated by X over the class
of all unranked algebras, that is to say, X generates Tx(X), and if A= (A, Q) is
any unranked algebra, then for any pair of mappings ¢ : X — Q and o : X — A,
there is a unique g-morphism (t,¢,q) : To(X) = A such that %,a‘x = .

The values of ¢, o can be obtained by evaluation of term functions for the
valuation a : X — A. The term function t4: AX — A of a L-algebra A = (A4,%)
induced by a X X-tree t € Tx(X) is defined as follows: For any a : X — A,

(1) 2Ma) = a(z) for 2 € X, fAa) = fa(e) for f € £, and
(2) tA(a) = faltiNa), ..., tA(a)) for t = f(t1,... tm).

Then tp, o = tx(t)*() for all t € Tx(X) with A, ¢ and « as in Proposition 3.7.

A mapping p : A — A is an elementary translation of A = (A, ) if there
exist f € ¥, m >0, and ¢ € [m] and ay, ..., a;—1, Gj+1, .., Gy € A such that
p(b) = falay---ai—1baiy1---an) for all b € A. The set Tr(A) of translations of
A is the smallest set of mappings A — A that contains the identity map 14 and
all elementary translations of A, and is closed under composition.

Lemma 3.8. Any congruence of an unranked algebra A = (A,X) is invariant
with respect to all the translations of A, and an equivalence on A is a congruence
of A if it is invariant with respect to all the elementary translations of A.

Moreover, we have the following counterpart of Lemma 5.3 in [25].

Lemma 3.9. Let (¢, ¢) : A — B be a g-morphism from a X-algebra A = (A, X) to
an Q-algebra B = (B, ). For every translation p € Tr(A), there is a translation
Do, Of B such that p(a)p = p, ,(ap) for every a € A. If (v, ) is a g-epimorphism,
then every translation of B equals p, , for some p € Tr(A).

For each translation p of the term algebra 7x(X) there is a unique context
q € Cx(X) such that p(t) = ¢(t) for every t € Tx(X), and conversely.
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4. REGULAR UNRANKED ALGEBRAS AND REGULAR CONGRUENCES

Let us now introduce the unranked algebras that play the same role here as finite
algebras in the ranked case. In [28] they were called “pseudoautomata”.

Definition 4.1. An unranked algebra A = (A, Y) is said to be regular if it is
finite and f;l(a) is a regular language over A for all f € ¥ and a € A. The class
of all regular algebras is denoted by Reg.

That the sets f;'(a) = {w € A* | fa(w) = a} are regular languages means
that the functions f4 : A* — A can be computed by finite automata.

For example, if ¥ = {f} and A = ({0,1},%) is defined by fa(w) = 1 if
w € {0"1" | n > 0}, and fa(w) = 0 otherwise (w € A*), then A is not regular
since f;l(l) = {0™1" | n > 0} is not a regular language, but A is regular if we
set fa(w) =a1+ - -+ a, (mod 2) for all w=ay ---an, (a1,...,a, € A).

Lemma 4.2. The g-subalgebras and the g-images of a reqular algebra are reqular.

Proof. Let A= (A,X) be aregular algebra and let B = (B, 2) be any unranked
algebra. If B is an )-subalgebra of A, then fgl(b) = f;l(b) N B* is a regular
language for all f € 2 and b € B, and hence B is regular.

Next, let (¢,¢) : A — B be a g-epimorphism. Consider any g € Q, b € B
and w € B*. If ¢, : A* — B* is the extension of ¢ to a monoid morphism, then
w = v, for some v € A*. If f € ¥ satisfies ¢(f) = g, then

we gg'(h) & ga(w)=b & (f)p(ve.) =b < faw)p=b o ve f 'y
= w € f;l(bgpfl)cp*,

ie., ggl(b) - fvzl(bga_l)gp*. For the converse inclusion, let w € fvzl(b(p—l)g)*.
Then w = v, for some a € bp~! and v € f;l(a). This means that b = ap =
fa()p = gp(ves) = g(w), and hence w € ggl(b). We may conclude that ggl(b)
is regular because fil(bgofl) is the union of the finitely many regular sets fil(a)

with a € bp~ L. [ |

Lemma 4.3. Any g-product of regular algebras is reqular. In particular, any
g-derived algebra of a reqular algebra is reqular.

Proof. Consider a g-product »(A,B) = (A x B,T") of two regular algebras A =
(A,¥) and B = (B,Q). Let f €T, (a,b) € A x B, and »#(f) = (g,h). If the
morphisms ¢; : (A x B)* — A* and ¢y : (A X B)* — B* extend the projections
m:AXxB— Aand mp: A x B — B, then f, 4 5)(w) = (ga(we1), hs(wes)) for
any w € (A x B)*. Hence, f;&’B)(a, b) = g;ll(a)gpfl Nhig'(b)py " is regular. m

Let us say that a regular algebra A = (A, ) is effectively given if, for all
f €3 and a € A, we are given a finite recognizer of f;l(a).
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Proposition 4.4. For any effectively given regular algebra A = (A,Y), the set
Tr(A) of all translations of A is effectively computable.

Proof. 1t suffices to show that for each f € ¥, the set Ef := {fu, | u,v € A*},
where f,,: A = A,a— fa(uav), is effectively computable .

For each a € A, we can find a finite monoid M,, a morphism ¢, : A* — M,
and a subset F, C M, such that f;l(a) = Fyp;t. For any u,v € A*, let u ~ v
if and only if up, = vy, for every a € A. Then f,, = fy . for all words
u,v,u’,v" € A* such that u ~ v’ and v ~ v because, for all a,b € A,

fuv(a) =b & fa(uav) =b < uav € f;l(b) < (uav)py € Fy
& upy - apy - vpy € Fy & u'oy - apy - V'op € Fy & fura(a) =D

Let R be a set of representatives of the partition A*/~. Such an R is finite and
can be effectively formed using the regular sets mp, ' (m € My, a € A). Then
E; is obtained as the set {f, , | u,v € R}. |

Since we consider classes that may contain unranked :-algebras for any 3,
also the operators S, H and Py are applied to such classes.

Definition 4.5. For any class K of unranked algebras, let S¢(K) be the class
of algebras g-isomorphic to a g-subalgebra of a member of K, H,(K) be the
class of all g-images of members of K, P,(K) be the class of algebras isomorphic
to g-products of members of K, S(K) be the class of algebras isomorphic to
a subalgebra of a member K, H(K) be the class of all epimorphic images of
members of K, and P¢(K) be the class of algebras isomorphic to the direct
product of a finite family of members of K. A class K of regular algebras is a
variety of reqular algebras (VRA) if Sy(K), Hy(K), Py(K) C K. The class of all
VRAs is denoted by VRA. The VRA generated by a given class K of regular
algebras is denoted by V,(K).

Since g-derived algebras are special g-products, the following fact is obvious.
Lemma 4.6. Every VRA is closed under the forming of g-derived algebras.
From Lemmas 4.2 and 4.3 we get the following proposition.
Proposition 4.7. Reg is a VRA, and hence the greatest VRA.

If P and @ are any algebra class operators, we denote by PQ the operator
such that PQ(K) = P(Q(K)) for any K. Moreover, P < () means that P(K) C
Q(K) for every K. The obvious facts that K C S(K) C S,(K), K € H(K) C
Hy(K), and K C Pf(K) C P,;(K) for any K, will be used without comment.
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Lemma 4.8.

(a) S¢Sy =545 =88, =15, (b) HHy = HyH = HH, = H,,
(c) PyPy = PyPr = PyPy = Py, (d) SgH < SgHy < HSy < HySy,
(e) PyS < PySy <SPy < S4P,, (f) P,H < PjH, < HP, < H,P,

Proof. Statements (a) and (b) hold because 545, = S, and HyH, = H,. For
(c), it suffices to show that P,P, < Py, and in (d), (e) and (f) all inequalities
except for the second ones are obvious. Let us prove that S,H, < HS,,.

Let K be any class of unranked algebras. To construct a typical member
C = (C.T) of SgHy(K), let A = (A,X) be in K, (t,9) : A — A be a g-
epimorphism, B = (B,) be a g-subalgebra of A’, and let (5,7) : B — C be a
g-isomorphism. Now By ™! = (Byp~1,171()) is a g-subalgebra of A. If we choose
a subset X’ of t71(Q) in such a way that the restriction of + to ¥’ is a bijection
/¥ — Q, then D = (Byp~!,Y) is a g-subalgebra of A.

Define £ = (B~ !, T') as follows: For each g € T, let g¢ = fp for the f € ¥’
with g = s(/(f)). Then (M/5,1p,-1) : D — £ is a g-isomorphism. Indeed, if
feY and we (Be™')*, then fp(w)lp,-1 = fp(w) = (/' (f))e(wlpgy-1). This
means that £ € Sy(K). We show that ¢t : £ — C is an epimorphism. Clearly,
By~ lpy = C. Consider any g € I' and w € (Bp™')*. Let f € ¥ and h €
be such that /(f) = h and s(h) = g. Then ge(w)py) = fp(w)py = fa(w)py =
ha(wp)p = hp(wp)y = ge(wey). Thus C € HS,(K). [ ]

Now we get the following result in the usual way.
Proposition 4.9. V, = H,5,P,.

For a simpler representation of V,, we need also the following two relations.
Lemma 4.10. (a) H,S < HS,, and (b) SgP; < SP,.

Proof. Let K be any class of unranked algebras. To prove (a), let A = (A,X) €
K, B = (B,X) be a subalgebra of A, and let (¢, ) : B — C be a g-epimorphism
onto some C = (C,T"). Let © C X be such that the restriction ¢/ : @ — T of ¢ to
Q is a bijection. Then B’ = (B, ) is a g-subalgebra of A. Define B” = (B,T")
by gg» = hp for each g € T and h € Q with J/(h) = g. Then (/,1p) : B — B”
is a g-isomorphism. Hence, B” € S;(K). To prove C € HS;(K), we show that
¢ : B” — C is an epimorphism. Let g € I', m > 0, and by, ..., b, € B, and
let h € Q be such that L(h) = g. Then gB”(bh- .. ,bm)(p = hlgl(bl,. .. ,bm)(p =
ha(bi,...,bm)e = ge(big, ..., bnyp). Moreover, ¢ is surjective.

To prove (b), let n > 0, A; = (A;,%;) € K for each i € [n], » : Q —
¥y X -+ x X, be a mapping, ¢ : »x(Ay,...,A,) = B be an isomorphism to some
B=(B,Q),C=(C,Q) be a g-subalgebra of B, and (¢, ) a g-isomorphism from
C to D = (D,TI'). Then D is a typical representative of SyPy(K).
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Let A\ : T — ¥y x---x %, be such that A(g) = s»(:~1(g)) for each g € I'. Then
£ = (Cy~1,T) is a subalgebra of A(Ay,..., A,) = (A x -+ x Ap,T). Indeed,
let g €T, m >0, and a; = (a11,---,010)s -+ &m = (Amly- - - Amn) € C~L If
1™ Yg) =h € Q and »(h) = (f1,..., fa), then

IN AL A (@1 s am) = () A (@11, amt)s s (fa) 4 (@10, - s Gmn) )Y
= hoyay,.. An) (@1, am) = hp(ar, ..., an) = he(a1?), . .., ant)

is in C since C' is an Q'-closed subset of B. To prove D € SP,(K), we verify
that 1 : € — D, with 1) restricted to Ct~!, is an isomorphism. Consider
any g € I', m > 0 and ay,...,a, € Cy~!. For the h € Q' with «(h) = g,
we get ge(ar,...,am)Vp = gra,,...4.) (@1 - @)Y = he(ar, ..., an)p =
gp(a1vp, ..., an1p). Moreover, it is clear that 1y is bijective. [

Proposition 4.11. V, = HSP,.

Proof. Since K C HSPy(K) C HyS,P;(K) = V,(K) for any class of regular
algebras K, it suffices to show that HSP,(K) is a VRA, and this follows from
Lemmas 4.8 and 4.10: S,(HSP,) < HS,SP, < HS,P, < HSP,, H,(HSP,) <
H,SP, < HS,P, < HSP, and P,(HSP,) < HP,SP, < HSP,P, = HSP,. m

Finally, let us note the following important fact.

Lemma 4.12. Let K be a VRA. If (0,0) is a g-congruence of an unranked algebra
A= (AYX), then A/0 € K if and only if A/(0,0) € K.

Proof. Clearly, (oy,14/9) : A/ — A/(0,0) is a g-epimorphism. Hence, A4/0 € K
implies A/(0,6) € K. Assume now that A/(c,0) € K. The g-derived alge-
bra oy(A/(0,0)) is actually the algebra A/6. Indeed, both are X-algebras with

the same set A/0 of elements, and for any f € X, m > 0 and aq,...,a,, €
A7 fcrh(A/(cr,G)) (a197 ce 7am9) = (fJ)A/(o,G) (alea s 7am9) = f.A(ala s 7am)9 =
faje(arf, ... an0). Hence, A/0 € K by Lemma 4.6. |

Definition 4.13. For any A = (A,Y), let FCon(A) := {6 € Con(A) | A/0 finite}
and let FGCon(A) := {(0,6) € GCon(A) | # € FCon(A)}. A congruence 6 of A is
reqular if § € FCon(A) and fi/le (af) is a regular language over A/ for all f € ¥
and a € A. A g-congruence (o,0) of A is regular if 6 is a regular congruence. Let
RCon(A) and RGCon(.A), respectively, denote the sets of regular congruences
and regular g-congruences of A.

For any 6 € Con(A), let ny : A* — (A/0)* be the morphism such that
ang = ab for each a € A. For all f € ¥, a € A and w € A*, wny € f;/le((w) if
and only if f4(w) € af. Hence f;l(aQ) = fj}e(aﬁ)ngl. As ny is surjective, also
fi/lg((w) = f;l(a9)n9 holds. These equalities yield the following lemma. Note
that in f,Z/le (af), ab is an element of A/6, but in f;l(aﬁ) it is a subset of A.
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Lemma 4.14. Let § € Con(A). For any f € ¥ and a € A, fj/le(ae) is a reqular
language over A/ if and only if f;l(a9) s a reqular language over A.

If A= (A,Y)is aregular algebra, then for any 6 € Con(A), f € Y anda € A,
fjl(ae) is the union of the finitely many regular sets f;l(b), where b € afl. Hence,
Lemma 4.14 yields the following proposition.

Proposition 4.15. Every congruence of a reqular algebra is reqular.

Lemma 4.16. For any unranked algebra A = (A,X), RCon(A) is a filter of the
lattice Con(A), and similarly, RGCon(A) is a filter of GCon(A).

Proof. Since RCon(A) contains V4, it is nonempty. If 6,p € RCon(A), then
clearly 8 N p € FCon(A). Moreover, for any f € ¥ and a € A, f;l(a(e Np)) =
f1'(a®) N f1"(ap), and hence also fj/lmp(a(e N p)) is regular by Lemma 4.14.

Next, let § € RCon(A), p € Con(A) and 0 C p. Of course, p € FCon(A).
Moreover, for each a € A there is a finite set of elements ay,...,ar € A (k > 1)
such that ap = a10 U...Uax0, and hence f(ap) = f ' (a10)U... U f (ax0) is
a regular language for every f € 3. Hence, p is regular by Lemma 4.14.

That RGCon(A) is a filter of GCon(.A) follows immediately from the fact
that RCon(.A) is a filter of Con(.A). |

The following facts are direct consequences of the relevant definitions.

Proposition 4.17. If 0 is a congruence of an unranked algebra A, then A/0 is
a regular algebra exactly in case 6 is a reqular congruence. Similarly, if (o,0) €

GCon(A), then A/(o,0) is regular if and only if (0,0) € RGCon(A).

5. SYNTACTIC CONGRUENCES AND ALGEBRAS

Syntactic algebras form a bridge between varieties of recognizable sets and vari-
eties of finite algebras. In Eilenberg’s [11] Variety Theory they are the syntactic
monoids (or semigroups). We define syntactic congruences and syntactic algebras
of subsets of unranked algebras similarly as they are defined for subsets of general
ranked algebras (cf. [1, 23, 24, 26]), and the basic facts about them remain valid
and can be proved similarly as in the ranked case.

Definition 5.1. The syntactic congruence 0 of a subset H C A of an unranked
algebra A = (A, Y) is defined by

afpb:= (VpeTr(A))(pla) € H <+ p(b) € H) (a,b e A),

and SA(H) := A/0y is the syntactic algebra of H. The natural morphism ¢y :
A — SA(H), a— afy, is called the syntactic morphism of H.
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An equivalence 0 € Eq(A) saturates H C A if H is the union of #-classes.

Lemma 5.2. For any subset H C A of an unranked algebra A = (A,X), O is
the greatest congruence of A that saturates H.

The following fact is an immediate consequence of Proposition 4.4.

Proposition 5.3. If A = (A,Y) is an effectively given reqular algebra, then the
syntactic congruence O and the syntactic algebra SA(H) of any effectively given
subset H C A can be effectively constructed.

We call an unranked algebra A = (A, X)) syntactic if it is isomorphic to the
syntactic algebra of a subset of some unranked algebra. A subset D C A of
A is disjunctive if p = A4. The following facts can be proved similarly as
Propositions 3.6 and 3.7 in [24].

Proposition 5.4. An unranked algebra is syntactic if and only if it has a dis-
junctive subset. Every finite gsd-irreducible unranked algebra is syntactic. Hence
every VRA is generated by reqular syntactic algebras.

It is easy to see that for any congruence 6 of an unranked algebra A = (4, X),
there is a greatest equivalence M(f) on ¥ such that (M(#),0) € GCon(A). We
shall need the following obvious properties of the M-operator.

Lemma 5.5. Let A= (A,X) and B = (B,2) be unranked algebras.

(a) If 6, 0’ € Con(A) and 6 C ¢, then M(0) C M(¢).

(b) For any set {0; | i € I} of congruences of A, M((N;c;6i) = (;cr M(6:).

(c) toM(f) o™t C M(pobopt) for any g-morphism (v,9) : A — B and any
0 € Con(B). If ¢ is surjective, then equality holds.

We will also need the following operator-reduced versions of 8y and SA(H).

Definition 5.6. The reduced syntactic congruence of a subset H of an unranked
algebra A = (A, Y) is the g-congruence (op,0) of A, where 0y is the syntactic
congruence of H and og := M(0p), the reduced syntactic algebra RA(H) of H
is the g-quotient A/(op,0y) = (A/0y,% /o), and the syntactic g-morphism
(ti,om) s A— RA(H) is defined by vy @ f — fomg and ¢g : a — afp.
Proposition 5.7. Let A= (A,X) and B = (B, ) be unranked algebras.

(a) Oa\g = O for every H C A.

(b) Oy N0k C Ogni for all H K C A.

(¢) O COp1(gpy for all HC A and p € Tr(A).
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(d) pofyoptC Orp—1 and Loop o T C Opp—1 for any H C B and any
g-morphism (v, ) : A — B, and equalities hold if (1, ) is a g-epimorphism.

Proof. Assertions (a)—(c) are obvious, so we prove just (d). For any a, a’ € A,
apolgoptd & (VqgeTr(B)) (qlap) € H « q(d'p) € H)
= (Vp € Tr(A)) (pp(ap) € H <> p,,(d'p) € H)
& (Vp € Tr(4)) (pla) € Ho™' > pla’) € Hp™")
& abp, a’
Hence gofpop~! C Or -1, and toopolr™t C 0 p1o—1 now follows from Lemma 5.5:
voogor t=10M(g)or ™t CM(pofgopt)C M(Opp-1) = oy

If (¢, ) is a g-epimorphism, the only “=" in the proof of the first inclusion can
be replaced by “=”, and all inclusions become equalities. [ |

Proposition 5.8. Let A= (A,X) and B = (B,2) be unranked algebras.

(a) SA(A\ H) =SA(H) for every H C A.

(b) SA(H N K) < SA(H) x SA(K) for all H,K C A.

(c) SA(p~1(H)) is an epimorphic image of SA(H) for all HC A and p€ Tr(A).

(d) RA(He™t) =, RA(H) for any g-morphism (1,¢) : A — B and any H C B.
If (1, ) is a g-epimorphism, then RA(Hp™') 22, RA(H).

Proof. Claims (a)—(c) follow from the corresponding parts of Proposition 5.7.
To prove (d), assume first that (¢,¢) is a g-epimorphism. It follows from
Proposition 5.7(d) that the maps ¢ : A/0y,1+ — B/0n, abp,— — (ap)fu,
and s : N/og,1 — Qfon, fogs— = i(f)on, are well-defined and injective.
Clearly, they are also surjective, and for any f € ¥, m >0 and ay, ..., aym € A,

(forp1)ra(He 1) (@1 0mp15 - s amOp,—1)Y = (falar, ... am)0py-—1)Y
= (falar, ..., am))0u = ((f)s(are, ..., amp))0n
= (t(f)om)ram) ((a19)0m, - - -, (amp)n)
= s(fope-1)ram) (@10g,1)Y, - - (@mbpy—1)1),
which shows that (s¢,7) : RA(Hy™!) — RA(H) is a g-isomorphism.
Consider now a general g-morphism (¢,¢) : A — B. Let C = (C,u(2)/on),

where C' = Appy and o(X)/og = {t(f)ou | f € £}, be the image of A in RA(H)
under the g-morphism (g, o) : A — RA(H). The mappings

w: X = uX) /oy, f—= of)omg, and Y : A — C, a (ap)lp,
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form a g-epimorphism (s,9) : A — C, and thus RA(Hp 'yp1) =2, RA(Hp 1)
by the previous part of the proof. Also, RA(Hp 19) <, RA(H) as RA(Hcp_li/))
is a g-image of the g-subalgebra C of RA(H). To obtain RA(Hy ™) <, RA(H)
it therefore suffices to show that Hp~! = Hp tyyp~!. Of course, H(,p_l C
Ho 1=t and on the other hand, by Proposition 5.7(d) and the equalities
Y = pom, vro gy = 0g and (Hp )0y, = Hp ', we get Hp 'yt =
(He popmo(popn) =(Hy polyop™ C(Hp )g,1=Ho ' ®

Simple modifications of the proofs of statements (d) of Propositions 5.7 and
5.8 yield the following specializations of those statements.

Corollary 5.9. Let A= (A, X) and B = (B,X) be unranked ¥-algebras. Then
polbgop™ C Oy, and SA(Hp™') = SA(H) for any morphism ¢ : A — B
and any H C B. If ¢ is an epimorphism, then ¢ o 0g o ¢!

= Op,—1 and
SA(Hp 1) = SA(H).

For a ¥ X-tree language T the syntactic congruence 01, the syntactic algebra
SA(T), the syntactic morphism @p, the reduced syntactic congruence (or,60r),
the reduced syntactic algebra RA(T) and the syntactic g-morphism (vp,@r) are
defined by regarding 7" as a subset of the term algebra 75 (X). Since the trans-
lations of 7x(X) are given by ¥ X-contexts, we have

sOrt & (Ype Cs(X))(p(s) €T < p(t) €T) (s,t e Txn(X)).

Let us note that the “top congruences” of [5] correspond to our syntactic congru-
ences of unranked tree languages.

6. RECOGNIZABLE UNRANKED TREE LANGUAGES

The following definition agrees with that given by Thatcher [28], and it is also
equivalent to the one arrived at via automata in [9, 16], for example.

Definition 6.1. An unranked Y-algebra A = (A, X)) recognizes an unranked ¥ X-
tree language T if T = Fp~! for some morphism ¢ : T5(X) — A and a subset
F C A, and we call T recognizable if it is recognized by a regular Y-algebra. The
set of all recognizable unranked ¥ X-tree languages is denoted by Rec(3, X).

Proposition 6.2. An unranked Y-algebra A recognizes an unranked X -tree
language T if and only if SA(T) < A.

Proof. 1t is clear that any tree language recognized by a subalgebra or an epi-
morphic image of an algebra A, is recognized by A, too. Since SA(T') recognizes
T (= Tyrps"), this means that SA(T) < A implies that A recognizes T. The
converse holds by Corollary 5.9: if T = Fy~! for some morphism ¢ : Tx(X) — A
and a subset F of A, then SA(T) = SA(Fp~!) < SA(F) < A. |
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Next we give a Myhill-Nerode theorem for unranked tree languages.

Proposition 6.3. For any T C Tx(X), the following statements are equivalent:
(a) T € Rec(%, X);
(b) T is saturated by a regular congruence of Tx(X);

(c) the syntactic congruence O is regular.

Proof. Let us first prove the equivalence of (a) and (b). If T € Rec(X, X), then
T = Fy! for a regular algebra A = (A,Y), a morphism ¢ : T(X) — A and
some F' C A. We may assume that ¢ is surjective. It is clear that T is saturated
by 0 := ker ¢, and € RCon(7x(X)) by Proposition 4.17 as Tx(X)/0 = A. On
the other hand, if T is saturated by some § € RCon(7x(X)), then T' = Tﬁuﬁu_l
means that T is recognized by the regular algebra Tx(X)/6.

If T is saturated by a congruence 6 € RCon(7x(X)), then 6 C 67 by Lemma
5.2, and hence 07 is regular by Lemma 4.16. Therefore, (b) implies (¢), and the
converse holds by Lemma 5.2. [ |

In [5] it was stated (as Lemma 8.2), in different terms, that 07 is of finite
index if T' € Rec(3, X), but the example meant to disprove the converse, appears
incorrect. Nevertheless, their Theorem 1 essentially expresses the equivalence of
(a) and (c) of our Proposition 6.3. From Propositions 6.3 and 4.17 we get:

Corollary 6.4. An unranked tree language T is recognizable if and only if the
syntactic algebra SA(T') is regular.

Next we note that the family of recognizable unranked tree languages is closed
under the operations that define our varieties of unranked tree languages.

Proposition 6.5. The following hold for all alphabets ¥, Q, X and Y.
(a) 0 € Rec(X,X), and Rec(3, X) is closed under all Boolean operations.

(b) If T € Rec(X, X), then p~Y(T) := {t € Ts(X) | p(t) € T} € Rec(%, X) for
every context p € Cx(X).

(e) If (1,¢) : Te(X) — Ta(Y) is a g-morphism, then Tp~' € Rec(X,X) for
every T' € Rec(Q,Y).

Proof. Clearly, () and Tx(X) are recognized by any Y-algebra, and the rest of
the proposition follows from Corollary 6.4 and Propositions 4.7 and 5.8. [ |

We shall need the following fact about the sets p~*(T).

Lemma 6.6. If T € Rec(%, X), then the set {p~*(T) | p € Cs(X)} is finite.
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Proof. By Proposition 5.7(c) every set p~!(T) is saturated by 7. On the other
hand, it follows from Proposition 6.3 that 67 has just finitely many equivalence
classes. Hence, the number of different sets p~1(T) must be finite, too. [ ]

We say that T € Rec(X, X) is effectively given if T = Fp~!, for an effectively
given morphism ¢ : Tx(X) — A, an effectively given regular algebra A = (A, X)
and an effectively given subset F' C A.

Proposition 6.7. If T € Rec(3,X) is effectively given, then SA(T) can be
effectively constructed.

Proof. If T = Fy~!is effectively given as in the above definition, we may assume
that ¢ : Tu(X) — A epimorphism. Then SA(T") = SA(F') by Corollary 5.9, and
SA(F') can be constructed by Proposition 5.3. ]

7. VARIETIES OF UNRANKED TREE LANGUAGES

A family of unranked tree languages V assigns to each pair ¥, X a set V(X, X)
of ¥ X-tree languages. We write V = {V(X, X)}» x with the understanding that
> and X range over all operator alphabets and leaf alphabets, respectively. The
inclusion relation, unions and intersections of these families are defined by the
natural componentwise conditions. In particular, if Y = {U(X, X))}y x and V =
{V(¥,X)}s x are two such families, then &/ C V means that U (X, X) C V(X, X)
for all ¥ and X, andU NV ={UE, X)NV(E, X)}s x.

Definition 7.1. A wvariety of unranked tree languages (VUT) is a family of un-
ranked tree languages V = {V(X, X)}x x such that for all ¥, Q, X and Y,

V1) 0% V(E, X) C Ree(S, X),

2) it T € V(X, X), then also Tx:(X) \ T belongs to V(X, X),

V3) if T,U € V(Z, X), then TN U € V(, X),

V4) if T € V(T, X), then p~1(T) € V(, X) for every p € Cx(X), and

5) if (1,) : To(X) — To(Y) is a g-morphism, then Tt € V(X, X) for every
T e V(Q,Y).

Let VUT denote the class of all VUTs.

<

2/\/\/-\/\

)
)
)
)

Clearly, the intersection of any family of VUTSs and the union of any directed
family of VUTs are VUTs. Hence (VUT, C) is an algebraic lattice. The least
VUT is Triv := {{0, Tx(X)}}x x and the greatest one is Rec := {Rec(X, X)}s x.

Proposition 7.2. If V ={V(X,X)}x x is a VUT and T € V(X, X) for some ¥
and X, then every Or-class is also in V(3, X).
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Proof. Tt follows from the definition of A7 that for any t € Tx(X),

tor = ({p (1) | p € Cs(X),p(t) € TI\ | J{p™ 1 (T) | p € Cx(X),p(t) ¢ T}.
By Lemma 6.6, this shows that t07 is in V(3, X). ]

Next we introduce systems of congruences that yield VUTs. For a nonempty
subset H of a lattice L, let [H) denote the filter generated by H, i.e., the set of
all b € L such that a1 A--- Aa, < b for somen > 1 and ay,...,a, € H. As
special cases, we get the principal filters [a) := [{a}] ={b€ L|a <b} (a € L).

By a family of reqular g-congruences we mean a mapping C that assigns
to each pair ¥, X a subset C(X,X) of RGCon(7x(X)). Again, we write C =
{C(X,X)}s x and order these families by the componentwise inclusion relation.

Definition 7.3. A family of regular g-congruences C = {C(X, X)}x x is a variety
of regular g-congruences (VRC) if the following hold for all ¥, Q, X and Y.

(C1) For every o € Eq(X), C(2,X)s := {0 € RCon(Tx(X)) | (0,0) € C(3,X)}
is a filter of RCon(7x(X)).

(C2) If (0,0) € C(X, X), 0’ € Eq(X) and ¢’/ C M(#), then (¢’,0) € C(Z, X).

(C3) If (1,) : Tu(X) — Ta(Y) is a g-morphism and (w,0) € C(£2,Y), then
(towor!pofop) € C(E, X).

Clause (C3) anticipated the following fact. The lemma has a simple proof.

Lemma 7.4. (towot tpofhopt) e RGCon(Tx(X)) for any g-morphism
(t,p) : To(X) = Ta(Y) and any (w,0) € RGCon(To(Y)).

For any family C = {C(Z, X)}s, x of regular g-congruences, let C' be the
family of recognizable unranked tree languages such that for all ¥ and X,

CH(%, X) = {T C Tx(X) | (Ag,07) € C(%, X)}.
Proposition 7.5. IfC is a VRC, then Ct is a VUT.

Proof. Most of the proposition follows directly from the definitions involved and
Proposition 5.7. Let us verify conditions (V1) and (V5) of Definition 7.1.
Firstly, for any ¥ and X, C'(%,X) # 0 as (Ax,Vpyx)) € C(X,X) and
0p = Vry(x). For any T € C*(%, X), 67 € RCon(Ts(X)) as (Ax,07) € C(X, X).
By Proposition 6.3 this means that 7" is recognizable. Hence, C! satisfies (V1).
If (1, ) : Ts(X) = To(Y) is a g-morphism and T' € Ct(,Y), then (Agq, 07) €
C(,Y). Hence (toAgot™t, pofpopt) € C(X, X) by condition (C3). Moreover,
O € RCon(Tqo(Y)) implies (Ax, ¢ o 07 0 p~!) € RGCon(Tx(X)) by Lemma 7.4.
Hence, (Ayx, pofropt) € C(X,X) by (C2). On the other hand, p oot C
01,1 by Proposition 5.7(d), and hence (Ax,0p,-1) € C(%,X) by (C1). This
means that T~ ! € C{(3, X) and therefore C? satisfies (V5). |
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Many VUTs are unions of ascending chains or directed families of simpler
VUTs. In the ranked case the basic varieties forming such a family are usually
defined by so-called principal varieties of congruences [24, 26] that consist of
principal filters. Here we need the following more general notion.

Definition 7.6. We call © = {0(X2, X)}x», x, where (X, X) € Con(7x(X)) for all
¥ and X, a consistent system of congruences (CSC)if (X, X) C ¢of(Q, Y )op1
for all ¥, Q, X and Y, and every g-morphism (¢, ¢) : Ts(X) — Tq(Y), and then
let Co := {Co(X, X)}s, x be the family of regular congruences, where for all ¥
and X, Co(X, X) :={(0,0) € RGCon(Tx(X)) | (2, X) C 6}.

Proposition 7.7. For any CSC ©, Co is a VRC.

Proof. (C1) If 0 € Eq(X), then (0, Vry(x)) € Co(X, X), and hence Co (%, X ), #
0. If 6 C p and 0 € Co(X,X),, then §(X,X) C 6 C p. On the other hand,
(0,0) € RGCon(Tx (X)) implies (o, p) € RGCon(7x (X)) by Lemma 4.16. Hence
p€CoX,X)y. If0,pc Co(X,X)s, then 0(X,X) C 6,p and (0,0),(0,p) €
RGCon(7s(X)), and therefore #(3,X) C 6 N p and — again by Lemma 4.16,
(0,0 N p) = (0,0)A(0,p) € RGCon(Tx(X)). This means that 6N p € Co(X, X),,
and thus we have shown that Co (3, X), is a filter in RCon(7x(X)).

(C2) If (7,0) € Co (X, X), 0’ € Eq(X) and ¢’ C M(), then (¢/,0) € Co (X, X)
because 0(X, X)) C 0 by the first assumption.

(C3) If (¢t,0) : To(X) — Ta(Y) is a g-morphism and (w,0) € Co(R2,Y), then
(towor ! pofhoyp™t) € RGCon(Tx(X)) by Lemma 7.4, and 8(£2,Y) C 6 implies
0(2, X)Cpob(Q,Y)op 1 Cypofop™t. So (towor ™ pohop™t)eCo(E,X). =

Any VRC Cg defined by a CSC © and the corresponding VUT C§ are called
quasi-principal. The following is a direct consequence of the definition of Cé).

Lemma 7.8. For any CSC © = {#(X,X)}s x and all ¥ and X, C5(Z,X) =
{T € Rec(2,X) | 0(X,X) C Or}.

8. THE VARIETY THEOREM

We shall now prove that the following maps K + K! and V + V* form a pair of
mutually inverse isomorphisms between the lattices (VRA,C) and (VUT, Q).

Definition 8.1. For any VRA K, let K! = {K!(3, X)} be the family of recogniz-
able unranked tree languages in which K!(3, X) := {T C Tx(X) | SA(T) € K}
for all ¥ and X. For any VUT V = 