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Abstract

In this paper we develop a variety theory for unranked tree languages and
unranked algebras. In an unranked tree any symbol may label a node with
any number of successors. Such trees appear in markup languages such as
XML and as syntactic descriptions of natural languages. In the correspond-
ing algebras each operation is defined for any number of arguments, but in
the regular algebras used as tree recognizers the operations are finite-state
computable. We develop the basic theory of regular algebras for a setting
in which algebras over different operator alphabets are considered together.
Using syntactic algebras of unranked tree languages we establish a bijection
between varieties of unranked tree languages and varieties of regular alge-
bras. As varieties of unranked tree languages are usually defined by means
of congruences of term algebras, we introduce also varieties of congruences
and a general device for defining such varieties. Finally, we show that the
natural unranked counterparts of several varieties of ranked tree languages
form varieties in our sense.
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1. Introduction

In its prevalent form the theory of tree automata and tree languages (cf. [8, 12,
13]) deals with trees in which the nodes are labeled with symbols from a ranked
alphabet that may be viewed as a finite set of operation symbols. When trees are
defined as terms, finite tree automata become essentially finite algebras. Hence,
Universal Algebra offers the theory a good formal framework and there is also a
link to term rewriting. However, when trees are used as representations of XML
documents or of parses of sentences of a natural language, fixing the possible
ranks of symbols is awkward. It is in particular the study of XML that propels
the current work on unranked tree languages (cf. [5, 8, 16, 17, 22]).

Actually unranked trees appeared in the theory of tree languages already
in the 1960s when Thatcher [28] defined recognizable unranked tree languages
and established a connection between them and context-free grammars. Rec-
ognizability was defined using “pseudoautomata” (attributed to J.R. Büchi and
J.B. Wright). Here pseudoautomata reappear as our “regular algebras”. In [18]
Pair and Quere consider hedges, i.e., finite sequences of unranked trees, and hedge
languages recognized by a new type of algebras. Hedges have become a much used
notion (cf. [4, 5, 27]), but we consider just unranked trees.

In Section 2 we introduce some general notation and unranked trees. Besides
an unranked alphabet, called the operator alphabet, we also use a leaf alphabet
for labeling leaves. The use of two alphabets is natural also in typical applications.
In Section 3 we develop the basic theory of unranked algebras allowing algebras to
have different operator alphabets. The next section introduces regular algebras in
terms of which recognizability will be defined. We derive a representation for the
variety of regular algebras (VRA) generated by a given class of regular algebras
akin to Tarski’s classical HSP-theorem (cf. [3, 6, 7, 10]). At the end of Section 4
we introduce congruences that reflect the regularity of algebras.

In Section 5 we introduce syntactic congruences and syntactic algebras of
subsets of unranked algebras. For unranked tree languages these notions are then
obtained by viewing them as subsets of term algebras. In Section 6 we define the
recognizable unranked tree languages. An unranked tree language is recognizable
if and only if its syntactic algebra is regular, and the syntactic algebra is the
least unranked algebra recognizing it. We also show that the syntactic algebra
of any effectively given recognizable unranked tree language can be effectively
constructed. This is not quite obvious as the operations are infinite objects and
there are infinitely many trees of any given height ≥ 1.

In Section 7 we consider varieties of unranked tree languages (VUTs) and
varieties of regular congruences (VRCs) by means of which VUTs can be defined.
Then we introduce consistent systems of congruences (CSCs) that yield VRCs
and VUTs that we call quasi-principal as they replace the principal varieties of
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the ranked case. In Section 8 we establish a bijection between the VRAs and
VUTs. Section 9 contains several examples of VUTs that are natural unranked
counterparts of some (general) varieties of ranked tree languages.

Parts of this work parallels the theory of general ranked varieties. Familiarity
with the paper [25] may be helpful, but it is not assumed. Several straightforward
proofs have been omitted.

2. General preliminaries and unranked trees

We may write X := Y when X is defined to be Y , and X :⇔ Y means that X
is defined by condition Y . For any integer n ≥ 0, let [n] := {1, . . . , n}. For a
relation ρ ⊆ A × B, the fact that (a, b) ∈ ρ is also expressed by a ρ b. For any
a ∈ A and A′ ⊆ A, let aρ := {b | a ρ b} and A′ρ := {b ∈ B | (∃a ∈ A′) a ρ b}.
The converse of ρ is ρ−1 := {(b, a) | a ρ b}. The composition of ρ ⊆ A × B and
ρ′ ⊆ B × C is ρ ◦ ρ′ := {(a, c) | a ∈ A, c ∈ C, (∃b ∈ B) a ρ b and b ρ′c}. The set
of equivalence relations on a set A is denoted by Eq(A), and for any θ ∈ Eq(A),
let A/θ := {aθ | a ∈ A}. Let ∆A := {(a, a) | a ∈ A} and ∇A := A × A. For
a mapping ϕ : A → B, the image ϕ(a) of a ∈ A is also denoted by aϕ, and
if H ⊆ A and K ⊆ B, we may write Hϕ and Kϕ−1 for ϕ(H) and ϕ−1(K),
respectively. Especially homomorphisms are treated this way as right operators
and the composition of ϕ : A→ B and ψ : B → C is written as ϕψ. The identity
map A → A, a 7→ a, is denoted by 1A. For any sets A1, . . . , An (n ≥ 1) and any
i ∈ [n], let πi denote the ith projection A1 × · · · ×An → Ai, (a1, . . . , an) 7→ ai.

For any finite alphabet X, the set X∗ of all words (finite strings) over X
forms with respect to concatenation the free monoid generated by X in which
the empty word ε is the identity. Subsets of X∗ are called languages over X.
Here it is convenient to define a language L ⊆ X∗ to be recognizable, or regular,
if L = Fϕ−1 for a finite monoid M , a homomorphism ϕ : X∗ → M and some
F ⊆ M . For algebraic expositions of the theory of finite automata and regular
languages cf. [11, 20, 21], for example.

The unranked trees to be considered are finite and node-labeled, and their
branches have a specified left-to-right order. We use two alphabets, an operator
alphabet and a leaf alphabet, for labeling our trees. A symbol from the operator
alphabet may label any node of a tree, while the symbols of the leaf alphabet
appear at leaves only. In what follows, Σ, Ω, Γ and Ψ denote operator alphabets,
and X, Y and Z leaf alphabets. All alphabets are finite, operator alphabets are
also nonempty, and leaf alphabets are disjoint from operator alphabets.

The set TΣ(X) of unranked ΣX-trees is the smallest set T of strings such
that (1) X ∪ Σ ⊆ T , and (2) f(t1, . . . , tm) ∈ T whenever f ∈ Σ, m > 0 and
t1, . . . , tm ∈ T . Subsets of TΣ(X) are called unranked ΣX-tree languages. Often
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we speak simply about ΣX-trees and ΣX-tree languages, or just about (unranked)
trees and (unranked) tree languages without specifying the alphabets.

Any u ∈ X ∪ Σ represents a tree with just one node which is labeled with
u, and f(t1, . . . , tm) is interpreted as a tree formed by adjoining the m trees
represented by t1, . . . , tm to a new f -labeled root in this left-to-right order. The
height hg(t) and the root root(t) of a ΣX-tree t are defined by (1) hg(u) = 0 and
root(u) = u for u ∈ Σ ∪ X, and (2) hg(t) = max{hg(t1), . . . ,hg(tm)} + 1 and
root(t) = f for t = f(t1, . . . , tm).

Let ξ be a special symbol not in Σ or X. A ΣX-context is a Σ(X ∪{ξ})-tree
in which ξ appears exactly once. Let CΣ(X) denote the set of all ΣX-contexts. If
p, q ∈ CΣ(X) and t ∈ TΣ(X), then p(q) ∈ CΣ(X) and p(t) ∈ TΣ(X) are obtained
from p by replacing the ξ in it with q and t, respectively.

Let us demonstrate by a couple of examples that the use of two alphabets is
quite natural. Figure 1 shows the tree representation of a small XML document.
Here invoices, invoice and line belong to the operator alphabet while text

is a generic name for leaf symbols.

text

line

text

line

text

line

invoice invoice

invoices

Figure 1. Unranked tree representing the structure of an XML document.

In Example 3.2 of [17] and Example 1 of [9] the unranked trees are Boolean
expressions over the alphabet {∨,∧, 0, 1} in which disjunctions and conjunctions
may appear with any arities. It would be natural to split the alphabet into
Σ = {∨,∧} and X = {0, 1}; 0 and 1 may label leaves only.

3. Unranked algebras

In the following, the set A of elements of an algebra will also be regarded as an
alphabet and the set of all finite sequences of elements of A is denoted by A∗. An
m-tuple (a1, . . . , am) ∈ Am (m ≥ 0) may be written as the word a1 . . . am and
subsets of A∗ are viewed as languages.

Definition 3.1. An unranked Σ-algebra A consists of a nonempty set A (of
elements of A) and an operation fA : A∗ → A for each f ∈ Σ. We write simply
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A = (A,Σ). The algebra A is finite if A is a finite set, and it is trivial if A is a
singleton. We may also speak just about Σ-algebras or (unranked) algebras.

These are essentially the “pseudoalgebras” of Büchi and Wright (1960) used
by Thatcher [28]. In what follows, A = (A,Σ), B = (B,Σ), B = (B,Ω), C =
(C,Γ), etc. are always unranked algebras with the operator alphabets shown.
The classical counterparts of the following concepts, results and proofs, can be
found in any universal algebra text such as [3, 6, 7] or [10], for example. The
prefix g appearing in some names stands for “generalized”.

If Ω ⊆ Σ, an Ω-algebra B = (B,Ω) is an Ω-subalgebra of A = (A,Σ) if B ⊆ A
and fB(w) = fA(w) for all f ∈ Ω and w ∈ B∗. Then we also call B a g-subalgebra
of A without specifying Ω, and B is an Ω-closed subset of A, i.e., fA(w) ∈ B for
all f ∈ Ω and w ∈ B∗. Ω-closed subsets are nonempty since Ω 6= ∅ and fA(ε) ∈ B
for any f ∈ Ω. A Σ-subalgebra of a Σ-algebra is called just a subalgebra.

A pair of mappings ι : Σ → Ω, ϕ : A → B forms a g-morphism from A =
(A,Σ) to B = (B,Ω), written as (ι, ϕ) : A → B, if

fA(a1, . . . , am)ϕ = ι(f)B(a1ϕ, . . . , amϕ)

for all f ∈ Σ, m ≥ 0 and a1, . . . , am ∈ A. A g-morphism is a g-epimorphism, a
g-monomorphism or a g-isomorphism if both maps are, respectively, surjective,
injective or bijective. Two algebras A and B are g-isomorphic, A ∼=g B in symbols,
if there is a g-isomorphism (ι, ϕ) : A → B, and B is a g-image of A, if there is a
g-epimorphism from A onto B. Furthermore, we write A �g B if A is a g-image of
a g-subalgebra of B. If ϕ∗ : A

∗ → B∗ is the extension of ϕ to a monoid morphism,
then (ι, ϕ) is a g-morphism if fA(w)ϕ = ι(f)B(wϕ∗) for all f ∈ Σ and w ∈ A∗.

For A = (A,Σ) and B = (B,Σ), a morphism ϕ : A → B is a map ϕ : A→ B
such that fA(w)ϕ = fB(wϕ∗) for all f ∈ Σ and w ∈ A∗. It may be viewed as
the g-morphism (1Σ, ϕ) : A → B. Epi-, mono- and isomorphisms are defined as
usual. The algebras A and B are isomorphic, A ∼= B, if there is an isomorphism
ϕ : A → B, and A � B if A is an epimorphic image of some subalgebra of B.

A g-congruence of A = (A,Σ) is a pair (σ, θ), where σ ∈ Eq(Σ) and θ ∈
Eq(A), such that for any f, g ∈ Σ, m ≥ 0 and a1, . . . , am, b1, . . . , bm ∈ A, if f σ g
and a1 θ b1, . . . , am θ bm, then fA(a1, . . . , am) θ gA(b1, . . . , bm). The set GCon(A)
of all g-congruences on A contains at least (∆Σ,∆A) and (σ,∇A), where σ is any
equivalence on Σ. With respect to the order defined by

(σ, ω) ≤ (σ′, ω′) :⇔ σ ⊆ σ′ and ω ⊆ ω′ ((σ, ω), (σ′ω′) ∈ GCon(A)),

GCon(A) forms a complete lattice in which joins and meets are formed com-
ponentwise in Eq(Σ) and Eq(A), respectively. The congruences of A are the
equivalences θ ∈ Eq(A) such that (∆Σ, θ) ∈ GCon(A). Their set is denoted by
Con(A). Note that θ ∈ Con(A) if (ω, θ) ∈ GCon(A) for some ω ∈ Eq(Σ).
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For any g-congruence (σ, θ) of A = (A,Σ), the g-quotient algebra A/(σ, θ) =
(A/θ,Σ/σ) is defined by setting (fσ)A/(σ,θ)(a1θ, . . . , amθ) = fA(a1, . . . , am)θ for
all f ∈ Σ,m ≥ 0, and a1, . . . , am ∈ A. In particular, (fσ)A/(σ,θ)(ε) = fA(ε)θ. The
quotient algebra A/θ = (A/θ,Σ), where θ ∈ Con(A) and fA/θ(a1θ, . . . , amθ) =
fA(a1, . . . , am)θ for all f ∈ Σ, m ≥ 0 and a1, . . . , am ∈ A, may be regarded as a
special g-quotient of A; if we identify Σ and Σ/∆Σ, then A/θ ∼= A/(∆Σ, θ).

The g-subalgebras, g-morphisms, g-congruences and g-quotients of unranked
algebras have all the same basic properties as their classical counterparts, and
they can be proved the same way. Some of them are listed in the following lemma.

Lemma 3.2. Let A = (A,Σ), B = (B,Ω) and C = (C,Γ) be unranked algebras,
and (ι, ϕ) : A → B and (κ, ψ) : B → C be g-morphisms.

(a) The product (ικ, ϕψ) : A → C is also a g-morphism. Moreover, if (ι, ϕ) and
(κ, ψ) are g-epi-, g-mono- or g-isomorphisms, then so is (ικ, ϕψ).

(b) If R is a Ψ-subalgebra of B, with Ψ⊆Ω, then Rϕ−1 is a ι−1(Ψ)-subalgebra
of A.

(c) If S is a Ψ-subalgebra of A, with Ψ⊆Σ, then Sϕ is a ι(Ψ)-subalgebra of B.

(d) For any g-congruence (σ, θ) of A, the maps θ♮ : A → A/θ, a 7→ aθ, and
σ♮ : Σ → Σ/σ, f 7→ fσ, define a g-epimorphism (σ♮, θ♮) : A → A/(σ, θ).

(e) The kernel ker(ι, ϕ) := (ker ι, kerϕ) of a g-morphism (ι, ϕ) : A → B is a
g-congruence of A, and A/ ker(ι, ϕ) ∼=g B if (ι, ϕ) is a g-epimorphism.

For any mapping κ : Γ → Σ×Ω, the κ-product of A = (A,Σ) and B = (B,Ω)
is the Γ-algebra κ(A,B) = (A × B,Γ) defined as follows: For any f ∈ Γ, m ≥ 0
and (a1, b1), . . . , (am, bm) ∈ A×B, let

f
κ(A,B)((a1, b1), . . . , (am, bm)) = (gA(a1, . . . , am), hB(b1, . . . , bm)),

where (g, h) = κ(f). The products κ(A1, . . . ,An) of n ≥ 0 unranked algebras
are defined similarly. Without specifying κ, we call any such product a g-product.
For n = 0, the g-product κ(A1, . . . ,An) is the appropriate trivial algebra.

The direct product A1×. . .×An of Σ-algebras A1, . . . ,An may be reconstrued
as the g-product κ(A1, . . . ,An) with κ : Σ → Σ× . . . × Σ, f 7→ (f, . . . , f).

For any mapping ι : Σ → Ω, the g-product ι(B) = (B,Σ) of just one factor
B = (B,Ω), in which fι(B) = ι(f)B for any f ∈ Σ, is called a g-derived algebra
of B. This notion has similar properties as the derived algebras considered in
[10, 15], for example. In particular, we have the following obvious fact.

Lemma 3.3. If (ι, ϕ) : A → B is a g-morphism from a Σ-algebra A = (A,Σ) to
an Ω-algebra B = (B,Ω), then ϕ : A → ι(B) is a morphism of Σ-algebras.
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We define generalized subdirect decompositions with just finite algebras in
mind. A gsd-representation of A = (A,Σ) with factors A1 = (A1,Σ1), . . . ,An =
(An,Σn) is a g-monomorphism (ι, ϕ) : A → κ(A1, . . . ,An), where also κ : Γ →
Σ1 × · · · × Σn is injective, such that Aϕπi = Ai and Σικπi = Σi for every
i ∈ [n]. Note that πi denotes both of the projections Σ1 × · · · × Σn → Σi and
A1×· · ·×An → Ai (i ∈ [n]). Such a gsd-representation is proper if for no i ∈ [n],
both ϕπi : A→ Ai and ικπi : Σ → Σi are injective. A finite unranked algebra is
gsd-irreducible if it has no proper gsd-representation.

The next two lemmas and Proposition 3.6 can be proved essentially the same
way as their classical counterparts are proved in universal algebra.

Lemma 3.4. Let (ι, ϕ) : A → κ(A1, . . . ,An) be a gsd-representation of an
unranked algebra A = (A,Σ) with factors A1 = (A1,Σ1), . . . ,An = (An,Σn)
(n ≥ 0). For every i ∈ [n], (ικπi, ϕπi) : A → Ai is a g-epimorphism. Moreover,
if we write (σi, θi) := ker(ικπi, ϕπi) for each i ∈ [n], then

(a) (σi, θi) ∈ GCon(A) and A/(σi, θi) ∼=g Ai, and

(b) (σ1, θ1) ∧ . . . ∧ (σn, θn) = (∆Σ,∆A).

If the representation is proper, then (σi, θi) > (∆Σ,∆A) for every i ∈ [n].

Lemma 3.5. If an unranked algebra A = (A,Σ) has g-congruences (σ1, θ1), . . . ,
(σn, θn) such that (σ1, θ1) ∧ · · · ∧ (σn, θn) = (∆Σ,∆A), then

(1Σ, ϕ) : A → κ(A/(σ1, θ1), . . . ,A/(σn, θn))

is a gsd-representation of A for κ : Σ → Σ/σ1 × · · · ×Σ/σn, f 7→ (fσ1, . . . , fσn),
and ϕ : A → A/θ1 × · · · × A/θn, a 7→ (aθ1, . . . , aθn). If (σi, θi) > (∆Σ,∆A) for
every i ∈ [n], then this gsd-representation is proper.

The next proposition corresponds to two fundamental results by G. Birkhoff.

Proposition 3.6. Let A = (A,Σ) be a finite unranked algebra.

(a) A is gsd-irreducible if and only if |A| = |Σ| = 1 or it has a least nontrivial
g-congruence, i.e.,

⋂

(GCon(A) \ {(∆Σ,∆A)}) > (∆Σ,∆A).

(b) A has a gsd-representation with finitely many factors each of which is a
gsd-irreducible g-image of A.

Note that a trivial Σ-algebra A = (A,Σ) is gsd-irreducible exactly in case
|Σ| ≤ 2. If |Σ| = 2, then (∇Σ,∆A) is the least nontrivial g-congruence of A.

The unranked ΣX-term algebra TΣ(X) = (TΣ(X),Σ) is defined by fTΣ(X)(ε) =
f for any f ∈ Σ, and fTΣ(X)(t1, . . . , tm) = f(t1, . . . , tm) for any m > 0 and
t1, . . . , tm ∈ TΣ(X). We may speak simply about (unranked) term algebras.
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A g-morphism (ι, ϕ) : TΣ(X) → TΩ(Y ) between unranked term algebras
replaces each label f ∈ Σ with ι(f) ∈ Ω and each leaf labeled with a symbol
x ∈ X with the ΩY -tree xϕ. Thus they are the unranked analogs of the inner
alphabetic tree homomorphisms of [14]. For any given ι : Σ → Ω and any leaf
alphabet X, we define a mapping ιX : TΣ(X) → TΩ(X) of this type as follows:

(1) ιX(x) = x for x ∈ X, ιX(f) = ι(f) for f ∈ Σ, and

(2) ιX(t) = ι(f)(ιX(t1), . . . , ιX(tm)) for t = f(t1, . . . , tm).

Then (ι, ιX) : TΣ(X) → TΩ(X) is a g-morphism that transforms any ΣX-tree to
an ΩX-tree by replacing any f ∈ Σ with ι(f) but preserving every x ∈ X.

The following proposition can be proved by obvious modifications in the same
way that usual term algebras are shown to be freely generated.

Proposition 3.7. The term algebra TΣ(X) is freely generated by X over the class
of all unranked algebras, that is to say, X generates TΣ(X), and if A = (A,Ω) is
any unranked algebra, then for any pair of mappings ι : Σ → Ω and α : X → A,
there is a unique g-morphism (ι, ϕι,α) : TΣ(X) → A such that ϕι,α

∣

∣

X
= α.

The values of ϕι,α can be obtained by evaluation of term functions for the
valuation α : X → A. The term function tA : AX → A of a Σ-algebra A = (A,Σ)
induced by a ΣX-tree t ∈ TΣ(X) is defined as follows: For any α : X → A,

(1) xA(α) = α(x) for x ∈ X, fA(α) = fA(ε) for f ∈ Σ, and

(2) tA(α) = fA(t
A
1 (α), . . . , t

A
m(α)) for t = f(t1, . . . , tm).

Then tϕι,α = ιX(t)A(α) for all t ∈ TΣ(X) with A, ι and α as in Proposition 3.7.
A mapping p : A → A is an elementary translation of A = (A,Σ) if there

exist f ∈ Σ, m > 0, and i ∈ [m] and a1, . . . , ai−1, ai+1, . . . , am ∈ A such that
p(b) = fA(a1 · · · ai−1bai+1 · · · am) for all b ∈ A. The set Tr(A) of translations of
A is the smallest set of mappings A→ A that contains the identity map 1A and
all elementary translations of A, and is closed under composition.

Lemma 3.8. Any congruence of an unranked algebra A = (A,Σ) is invariant
with respect to all the translations of A, and an equivalence on A is a congruence
of A if it is invariant with respect to all the elementary translations of A.

Moreover, we have the following counterpart of Lemma 5.3 in [25].

Lemma 3.9. Let (ι, ϕ) : A → B be a g-morphism from a Σ-algebra A = (A,Σ) to
an Ω-algebra B = (B,Ω). For every translation p ∈ Tr(A), there is a translation
pι,ϕ of B such that p(a)ϕ = pι,ϕ(aϕ) for every a ∈ A. If (ι, ϕ) is a g-epimorphism,
then every translation of B equals pι,ϕ for some p ∈ Tr(A).

For each translation p of the term algebra TΣ(X) there is a unique context
q ∈ CΣ(X) such that p(t) = q(t) for every t ∈ TΣ(X), and conversely.
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4. Regular unranked algebras and regular congruences

Let us now introduce the unranked algebras that play the same role here as finite
algebras in the ranked case. In [28] they were called “pseudoautomata”.

Definition 4.1. An unranked algebra A = (A,Σ) is said to be regular if it is
finite and f−1

A (a) is a regular language over A for all f ∈ Σ and a ∈ A. The class
of all regular algebras is denoted by Reg.

That the sets f−1
A (a) = {w ∈ A∗ | fA(w) = a} are regular languages means

that the functions fA : A∗ → A can be computed by finite automata.
For example, if Σ = {f} and A = ({0, 1},Σ) is defined by fA(w) = 1 if

w ∈ {0n1n | n ≥ 0}, and fA(w) = 0 otherwise (w ∈ A∗), then A is not regular
since f−1

A (1) = {0n1n | n ≥ 0} is not a regular language, but A is regular if we
set fA(w) = a1 + · · ·+ an (mod 2) for all w = a1 · · · an, (a1, . . . , an ∈ A).

Lemma 4.2. The g-subalgebras and the g-images of a regular algebra are regular.

Proof. Let A = (A,Σ) be a regular algebra and let B = (B,Ω) be any unranked
algebra. If B is an Ω-subalgebra of A, then f−1

B (b) = f−1
A (b) ∩ B∗ is a regular

language for all f ∈ Ω and b ∈ B, and hence B is regular.
Next, let (ι, ϕ) : A → B be a g-epimorphism. Consider any g ∈ Ω, b ∈ B

and w ∈ B∗. If ϕ∗ : A∗ → B∗ is the extension of ϕ to a monoid morphism, then
w = vϕ∗ for some v ∈ A∗. If f ∈ Σ satisfies ι(f) = g, then

w ∈ g−1
B (b) ⇔ gB(w) = b ⇔ ι(f)B(vϕ∗) = b ⇔ fA(v)ϕ = b ⇔ v ∈ f−1

A (bϕ−1)

⇒ w ∈ f−1
A (bϕ−1)ϕ∗,

i.e., g−1
B (b) ⊆ f−1

A (bϕ−1)ϕ∗. For the converse inclusion, let w ∈ f−1
A (bϕ−1)ϕ∗.

Then w = vϕ∗ for some a ∈ bϕ−1 and v ∈ f−1
A (a). This means that b = aϕ =

fA(v)ϕ = gB(vϕ∗) = gB(w), and hence w ∈ g−1
B (b). We may conclude that g−1

B (b)
is regular because f−1

A (bϕ−1) is the union of the finitely many regular sets f−1
A (a)

with a ∈ bϕ−1.

Lemma 4.3. Any g-product of regular algebras is regular. In particular, any
g-derived algebra of a regular algebra is regular.

Proof. Consider a g-product κ(A,B) = (A×B,Γ) of two regular algebras A =
(A,Σ) and B = (B,Ω). Let f ∈ Γ, (a, b) ∈ A × B, and κ(f) = (g, h). If the
morphisms ϕ1 : (A ×B)∗ → A∗ and ϕ2 : (A ×B)∗ → B∗ extend the projections
π1 : A×B → A and π2 : A×B → B, then f

κ(A,B)(w) = (gA(wϕ1), hB(wϕ2)) for

any w ∈ (A×B)∗. Hence, f−1
κ(A,B)(a, b) = g−1

A (a)ϕ−1
1 ∩ h−1

B (b)ϕ−1
2 is regular.

Let us say that a regular algebra A = (A,Σ) is effectively given if, for all
f ∈ Σ and a ∈ A, we are given a finite recognizer of f−1

A (a).
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Proposition 4.4. For any effectively given regular algebra A = (A,Σ), the set
Tr(A) of all translations of A is effectively computable.

Proof. It suffices to show that for each f ∈ Σ, the set Ef := {fu,v | u, v ∈ A∗},
where fu,v : A→ A, a 7→ fA(uav), is effectively computable .

For each a ∈ A, we can find a finite monoid Ma, a morphism ϕa : A∗ → Ma

and a subset Fa ⊆ Ma such that f−1
A (a) = Faϕ

−1
a . For any u, v ∈ A∗, let u ∼ v

if and only if uϕa = vϕa for every a ∈ A. Then fu,v = fu′,v′ for all words
u, v, u′, v′ ∈ A∗ such that u ∼ u′ and v ∼ v′ because, for all a, b ∈ A,

fu,v(a) = b ⇔ fA(uav) = b ⇔ uav ∈ f−1
A (b) ⇔ (uav)ϕb ∈ Fb

⇔ uϕb · aϕb · vϕb ∈ Fb ⇔ u′ϕb · aϕb · v
′ϕb ∈ Fb ⇔ fu′,v′(a) = b.

Let R be a set of representatives of the partition A∗/∼. Such an R is finite and
can be effectively formed using the regular sets mϕ−1

a (m ∈ Ma, a ∈ A). Then
Ef is obtained as the set {fu,v | u, v ∈ R}.

Since we consider classes that may contain unranked Σ-algebras for any Σ,
also the operators S, H and Pf are applied to such classes.

Definition 4.5. For any class K of unranked algebras, let Sg(K) be the class
of algebras g-isomorphic to a g-subalgebra of a member of K, Hg(K) be the
class of all g-images of members of K, Pg(K) be the class of algebras isomorphic
to g-products of members of K, S(K) be the class of algebras isomorphic to
a subalgebra of a member K, H(K) be the class of all epimorphic images of
members of K, and Pf (K) be the class of algebras isomorphic to the direct
product of a finite family of members of K. A class K of regular algebras is a
variety of regular algebras (VRA) if Sg(K), Hg(K), Pg(K) ⊆ K. The class of all
VRAs is denoted by VRA. The VRA generated by a given class K of regular
algebras is denoted by Vg(K).

Since g-derived algebras are special g-products, the following fact is obvious.

Lemma 4.6. Every VRA is closed under the forming of g-derived algebras.

From Lemmas 4.2 and 4.3 we get the following proposition.

Proposition 4.7. Reg is a VRA, and hence the greatest VRA.

If P and Q are any algebra class operators, we denote by PQ the operator
such that PQ(K) = P (Q(K)) for any K. Moreover, P ≤ Q means that P (K) ⊆
Q(K) for every K. The obvious facts that K ⊆ S(K) ⊆ Sg(K), K ⊆ H(K) ⊆
Hg(K), and K ⊆ Pf (K) ⊆ Pg(K) for any K, will be used without comment.
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Lemma 4.8.

(a) SgSg = SgS = SSg = Sg, (b) HgHg = HgH = HHg = Hg,

(c) PgPg = PgPf = PfPg = Pg, (d) SgH ≤ SgHg ≤ HSg ≤ HgSg,

(e) PgS ≤ PgSg ≤ SPg ≤ SgPg, (f) PgH ≤ PgHg ≤ HPg ≤ HgPg

Proof. Statements (a) and (b) hold because SgSg = Sg and HgHg = Hg. For
(c), it suffices to show that PgPg ≤ Pg, and in (d), (e) and (f) all inequalities
except for the second ones are obvious. Let us prove that SgHg ≤ HSg.

Let K be any class of unranked algebras. To construct a typical member
C = (C,Γ) of SgHg(K), let A = (A,Σ) be in K, (ι, ϕ) : A → A′ be a g-
epimorphism, B = (B,Ω) be a g-subalgebra of A′, and let (κ, ψ) : B → C be a
g-isomorphism. Now Bϕ−1 = (Bϕ−1, ι−1(Ω)) is a g-subalgebra of A. If we choose
a subset Σ′ of ι−1(Ω) in such a way that the restriction of ι to Σ′ is a bijection
ι′ : Σ′ → Ω, then D = (Bϕ−1,Σ′) is a g-subalgebra of A.

Define E = (Bϕ−1,Γ) as follows: For each g ∈ Γ, let gE = fD for the f ∈ Σ′

with g = κ(ι′(f)). Then (ι′κ, 1Bϕ−1) : D → E is a g-isomorphism. Indeed, if
f ∈ Σ′ and w ∈ (Bϕ−1)∗, then fD(w)1Bϕ−1 = fD(w) = κ(ι′(f))E (w1Bϕ−1). This
means that E ∈ Sg(K). We show that ϕψ : E → C is an epimorphism. Clearly,
Bϕ−1ϕψ = C. Consider any g ∈ Γ and w ∈ (Bϕ−1)∗. Let f ∈ Σ′ and h ∈ Ω
be such that ι′(f) = h and κ(h) = g. Then gE (w)ϕψ = fD(w)ϕψ = fA(w)ϕψ =
hA′(wϕ)ψ = hB(wϕ)ψ = gC(wϕψ). Thus C ∈ HSg(K).

Now we get the following result in the usual way.

Proposition 4.9. Vg = HgSgPg.

For a simpler representation of Vg, we need also the following two relations.

Lemma 4.10. (a) HgS ≤ HSg, and (b) SgPg ≤ SPg.

Proof. Let K be any class of unranked algebras. To prove (a), let A = (A,Σ) ∈
K, B = (B,Σ) be a subalgebra of A, and let (ι, ϕ) : B → C be a g-epimorphism
onto some C = (C,Γ). Let Ω ⊆ Σ be such that the restriction ι′ : Ω → Γ of ι to
Ω is a bijection. Then B′ = (B,Ω) is a g-subalgebra of A. Define B′′ = (B,Γ)
by gB′′ = hB′ for each g ∈ Γ and h ∈ Ω with ι′(h) = g. Then (ι′, 1B) : B

′ → B′′

is a g-isomorphism. Hence, B′′ ∈ Sg(K). To prove C ∈ HSg(K), we show that
ϕ : B′′ → C is an epimorphism. Let g ∈ Γ, m ≥ 0, and b1, . . . , bm ∈ B, and
let h ∈ Ω be such that ι(h) = g. Then gB′′(b1, . . . , bm)ϕ = hB′(b1, . . . , bm)ϕ =
hB(b1, . . . , bm)ϕ = gC(b1ϕ, . . . , bmϕ). Moreover, ϕ is surjective.

To prove (b), let n ≥ 0, Ai = (Ai,Σi) ∈ K for each i ∈ [n], κ : Ω →
Σ1 × · · · ×Σn be a mapping, ψ : κ(A1, . . . ,An) → B be an isomorphism to some
B = (B,Ω), C = (C,Ω′) be a g-subalgebra of B, and (ι, ϕ) a g-isomorphism from
C to D = (D,Γ). Then D is a typical representative of SgPg(K).
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Let λ : Γ → Σ1×· · ·×Σn be such that λ(g) = κ(ι−1(g)) for each g ∈ Γ. Then
E = (Cψ−1,Γ) is a subalgebra of λ(A1, . . . ,An) = (A1 × · · · × An,Γ). Indeed,
let g ∈ Γ, m ≥ 0, and a1 = (a11, . . . , a1n), . . . , am = (am1, . . . , amn) ∈ Cψ−1. If
ι−1(g) = h ∈ Ω′ and κ(h) = (f1, . . . , fn), then

gλ(A1,...,An)(a1, . . . ,am)ψ = ((f1)A1
(a11, . . . , am1), . . . , (fn)An(a1n, . . . , amn))ψ

= h
κ(A1,...,An)(a1, . . . ,am)ψ = hB(a1ψ, . . . ,amψ) = hC(a1ψ, . . . ,amψ)

is in C since C is an Ω′-closed subset of B. To prove D ∈ SPg(K), we verify
that ψϕ : E → D, with ψ restricted to Cψ−1, is an isomorphism. Consider
any g ∈ Γ, m ≥ 0 and a1, . . . ,am ∈ Cψ−1. For the h ∈ Ω′ with ι(h) = g,
we get gE(a1, . . . ,am)ψϕ = gλ(A1,...,An)(a1, . . . ,am)ψϕ = hC(a1ψ, . . . ,amψ)ϕ =
gD(a1ψϕ, . . . ,amψϕ). Moreover, it is clear that ψϕ is bijective.

Proposition 4.11. Vg = HSPg.

Proof. Since K ⊆ HSPg(K) ⊆ HgSgPg(K) = Vg(K) for any class of regular
algebras K, it suffices to show that HSPg(K) is a VRA, and this follows from
Lemmas 4.8 and 4.10: Sg(HSPg) ≤ HSgSPg ≤ HSgPg ≤ HSPg, Hg(HSPg) ≤
HgSPg ≤ HSgPg ≤ HSPg and Pg(HSPg) ≤ HPgSPg ≤ HSPgPg = HSPg.

Finally, let us note the following important fact.

Lemma 4.12. Let K be a VRA. If (σ, θ) is a g-congruence of an unranked algebra
A = (A,Σ), then A/θ ∈ K if and only if A/(σ, θ) ∈ K.

Proof. Clearly, (σ♮, 1A/θ) : A/θ → A/(σ, θ) is a g-epimorphism. Hence, A/θ ∈ K

implies A/(σ, θ) ∈ K. Assume now that A/(σ, θ) ∈ K. The g-derived alge-
bra σ♮(A/(σ, θ)) is actually the algebra A/θ. Indeed, both are Σ-algebras with
the same set A/θ of elements, and for any f ∈ Σ, m ≥ 0 and a1, . . . , am ∈
A, fσ♮(A/(σ,θ))(a1θ, . . . , amθ) = (fσ)A/(σ,θ)(a1θ, . . . , amθ) = fA(a1, . . . , am)θ =
fA/θ(a1θ, . . . , amθ). Hence, A/θ ∈ K by Lemma 4.6.

Definition 4.13. For any A = (A,Σ), let FCon(A) := {θ ∈ Con(A) | A/θ finite}
and let FGCon(A) := {(σ, θ) ∈ GCon(A) | θ ∈ FCon(A)}. A congruence θ of A is
regular if θ ∈ FCon(A) and f−1

A/θ
(aθ) is a regular language over A/θ for all f ∈ Σ

and a ∈ A. A g-congruence (σ, θ) of A is regular if θ is a regular congruence. Let
RCon(A) and RGCon(A), respectively, denote the sets of regular congruences
and regular g-congruences of A.

For any θ ∈ Con(A), let ηθ : A∗ → (A/θ)∗ be the morphism such that
aηθ = aθ for each a ∈ A. For all f ∈ Σ, a ∈ A and w ∈ A∗, wηθ ∈ f−1

A/θ(aθ) if

and only if fA(w) ∈ aθ. Hence f−1
A (aθ) = f−1

A/θ(aθ)η
−1
θ . As ηθ is surjective, also

f−1
A/θ(aθ) = f−1

A (aθ)ηθ holds. These equalities yield the following lemma. Note

that in f−1
A/θ(aθ), aθ is an element of A/θ, but in f−1

A (aθ) it is a subset of A.
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Lemma 4.14. Let θ ∈ Con(A). For any f ∈ Σ and a ∈ A, f−1
A/θ(aθ) is a regular

language over A/θ if and only if f−1
A (aθ) is a regular language over A.

If A = (A,Σ) is a regular algebra, then for any θ ∈ Con(A), f ∈ Σ and a ∈ A,
f−1
A (aθ) is the union of the finitely many regular sets f−1

A (b), where b ∈ aθ. Hence,
Lemma 4.14 yields the following proposition.

Proposition 4.15. Every congruence of a regular algebra is regular.

Lemma 4.16. For any unranked algebra A = (A,Σ), RCon(A) is a filter of the
lattice Con(A), and similarly, RGCon(A) is a filter of GCon(A).

Proof. Since RCon(A) contains ∇A, it is nonempty. If θ, ρ ∈ RCon(A), then
clearly θ ∩ ρ ∈ FCon(A). Moreover, for any f ∈ Σ and a ∈ A, f−1

A (a(θ ∩ ρ)) =
f−1
A (aθ) ∩ f−1

A (aρ), and hence also f−1
A/θ∩ρ(a(θ ∩ ρ)) is regular by Lemma 4.14.

Next, let θ ∈ RCon(A), ρ ∈ Con(A) and θ ⊆ ρ. Of course, ρ ∈ FCon(A).
Moreover, for each a ∈ A there is a finite set of elements a1, . . . , ak ∈ A (k ≥ 1)
such that aρ = a1θ ∪ . . . ∪ akθ, and hence f−1

A (aρ) = f−1
A (a1θ)∪ . . . ∪ f

−1
A (akθ) is

a regular language for every f ∈ Σ. Hence, ρ is regular by Lemma 4.14.
That RGCon(A) is a filter of GCon(A) follows immediately from the fact

that RCon(A) is a filter of Con(A).

The following facts are direct consequences of the relevant definitions.

Proposition 4.17. If θ is a congruence of an unranked algebra A, then A/θ is
a regular algebra exactly in case θ is a regular congruence. Similarly, if (σ, θ) ∈
GCon(A), then A/(σ, θ) is regular if and only if (σ, θ) ∈ RGCon(A).

5. Syntactic congruences and algebras

Syntactic algebras form a bridge between varieties of recognizable sets and vari-
eties of finite algebras. In Eilenberg’s [11] Variety Theory they are the syntactic
monoids (or semigroups). We define syntactic congruences and syntactic algebras
of subsets of unranked algebras similarly as they are defined for subsets of general
ranked algebras (cf. [1, 23, 24, 26]), and the basic facts about them remain valid
and can be proved similarly as in the ranked case.

Definition 5.1. The syntactic congruence θH of a subset H ⊆ A of an unranked
algebra A = (A,Σ) is defined by

a θH b :⇔ (∀p ∈ Tr(A))(p(a) ∈ H ↔ p(b) ∈ H) (a, b ∈ A),

and SA(H) := A/θH is the syntactic algebra of H. The natural morphism ϕH :
A → SA(H), a 7→ aθH , is called the syntactic morphism of H.
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An equivalence θ ∈ Eq(A) saturates H ⊆ A if H is the union of θ-classes.

Lemma 5.2. For any subset H ⊆ A of an unranked algebra A = (A,Σ), θH is
the greatest congruence of A that saturates H.

The following fact is an immediate consequence of Proposition 4.4.

Proposition 5.3. If A = (A,Σ) is an effectively given regular algebra, then the
syntactic congruence θH and the syntactic algebra SA(H) of any effectively given
subset H ⊆ A can be effectively constructed.

We call an unranked algebra A = (A,Σ) syntactic if it is isomorphic to the
syntactic algebra of a subset of some unranked algebra. A subset D ⊆ A of
A is disjunctive if θD = ∆A. The following facts can be proved similarly as
Propositions 3.6 and 3.7 in [24].

Proposition 5.4. An unranked algebra is syntactic if and only if it has a dis-
junctive subset. Every finite gsd-irreducible unranked algebra is syntactic. Hence
every VRA is generated by regular syntactic algebras.

It is easy to see that for any congruence θ of an unranked algebra A = (A,Σ),
there is a greatest equivalence M(θ) on Σ such that (M(θ), θ) ∈ GCon(A). We
shall need the following obvious properties of the M-operator.

Lemma 5.5. Let A = (A,Σ) and B = (B,Ω) be unranked algebras.

(a) If θ, θ′ ∈ Con(A) and θ ⊆ θ′, then M(θ) ⊆ M(θ′).

(b) For any set {θi | i ∈ I} of congruences of A, M(
⋂

i∈I θi) =
⋂

i∈I M(θi).

(c) ι ◦M(θ) ◦ ι−1 ⊆ M(ϕ ◦ θ ◦ ϕ−1) for any g-morphism (ι, ϕ) : A → B and any
θ ∈ Con(B). If ϕ is surjective, then equality holds.

We will also need the following operator-reduced versions of θH and SA(H).

Definition 5.6. The reduced syntactic congruence of a subset H of an unranked
algebra A = (A,Σ) is the g-congruence (σH , θH) of A, where θH is the syntactic
congruence of H and σH := M(θH), the reduced syntactic algebra RA(H) of H
is the g-quotient A/(σH , θH) = (A/θH ,Σ/σH), and the syntactic g-morphism
(ιH , ϕH) : A → RA(H) is defined by ιH : f 7→ fσH and ϕH : a→ aθH .

Proposition 5.7. Let A = (A,Σ) and B = (B,Ω) be unranked algebras.

(a) θA\H = θH for every H ⊆ A.

(b) θH ∩ θK ⊆ θH∩K for all H,K ⊆ A.

(c) θH ⊆ θp−1(H) for all H ⊆ A and p ∈ Tr(A).
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(d) ϕ ◦ θH ◦ ϕ−1 ⊆ θHϕ−1 and ι ◦ σH ◦ ι−1 ⊆ σHϕ−1 for any H ⊆ B and any
g-morphism (ι, ϕ) : A → B, and equalities hold if (ι, ϕ) is a g-epimorphism.

Proof. Assertions (a)–(c) are obvious, so we prove just (d). For any a, a′ ∈ A,

aϕ ◦ θH ◦ ϕ−1 a′ ⇔ (∀q ∈ Tr(B)) (q(aϕ) ∈ H ↔ q(a′ϕ) ∈ H)

⇒ (∀p ∈ Tr(A)) (pι,ϕ(aϕ) ∈ H ↔ pι,ϕ(a
′ϕ) ∈ H)

⇔ (∀p ∈ Tr(A)) (p(a) ∈ Hϕ−1 ↔ p(a′) ∈ Hϕ−1)

⇔ a θHϕ−1 a′.

Hence ϕ◦θH ◦ϕ−1 ⊆ θHϕ−1 , and ι◦σH ◦ι−1 ⊆ σHϕ−1 now follows from Lemma 5.5:

ι ◦ σH ◦ ι−1 = ι ◦M(θH) ◦ ι−1 ⊆ M(ϕ ◦ θH ◦ ϕ−1) ⊆ M(θHϕ−1) = σHϕ−1 .

If (ι, ϕ) is a g-epimorphism, the only “⇒” in the proof of the first inclusion can
be replaced by “⇔”, and all inclusions become equalities.

Proposition 5.8. Let A = (A,Σ) and B = (B,Ω) be unranked algebras.

(a) SA(A \H) = SA(H) for every H ⊆ A.

(b) SA(H ∩K) � SA(H)× SA(K) for all H,K ⊆ A.

(c) SA(p−1(H)) is an epimorphic image of SA(H) for all H⊆A and p∈Tr(A).

(d) RA(Hϕ−1) �g RA(H) for any g-morphism (ι, ϕ) : A → B and any H ⊆ B.
If (ι, ϕ) is a g-epimorphism, then RA(Hϕ−1) ∼=g RA(H).

Proof. Claims (a)–(c) follow from the corresponding parts of Proposition 5.7.
To prove (d), assume first that (ι, ϕ) is a g-epimorphism. It follows from

Proposition 5.7(d) that the maps ψ : A/θHϕ−1 → B/θH , aθHϕ−1 7→ (aϕ)θH ,
and κ : Σ/σHϕ−1 → Ω/σH , fσHϕ−1 7→ ι(f)σH , are well-defined and injective.
Clearly, they are also surjective, and for any f ∈ Σ, m ≥ 0 and a1, . . . , am ∈ A,

(fσHϕ−1)RA(Hϕ−1)(a1θHϕ−1 , . . . , amθHϕ−1)ψ = (fA(a1, . . . , am)θHϕ−1)ψ

= (fA(a1, . . . , am)ϕ)θH = (ι(f)B(a1ϕ, . . . , amϕ))θH

= (ι(f)σH)RA(H)((a1ϕ)θH , . . . , (amϕ)θH)

= κ(fσHϕ−1)RA(H)((a1θHϕ−1)ψ, . . . , (amθHϕ−1)ψ),

which shows that (κ, ψ) : RA(Hϕ−1) → RA(H) is a g-isomorphism.
Consider now a general g-morphism (ι, ϕ) : A → B. Let C = (C, ι(Σ)/σH ),

where C = AϕϕH and ι(Σ)/σH = {ι(f)σH | f ∈ Σ}, be the image of A in RA(H)
under the g-morphism (ιιH , ϕϕH) : A → RA(H). The mappings

κ : Σ → ι(Σ)/σH , f 7→ ι(f)σH , and ψ : A→ C, a 7→ (aϕ)θH ,
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form a g-epimorphism (κ, ψ) : A → C, and thus RA(Hϕ−1ψψ−1) ∼=g RA(Hϕ−1ψ)
by the previous part of the proof. Also, RA(Hϕ−1ψ) �g RA(H) as RA(Hϕ−1ψ)
is a g-image of the g-subalgebra C of RA(H). To obtain RA(Hϕ−1) �g RA(H)
it therefore suffices to show that Hϕ−1 = Hϕ−1ψψ−1. Of course, Hϕ−1 ⊆
Hϕ−1ψψ−1, and on the other hand, by Proposition 5.7(d) and the equalities
ψ = ϕϕH , ϕH ◦ ϕ−1

H = θH and (Hϕ−1)θHϕ−1 = Hϕ−1, we get Hϕ−1ψψ−1 =
(Hϕ−1)ϕ ◦ ϕH ◦ (ϕ ◦ ϕH)−1 = (Hϕ−1)ϕ ◦ θH ◦ ϕ−1 ⊆ (Hϕ−1)θHϕ−1 = Hϕ−1.

Simple modifications of the proofs of statements (d) of Propositions 5.7 and
5.8 yield the following specializations of those statements.

Corollary 5.9. Let A = (A,Σ) and B = (B,Σ) be unranked Σ-algebras. Then
ϕ ◦ θH ◦ ϕ−1 ⊆ θHϕ−1 and SA(Hϕ−1) � SA(H) for any morphism ϕ : A → B
and any H ⊆ B. If ϕ is an epimorphism, then ϕ ◦ θH ◦ ϕ−1 = θHϕ−1 and
SA(Hϕ−1) ∼= SA(H).

For a ΣX-tree language T the syntactic congruence θT , the syntactic algebra
SA(T ), the syntactic morphism ϕT , the reduced syntactic congruence (σT , θT ),
the reduced syntactic algebra RA(T ) and the syntactic g-morphism (ιT , ϕT ) are
defined by regarding T as a subset of the term algebra TΣ(X). Since the trans-
lations of TΣ(X) are given by ΣX-contexts, we have

s θT t ⇔ (∀p ∈ CΣ(X))(p(s) ∈ T ↔ p(t) ∈ T ) (s, t ∈ TΣ(X)).

Let us note that the “top congruences” of [5] correspond to our syntactic congru-
ences of unranked tree languages.

6. Recognizable unranked tree languages

The following definition agrees with that given by Thatcher [28], and it is also
equivalent to the one arrived at via automata in [9, 16], for example.

Definition 6.1. An unranked Σ-algebra A = (A,Σ) recognizes an unranked ΣX-
tree language T if T = Fϕ−1 for some morphism ϕ : TΣ(X) → A and a subset
F ⊆ A, and we call T recognizable if it is recognized by a regular Σ-algebra. The
set of all recognizable unranked ΣX-tree languages is denoted by Rec(Σ,X).

Proposition 6.2. An unranked Σ-algebra A recognizes an unranked ΣX-tree
language T if and only if SA(T ) � A.

Proof. It is clear that any tree language recognized by a subalgebra or an epi-
morphic image of an algebra A, is recognized by A, too. Since SA(T ) recognizes
T (= TϕTϕ

−1
T ), this means that SA(T ) � A implies that A recognizes T . The

converse holds by Corollary 5.9: if T = Fϕ−1 for some morphism ϕ : TΣ(X) → A
and a subset F of A, then SA(T ) = SA(Fϕ−1) � SA(F ) � A.
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Next we give a Myhill-Nerode theorem for unranked tree languages.

Proposition 6.3. For any T ⊆ TΣ(X), the following statements are equivalent:

(a) T ∈ Rec(Σ,X);

(b) T is saturated by a regular congruence of TΣ(X);

(c) the syntactic congruence θT is regular.

Proof. Let us first prove the equivalence of (a) and (b). If T ∈ Rec(Σ,X), then
T = Fϕ−1 for a regular algebra A = (A,Σ), a morphism ϕ : TΣ(X) → A and
some F ⊆ A. We may assume that ϕ is surjective. It is clear that T is saturated
by θ := kerϕ, and θ ∈ RCon(TΣ(X)) by Proposition 4.17 as TΣ(X)/θ ∼= A. On
the other hand, if T is saturated by some θ ∈ RCon(TΣ(X)), then T = Tθ♮θ

−1
♮

means that T is recognized by the regular algebra TΣ(X)/θ.

If T is saturated by a congruence θ ∈ RCon(TΣ(X)), then θ ⊆ θT by Lemma
5.2, and hence θT is regular by Lemma 4.16. Therefore, (b) implies (c), and the
converse holds by Lemma 5.2.

In [5] it was stated (as Lemma 8.2), in different terms, that θT is of finite
index if T ∈ Rec(Σ,X), but the example meant to disprove the converse, appears
incorrect. Nevertheless, their Theorem 1 essentially expresses the equivalence of
(a) and (c) of our Proposition 6.3. From Propositions 6.3 and 4.17 we get:

Corollary 6.4. An unranked tree language T is recognizable if and only if the
syntactic algebra SA(T ) is regular.

Next we note that the family of recognizable unranked tree languages is closed
under the operations that define our varieties of unranked tree languages.

Proposition 6.5. The following hold for all alphabets Σ, Ω, X and Y .

(a) ∅ ∈ Rec(Σ,X), and Rec(Σ,X) is closed under all Boolean operations.

(b) If T ∈ Rec(Σ,X), then p−1(T ) := {t ∈ TΣ(X) | p(t) ∈ T} ∈ Rec(Σ,X) for
every context p ∈ CΣ(X).

(c) If (ι, ϕ) : TΣ(X) → TΩ(Y ) is a g-morphism, then Tϕ−1 ∈ Rec(Σ,X) for
every T ∈ Rec(Ω, Y ).

Proof. Clearly, ∅ and TΣ(X) are recognized by any Σ-algebra, and the rest of
the proposition follows from Corollary 6.4 and Propositions 4.7 and 5.8.

We shall need the following fact about the sets p−1(T ).

Lemma 6.6. If T ∈ Rec(Σ,X), then the set {p−1(T ) | p ∈ CΣ(X)} is finite.
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Proof. By Proposition 5.7(c) every set p−1(T ) is saturated by θT . On the other
hand, it follows from Proposition 6.3 that θT has just finitely many equivalence
classes. Hence, the number of different sets p−1(T ) must be finite, too.

We say that T ∈ Rec(Σ,X) is effectively given if T = Fϕ−1, for an effectively
given morphism ϕ : TΣ(X) → A, an effectively given regular algebra A = (A,Σ)
and an effectively given subset F ⊆ A.

Proposition 6.7. If T ∈ Rec(Σ,X) is effectively given, then SA(T ) can be
effectively constructed.

Proof. If T = Fϕ−1 is effectively given as in the above definition, we may assume
that ϕ : TΣ(X) → A epimorphism. Then SA(T ) ∼= SA(F ) by Corollary 5.9, and
SA(F ) can be constructed by Proposition 5.3.

7. Varieties of unranked tree languages

A family of unranked tree languages V assigns to each pair Σ, X a set V(Σ,X)
of ΣX-tree languages. We write V = {V(Σ,X)}Σ,X with the understanding that
Σ and X range over all operator alphabets and leaf alphabets, respectively. The
inclusion relation, unions and intersections of these families are defined by the
natural componentwise conditions. In particular, if U = {U(Σ,X)}Σ,X and V =
{V(Σ,X)}Σ,X are two such families, then U ⊆ V means that U(Σ,X) ⊆ V(Σ,X)
for all Σ and X, and U ∩ V = {U(Σ,X) ∩ V(Σ,X)}Σ,X .

Definition 7.1. A variety of unranked tree languages (VUT) is a family of un-
ranked tree languages V = {V(Σ,X)}Σ,X such that for all Σ, Ω, X and Y ,

(V1) ∅ 6= V(Σ,X) ⊆ Rec(Σ,X),

(V2) if T ∈ V(Σ,X), then also TΣ(X) \ T belongs to V(Σ,X),

(V3) if T,U ∈ V(Σ,X), then T ∩ U ∈ V(Σ,X),

(V4) if T ∈ V(Σ,X), then p−1(T ) ∈ V(Σ,X) for every p ∈ CΣ(X), and

(V5) if (ι, ϕ) : TΣ(X) → TΩ(Y ) is a g-morphism, then Tϕ−1 ∈ V(Σ,X) for every
T ∈ V(Ω, Y ).

Let VUT denote the class of all VUTs.

Clearly, the intersection of any family of VUTs and the union of any directed
family of VUTs are VUTs. Hence (VUT,⊆) is an algebraic lattice. The least
VUT is Triv := {{∅, TΣ(X)}}Σ,X and the greatest one is Rec := {Rec(Σ,X)}Σ,X .

Proposition 7.2. If V = {V(Σ,X)}Σ,X is a VUT and T ∈ V(Σ,X) for some Σ
and X, then every θT -class is also in V(Σ,X).
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Proof. It follows from the definition of θT that for any t ∈ TΣ(X),

tθT =
⋂

{p−1(T ) | p ∈ CΣ(X), p(t) ∈ T} \
⋃

{p−1(T ) | p ∈ CΣ(X), p(t) /∈ T}.

By Lemma 6.6, this shows that tθT is in V(Σ,X).

Next we introduce systems of congruences that yield VUTs. For a nonempty
subset H of a lattice L, let [H) denote the filter generated by H, i.e., the set of
all b ∈ L such that a1 ∧ · · · ∧ an ≤ b for some n ≥ 1 and a1, . . . , an ∈ H. As
special cases, we get the principal filters [a) := [{a}] = {b ∈ L | a ≤ b} (a ∈ L).

By a family of regular g-congruences we mean a mapping C that assigns
to each pair Σ, X a subset C(Σ,X) of RGCon(TΣ(X)). Again, we write C =
{C(Σ,X)}Σ,X and order these families by the componentwise inclusion relation.

Definition 7.3. A family of regular g-congruences C = {C(Σ,X)}Σ,X is a variety
of regular g-congruences (VRC) if the following hold for all Σ, Ω, X and Y .

(C1) For every σ ∈ Eq(Σ), C(Σ,X)σ := {θ ∈ RCon(TΣ(X)) | (σ, θ) ∈ C(Σ,X)}
is a filter of RCon(TΣ(X)).

(C2) If (σ, θ) ∈ C(Σ,X), σ′ ∈ Eq(Σ) and σ′ ⊆ M(θ), then (σ′, θ) ∈ C(Σ,X).

(C3) If (ι, ϕ) : TΣ(X) → TΩ(Y ) is a g-morphism and (ω, θ) ∈ C(Ω, Y ), then
(ι ◦ ω ◦ ι−1, ϕ ◦ θ ◦ ϕ−1) ∈ C(Σ,X).

Clause (C3) anticipated the following fact. The lemma has a simple proof.

Lemma 7.4. (ι ◦ ω ◦ ι−1, ϕ ◦ θ ◦ ϕ−1) ∈ RGCon(TΣ(X)) for any g-morphism
(ι, ϕ) : TΣ(X) → TΩ(Y ) and any (ω, θ) ∈ RGCon(TΩ(Y )).

For any family C = {C(Σ,X)}Σ,X of regular g-congruences, let Ct be the
family of recognizable unranked tree languages such that for all Σ and X,

Ct(Σ,X) := {T ⊆ TΣ(X) | (∆Σ, θT ) ∈ C(Σ,X)}.

Proposition 7.5. If C is a VRC, then Ct is a VUT.

Proof. Most of the proposition follows directly from the definitions involved and
Proposition 5.7. Let us verify conditions (V1) and (V5) of Definition 7.1.

Firstly, for any Σ and X, Ct(Σ,X) 6= ∅ as (∆Σ,∇TΣ(X)) ∈ C(Σ,X) and
θ∅ = ∇TΣ(X). For any T ∈ Ct(Σ,X), θT ∈ RCon(TΣ(X)) as (∆Σ, θT ) ∈ C(Σ,X).
By Proposition 6.3 this means that T is recognizable. Hence, Ct satisfies (V1).

If (ι, ϕ) : TΣ(X) → TΩ(Y ) is a g-morphism and T ∈ Ct(Ω, Y ), then (∆Ω, θT ) ∈
C(Ω, Y ). Hence (ι◦∆Ω◦ι

−1, ϕ◦θT ◦ϕ
−1) ∈ C(Σ,X) by condition (C3). Moreover,

θT ∈ RCon(TΩ(Y )) implies (∆Σ, ϕ ◦ θT ◦ ϕ−1) ∈ RGCon(TΣ(X)) by Lemma 7.4.
Hence, (∆Σ, ϕ ◦ θT ◦ϕ−1) ∈ C(Σ,X) by (C2). On the other hand, ϕ ◦ θT ◦ϕ−1 ⊆
θTϕ−1 by Proposition 5.7(d), and hence (∆Σ, θTϕ−1) ∈ C(Σ,X) by (C1). This
means that Tϕ−1 ∈ Ct(Σ,X) and therefore Ct satisfies (V5).
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Many VUTs are unions of ascending chains or directed families of simpler
VUTs. In the ranked case the basic varieties forming such a family are usually
defined by so-called principal varieties of congruences [24, 26] that consist of
principal filters. Here we need the following more general notion.

Definition 7.6. We call Θ = {θ(Σ,X)}Σ,X , where θ(Σ,X) ∈ Con(TΣ(X)) for all
Σ andX, a consistent system of congruences (CSC) if θ(Σ,X) ⊆ ϕ◦θ(Ω, Y )◦ϕ−1

for all Σ, Ω, X and Y , and every g-morphism (ι, ϕ) : TΣ(X) → TΩ(Y ), and then
let CΘ := {CΘ(Σ,X)}Σ,X be the family of regular congruences, where for all Σ
and X, CΘ(Σ,X) := {(σ, θ) ∈ RGCon(TΣ(X)) | θ(Σ,X) ⊆ θ}.

Proposition 7.7. For any CSC Θ, CΘ is a VRC.

Proof. (C1) If σ ∈ Eq(Σ), then (σ,∇TΣ(X)) ∈ CΘ(Σ,X), and hence CΘ(Σ,X)σ 6=
∅. If θ ⊆ ρ and θ ∈ CΘ(Σ,X)σ , then θ(Σ,X) ⊆ θ ⊆ ρ. On the other hand,
(σ, θ) ∈ RGCon(TΣ(X)) implies (σ, ρ) ∈ RGCon(TΣ(X)) by Lemma 4.16. Hence
ρ ∈ CΘ(Σ,X)σ . If θ, ρ ∈ CΘ(Σ,X)σ , then θ(Σ,X) ⊆ θ, ρ and (σ, θ), (σ, ρ) ∈
RGCon(TΣ(X)), and therefore θ(Σ,X) ⊆ θ ∩ ρ and – again by Lemma 4.16,
(σ, θ ∩ ρ) = (σ, θ)∧ (σ, ρ) ∈ RGCon(TΣ(X)). This means that θ ∩ ρ ∈ CΘ(Σ,X)σ ,
and thus we have shown that CΘ(Σ,X)σ is a filter in RCon(TΣ(X)).

(C2) If (σ, θ) ∈ CΘ(Σ,X), σ′ ∈ Eq(Σ) and σ′ ⊆ M(θ), then (σ′, θ) ∈ CΘ(Σ,X)
because θ(Σ,X) ⊆ θ by the first assumption.

(C3) If (ι, ϕ) : TΣ(X) → TΩ(Y ) is a g-morphism and (ω, θ) ∈ CΘ(Ω, Y ), then
(ι◦ω ◦ ι−1, ϕ◦θ ◦ϕ−1) ∈ RGCon(TΣ(X)) by Lemma 7.4, and θ(Ω, Y ) ⊆ θ implies
θ(Σ,X)⊆ϕ◦θ(Ω, Y )◦ϕ−1⊆ϕ◦θ ◦ϕ−1. So (ι◦ω ◦ ι−1, ϕ◦θ ◦ϕ−1)∈CΘ(Σ,X).

Any VRC CΘ defined by a CSC Θ and the corresponding VUT Ct
Θ are called

quasi-principal. The following is a direct consequence of the definition of Ct
Θ.

Lemma 7.8. For any CSC Θ = {θ(Σ,X)}Σ,X and all Σ and X, Ct
Θ(Σ,X) =

{T ∈ Rec(Σ,X) | θ(Σ,X) ⊆ θT}.

8. The variety theorem

We shall now prove that the following maps K 7→ Kt and V 7→ Va form a pair of
mutually inverse isomorphisms between the lattices (VRA,⊆) and (VUT,⊆).

Definition 8.1. For any VRA K, let Kt = {Kt(Σ,X)} be the family of recogniz-
able unranked tree languages in which Kt(Σ,X) := {T ⊆ TΣ(X) | SA(T ) ∈ K}
for all Σ and X. For any VUT V = {V(Σ,X)}Σ,X , let Va be the VRA generated
by the algebras SA(T ), where T ∈ V(Σ,X) for some Σ and X.
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Note that Va is a well-defined VRA for every VUT V because any algebra
SA(T ) with T ∈ V(Σ,X) is regular. By Lemma 4.12, the maps K 7→ Kt and
V 7→ Va could be defined equivalently using reduced syntactic algebras.

Lemma 8.2. For any VRA K, Kt is a VUT.

Proof. It follows from Corollary 6.4 that Kt(Σ,X) ⊆ Rec(Σ,X) for all Σ and
X. Moreover, Kt(Σ,X) 6= ∅ because K contains at least the trivial Σ-algebras.
Hence, Kt satisfies the first condition of Definition 7.1. Conditions (V2)–(V4)
follow immediately from Proposition 5.8 and the fact thatK is a VRA. As to (V5),
we argue as follows. If T ∈ Kt(Ω, Y ), then SA(T ) ∈ K, and hence RA(T ) ∈ K

by Lemma 4.12. By Proposition 5.8(d) this means that RA(Tϕ−1) ∈ K. Hence
also SA(Tϕ−1) ∈ K by Lemma 4.12, from which Tϕ−1 ∈ Kt(Σ,X) follows.

Since it is clear that the maps K 7→ Kt and V 7→ Va are order-preserving, it
remains to be shown that they are inverses of each other.

Lemma 8.3. Kta = K for every VRA K.

Proof. The VRA Kta is generated by the algebras SA(T ), where T ∈ Kt(Σ,X)
for some Σ and X, but these algebras are also in K. Hence, Kta ⊆ K.

On the other hand, by Proposition 5.4, K is generated by regular syntactic
algebras. Let A be any such generating algebra. If X is sufficiently large, there
is an epimorphism ϕ : TΣ(X) → A. Furthermore, A has a disjunctive subset
D by Proposition 5.4. The ΣX-tree language T := Dϕ−1 is recognizable, and
SA(T ) ∼= SA(D) by Corollary 5.9. Also, A ∼= SA(D) because D is disjunctive,
and therefore also SA(T ) ∈ K, which shows that T ∈ Kt(Σ,X). As this means
that SA(T ) ∈ Kta, we get A ∈ Kta and can conclude that K ⊆ Kta.

Lemma 8.4. Vat = V for every VUT V.

Proof. If T ∈ V(Σ,X), then SA(T ) ∈ Va implies T ∈ Vat(Σ,X), and hence
V ⊆ Vat. If T ∈ Vat(Σ,X), then SA(T ) ∈ Va, and by Proposition 4.11

SA(T ) � κ(SA(U1), . . . ,SA(Un)),

for some n ≥ 0, U1 ∈ V(Σ1,X1), . . . , Un ∈ V(Σn,Xn) for some alphabets
Σ1, . . . ,Σn and X1, . . . ,Xn, and a mapping κ from Σ to Σ1 × · · · × Σn.

For each i ∈ [n], denote TΣi
(Xi) by Ti, and let SA(Ui) = (Ai,Σi). Fur-

thermore, let ϕi : Ti → SA(Ui), t 7→ tθUi
, be the syntactic morphism of Ui. By

Proposition 6.2, there exist a morphism ϕ : TΣ(X) → κ(SA(U1), . . . ,SA(Un))
and a subset F ⊆ A1 × · · · × An such that T = Fϕ−1. For each i ∈ [n], define
λi : Σ → Σi by λi(f) = fi for any f ∈ Σ if κ(f) = (f1, . . . , fn). The syntactic
morphisms ϕi yield an epimorphism

η : κ(T1, . . . ,Tn) → κ(SA(U1), . . . ,SA(Un)), (t1, . . . , tn) 7→ (t1ϕ1, . . . , tnϕn),
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and for each i ∈ [n], we get the g-morphisms

(λi, τi) : κ(T1, . . . ,Tn) → Ti and (λi, πi) : κ(SA(U1), . . . ,SA(Un)) → SA(Ui),

where τi : (t1, . . . , tn) 7→ ti and πi : (a1, . . . , an) 7→ ai are the respective ith

projections. Clearly, τiϕi = ηπi for any i ∈ [n]. Since η is surjective, there is a
ψ0 : X → T (Σ1,X1) × · · · × T (Σn,Xn) such that xψ0η = xϕ for all x ∈ X. If
ψ : TΣ(X) → κ(T1, . . . ,Tn) is the homomorphic extension of ψ0, then ψη = ϕ.

Now, T is the union of finitely many sets aϕ−1 with a = (a1, . . . , an) ∈ F .
Since ϕπi = ψτiϕi for each i ∈ [n], we have

aϕ−1 =
⋂

{ai(ϕπi)
−1 | i ∈ [n]} =

⋂

{(aiϕ
−1
i )(ψτi)

−1 | i ∈ [n]},

where each aiϕ
−1
i is a θUi

-class, and therefore belongs to V(Σi,Xi) by Proposition
7.2. This implies that (aiϕ

−1
i )(ψτi)

−1 ∈ V(Σ,X) for every i ∈ [n], and hence also
T ∈ V(Σ,X). This concludes the proof of Vat ⊆ V.

The above results can be summed up as the following variety theorem.

Theorem 8.5. The mappings K → Kt and V 7→ Va define mutually inverse
isomorphisms between the lattices (VRA,⊆) and (VUT,⊆).

9. Some varieties of unranked tree languages

We shall now introduce several varieties of unranked tree languages that corre-
spond to some known general varieties of ranked tree languages, most of which
can be found in [25]. The following obvious facts are helpful in many of the
examples. Note that (b) does not follow directly from (a) as in the ranked case.

Lemma 9.1. Let (ι, ϕ) : TΣ(X) → TΩ(Y ) be a g-morphism.

(a) hg(tϕ) ≥ hg(t) for every t ∈ TΣ(X).

(b) tϕ−1 is finite for every t ∈ TΩ(Y ).

9.1. Nilpotency

We begin with the simplest nontrivial VUT. For any Σ and X, let Nil(Σ,X)
consist of all finite ΣX-tree languages and their complements in TΣ(X), and
let Nil := {Nil(Σ,X)}Σ,X . In view of Proposition 6.5(a), Nil ⊆ Rec since
any singleton {t} ⊆ TΣ(X) is obviously recognizable. Clearly, every Nil(Σ,X)
is closed under all Boolean operations, and p−1(T ) and Tϕ−1 are finite if T is
finite; for Tϕ−1 this follows from Lemma 9.1(b).
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Nilpotent unranked algebras cannot be defined in terms of the height of
trees, as in the ranked case, since there are infinitely many trees of any height
≥ 1. Let the size size(t) of a tree t ∈ TΣ(X) be the number of its nodes. We call
A = (A,Σ) nilpotent if there exist a k ≥ 1 and an element a0 ∈ A, the absorbing
state, such that for any X and t ∈ TΣ(X), if size(t) ≥ k, then tA(α) = a0 for
every α : X → A. The least k for which this holds is its degree (of nilpotency).
For each k ≥ 1, let Nilk be the class of regular nilpotent algebras of degree ≤ k,
and let Nil =

⋃

k≥1Nilk. Obviously, Nil1 ⊂ Nil2 ⊂ Nil3 ⊂ . . .. It is easy to
show that each Nilk, and hence also Nil, is a VRA.

To prove Nilt ⊆ Nil, let T = Fϕ−1 for some A = (A,Σ) in Nilk, a morphism
ϕ : TΣ(X) → A and F ⊆ A. If a0 is the absorbing state of A and α : X → A
is the restriction of ϕ to X, then tA(α) = a0 whenever size(t) ≥ k. Hence T is
finite if a0 /∈ F and co-finite if a0 ∈ F .

To prove Nil ⊆ Nilt, consider any finite ΣX-tree language T . Let k :=
max{size(t) | t ∈ T}+ 1 (for T = ∅, let k = 1). We construct a nilpotent algebra
A = (A,Σ) recognizing T as follows. Let B := {t ∈ TΣ(X) | size(t) < k} and
A := B ∪ {a0} (with a0 /∈ B), and for all f ∈ Σ, m ≥ 0 and b1, . . . , bm ∈ A set

fA(b1, . . . , bm) =

{

f(b1, . . . , bm) if f(b1, . . . , bm) ∈ B;
a0 otherwise.

It is clear that A is regular and that tA(α) = a0 for every α : X → A whenever
size(t) ≥ k. If ϕ : TΣ(X) → A is the morphism such that xϕ = x for all x ∈ X,
then tϕ = t if size(t) < k and tϕ = a0 otherwise, and therefore T = Tϕ−1. For a
co-finite T , we construct such an A for S := TΣ(X) \ T and get T as (A \S)ϕ−1.
This completes the proof of the following result.

Proposition 9.2. Nil is the VUT corresponding to the VRA Nil.

9.2. Definiteness

Next we consider tree languages determined by root segments of some given
height. The k-root rtk(t) of a ΣX-tree t is defined as follows:

(0) rt0(t) = ε, where ε represents the empty root segment, for all t ∈ TΣ(X);

(1) rt1(t) = root(t) for every t ∈ TΣ(X);

(2) for k ≥ 2, rtk(t) = t if hg(t) < k, and rtk(t) = f(rtk−1(t1), . . . , rtk−1(tm)) if
hg(t) ≥ k and t = f(t1, . . . , tm).

A recognizable unranked ΣX-tree language T is k-definite if for all s, t ∈ TΣ(X),
if rtk(s) = rtk(t) and s ∈ T , then t ∈ T , and it is definite if it is k-definite
for some k ≥ 0. Let Defk = {Defk(Σ,X)}Σ,X and Def = {Def(Σ,X)}Σ,X

be the families of k-definite (k ≥ 0) and all definite tree languages, respectively.
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Clearly Def0 ⊂ Def1 ⊂ Def2 ⊂ . . . and Def =
⋃

k≥0Defk. We could verify the
conditions (V1)–(V5) directly, but let us present a CSC for Defk.

For any k ≥ 0, Σ andX, define the relation δk(Σ,X) on TΣ(X) by s δk(Σ,X) t
if and only if rtk(s) = rtk(t) for all s, t ∈ TΣ(X). Note that for every k ≥ 2, there
are infinitely many δk(Σ,X)-classes. Let ∆(k) := {δk(Σ,X))}Σ,X . The following
lemma can be verified by induction on k ≥ 1.

Lemma 9.3. Let (ι, ϕ) : TΣ(X) → TΩ(Y ) be a g-morphism. Then rtk(tϕ) =
rtk(rtk(t)ϕ) for all t ∈ TΣ(X) and k ≥ 1.

Proposition 9.4. For each k ≥ 0, ∆(k) is a CSC and Defk is the quasi-principal
VUT defined by it. Hence, Def is also a VUT.

Proof. Fix a k ≥ 0. That ∆(k) is a CSC that defines Defk is shown as follows.
Here Σ, Ω, X and Y are any alphabets.

Firstly, δk(Σ,X) is a congruence of TΣ(X). For k = 0, this is obvious. For
k > 0, we use the simple fact that rtk(s) = rtk(t) implies rtk−1(s) = rtk−1(t).

Secondly, to prove that δk(Σ,X) ⊆ ϕ ◦ δk(Ω, Y ) ◦ ϕ−1 for any g-morphism
(ι, ϕ) : TΣ(X) → TΩ(Y ), it suffices to show that if s, t ∈ TΣ(X) and rtk(s) =
rtk(t), then rtk(sϕ) = rtk(tϕ), and this follows from Lemma 9.3.

Thirdly, if T ∈ Rec(Σ,X), then T ∈ Defk(Σ,X) if and only if T is saturated
by δk(Σ,X), and by Lemma 5.2 this is the case if and only if δk(Σ,X) ⊆ θT .

Finally, as the union of a chain of VUTs, also Def is a VUT.

9.3. Reverse definiteness

Next we consider tree languages defined by the subtrees of a given height of their
trees. A ΣX-tree s is a subtree of a ΣX-tree t if t = p(s) for some p ∈ CΣ(X).
For any t ∈ TΣ(X), let st(t) denote the set of subtrees of t, and for each k ≥ 0,
let stk(t) = {s ∈ st(t) | hg(s) < k}. Note that st0(t) = ∅ for every t.

We call a recognizable unranked ΣX-tree language T reverse k-definite if for
all s, t ∈ TΣ(X), if stk(s) = stk(t) and s ∈ T , then t ∈ T , and it is reverse definite
if it is reverse k-definite for some k ≥ 0. Let RDefk = {RDefk(Σ,X)}Σ,X and
RDef = {RDef(Σ,X)}Σ,X be the families of the reverse k-definite (k ≥ 0) and
the reverse definite tree languages. Clearly RDefk ⊂ RDefk+1 for all k ≥ 0.

For any k ≥ 0, Σ, X and s, t ∈ TΣ(X), let s ρk(Σ,X) t if and only if stk(s) =
stk(t), and let P(k) := {ρk(Σ,X)}Σ,X . The following lemma can easily be proved
by induction on k.

Lemma 9.5. Let (ι, ϕ) : TΣ(X) → TΩ(Y ) be a g-morphism. Then stk(tϕ) =
⋃

{stk(sϕ) | s ∈ stk(t)} for all t ∈ TΣ(X) and k ≥ 0.

The following proposition can now be proved similarly as Proposition 9.4.

Proposition 9.6. For each k ≥ 0, P(k) is a CSC and RDefk is the corresponding
quasi-principal VUT. Hence, RDef is also a VUT.
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9.4. Generalized definiteness

Let us now combine root and subtree tests. For any h, k ≥ 0, an unranked
ΣX-tree language T is h, k-definite if for all s, t ∈ TΣ(X), if sth(s) = sth(t) and
rtk(s) = rtk(t), then s ∈ T if and only if t ∈ T , and it is generalized definite if it is
h, k-definite for some h, k ≥ 0. Let GDefh,k = {GDefh,k(Σ,X)}Σ,X and GDef =
{GDef(Σ,X)}Σ,X be the families of all recognizable h, k-definite (h, k ≥ 0) and
all recognizable generalized definite tree languages. Clearly GDefh,k ⊆ GDefh′,k′

whenever h ≤ h′ and k ≤ k′, and GDef =
⋃

h,k≥0GDefh,k.

For any h, k ≥ 0, Σ and X, let γh,k(Σ,X) = ρh(Σ,X) ∩ δk(Σ,X), and let
Γ(h, k) := {γh,k(Σ,X))}Σ,X . The following proposition can be proved simply by
combining the arguments used in the previous two examples.

Proposition 9.7. For all h, k ≥ 0, Γ(h, k) is a CSC and GDefh,k is the quasi-
principal VUT defined by it. Hence, GDef is also a VUT.

9.5. Local testability

For defining local testability we need an appropriate notion of “local pattern”.
For any k ≥ 2, Σ and X, the set forkk(t) of k-forks of t ∈ TΣ(X) is defined as
follows:

(1) forkk(t) = ∅ if hg(t) < k − 1;

(2) forkk(t) = {rtk(t)} ∪ forkk(t1) ∪ · · · ∪ forkk(tm) if hg(t) ≥ k − 1 and t =
f(t1, . . . , tm).

Clearly, forkk(t) is a finite set of ΣX-trees of height k − 1. For example, if
t = f(x, f(y)), then fork2(t) = {f(x, f), f(y)}, fork3(t) = {t} and forkk(t) = ∅
for all k ≥ 4. Note that the set of all possible k-forks of ΣX-trees is infinite.

Now, let λk(Σ,X) be the relation on TΣ(X) such that for any s, t ∈ TΣ(X),

s λk(Σ,X) t :⇔ stk−1(s) = stk−1(t), rtk−1(s) = rtk−1(t), forkk(s) = forkk(t).

It is easy to see that λk(Σ,X) ∈ Con(TΣ(X)). An unranked ΣX-tree language
is k-testable if it is saturated by λk(Σ,X), and it is locally testable if it is k-
testable for some k ≥ 2. Let Lock(Σ,X) be the set of all recognizable k-testable
ΣX-tree languages, and let Loc(Σ,X) :=

⋃

k≥2 Lock(Σ,X). Note that although
forkk(s) = forkk(t) does not imply forkk−1(s) = forkk−1(t), we have λk(Σ,X) ⊆
λk−1(Σ,X) for every k ≥ 3, and hence Loc2 ⊆ Loc3 ⊆ · · · .

If t is a string represented as a unary tree, then stk−1(t) consists of the prefix
of t of length ≤ k− 1, rtk−1(t) is the suffix of t of length k− 1, and forkk(t) is the
set of its substrings of length k. Hence, our unranked k-testable tree languages
are natural counterparts of the k-testable string languages (cf. [11], for example).
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To show that the families Lock := {Lock(Σ,X)}Σ,X (k ≥ 2) and Loc :=
{Loc(Σ,X)}Σ,X are varieties, we prove that the systems of congruences Λ(k) :=
{λk(Σ,X)}Σ,X (k ≥ 2) are consistent. For this we need the following fact. As
the lemma itself is intuitively quite obvious, we omit the rather technical proof.

Lemma 9.8. If (ι, ϕ) : TΣ(X) → TΩ(Y ) is a g-morphism and k ≥ 2, then

forkk(tϕ) =
⋃

{rtk(uϕ) | u ∈ forkk(t)} ∪
⋃

{forkk(sϕ) | s ∈ stk−1(t)}

for every t ∈ TΣ(X).

Proposition 9.9. For every k ≥ 2, Λ(k) is a CSC and Lock is the quasi-principal
VUT defined by it. Hence, Loc is also a VUT.

Proof. Fix a k ≥ 2 and any g-morphism (ι, ϕ) : TΣ(X) → TΩ(Y ), and let
s, t ∈ TΣ(X) satisfy s λk(Σ,X) t. We should show that sϕλk(Ω, Y ) tϕ.

We know that stk−1(sϕ) = stk−1(tϕ) and rtk−1(sϕ) = rtk−1(tϕ) follow from
stk−1(s) = stk−1(t) and rtk−1(s) = rtk−1(t), respectively. Similarly, forkk(s) =
forkk(t) and stk−1(s) = stk−1(t) imply forkk(sϕ) = forkk(tϕ) by Lemma 9.8.
Hence sϕλk(Ω, Y ) tϕ. That Lock is the quasi-principal VUT defined by Λ(k) is
obvious, and Loc is a VUT as the union of the chain Loc2 ⊆ Loc3 ⊆ . . ..

9.6. Aperiodicity

To show that the natural unranked counterparts of the aperiodic tree languages
[29] form a variety is as easy as in the ranked case [25].

For any p, q ∈ CΣ(X) and t ∈ TΣ(X), let p · q := q(p) and t · p := p(t).
Obviously, (CΣ(X), ·, ξ) is a monoid and the powers pn (n ≥ 0) of a ΣX-context
p are defined as usual. For any n ≥ 0, an unranked tree language T ⊆ TΣ(X) is
called n-aperiodic if for all q, r ∈ CΣ(X) and t ∈ TΣ(X),

t · qn+1 · r ∈ T ⇔ t · qn · r ∈ T,

and T is aperiodic if it is n-aperiodic for some n ≥ 0. Let Ap(Σ,X) be the set of
all recognizable aperiodic ΣX-tree languages, and let Ap := {Ap(Σ,X)}Σ,X .

Proposition 9.10. Ap is a VUT.

Proof. Conditions (V1)–(V3) are easy to verify. For (V4), let T ∈ Ap(Σ,X) be
n-aperiodic and consider any p ∈ CΣ(X). For all q, r ∈ CΣ(X) and t ∈ TΣ(X),

t ·qn+1 ·r ∈ p−1(T ) ⇔ t ·qn+1 ·(r ·p) ∈ T ⇔ t ·qn ·(r ·p) ∈ T ⇔ t ·qn ·r ∈ p−1(T ),

which shows that p−1(T ) ∈ Ap(Σ,X).
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Let (ι, ϕ) : TΣ(X) → TΩ(Y ) be a g-morphism and T ∈ Ap(Ω, Y ) be n-
aperiodic. Let ϕ̂ : CΣ(X) → CΩ(Y ) be the monoid morphism such that ξϕ̂ := ξ,
and f(t1, . . . , q, . . . , tm)ϕ̂ := ι(f)(t1ϕ, . . . , qϕ̂, . . . , tmϕ) for any f ∈ Σ, m ≥ 1,
t1, . . . , tm ∈ TΣ(X) and q ∈ CΣ(X). It is clear that (t · p)ϕ = tϕ · pϕ̂ for all
t ∈ TΣ(X) and p ∈ CΣ(X). This implies that, for all q, r ∈ CΣ(X) and t ∈ TΣ(X),

t ·qn+1 ·r ∈ Tϕ−1 ⇔ tϕ · (qϕ̂)n+1 ·rϕ̂ ∈ T ⇔ tϕ · (qϕ̂)n ·rϕ̂ ∈ T ⇔ t ·qn ·r ∈ Tϕ−1,

which shows that Ap satisfies (V5), too.

9.7. Piecewise testability

Natural definitions of piecewise subtrees and piecewise testability of tree lan-
guages can be based on the well-known homeomorphic embedding order of trees
(cf. [2]). In the ranked case this is done in [19], and a corresponding order un-
derlies the definition of the piecewise testable hedge languages considered in [4].
For any Σ and X, the homeomorphic embedding order E on TΣ(X) is defined so
that for any s, t ∈ TΣ(X), sE t if and only if

(1) s = t, or

(2) s = f(s1, . . . , sm) and t = f(t1, . . . , tm) where s1 E t1, . . . , sm E tm, or

(3) t = f(t1, . . . , tm) and sE ti for some i ∈ [m].

For any k ≥ 0 and t ∈ TΣ(X), let Pk(t) := {s ∈ TΣ(X) | sE t,hg(s) < k} and

τk(Σ,X) := {(s, t) | s, t ∈ TΣ(X), Pk(s) = Pk(t)}.

An unranked ΣX-tree language is piecewise k-testable if it is saturated by τk(Σ,X),
and it is piecewise testable if it is piecewise k-testable for some k ≥ 0. Let
Pwtk(Σ,X) be the set of all recognizable piecewise k-testable unranked ΣX-
tree languages. To prove that Pwtk := {Pwtk(Σ,X)}Σ,X (k ≥ 0) and Pwt :=
⋃

k≥0 Pwtk are VUTs, it suffices to show that T(k) := {τk(Σ,X)}Σ,X is a CSC
for Pwtk. It is easy to see that τk(Σ,X) ∈ Con(TΣ(X)) for every k ≥ 0. For
showing that the system T(k) is consistent, we need the following lemma.

Lemma 9.11. Let (ι, ϕ) : TΣ(X) → TΩ(Y ) be a g-morphism. For any k ≥ 0,
s ∈ TΣ(X) and t ∈ Pk(sϕ), there exists an s′ ∈ Pk(s) such that t ∈ Pk(s

′ϕ).

Proof. The proof goes by induction on k. The case k = 0 is trivial. If t ∈ P1(sϕ),
then t ∈ Ω∪ Y , and now we proceed by induction on s. If s ∈ Σ∪X, we may let
s′ be s. If s = f(s1, . . . , sm), then sϕ = ι(f)(s1ϕ, . . . , smϕ) and t ∈ P1(siϕ) for
some i ∈ [m], and hence there is an s′ ∈ P1(si) ⊆ P1(s) such that t ∈ P1(s

′ϕ).
Assume now that k ≥ 2 and that the lemma holds for all smaller values of k.

If s ∈ Σ ∪X, then hg(s) < k, and we may set s′ := s. Let s = f(s1, . . . , sm) and
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suppose that the claim holds for all smaller trees. Since sϕ = ι(f)(s1ϕ, . . . , smϕ),
there are two possibilities. If t ∈ Pk(siϕ) for some i ∈ [m], the required s′ can
be found as a piecewise subtree of si. Otherwise, t = ι(f)(t1, . . . , tm) for some
t1 ∈ Pk−1(s1ϕ), . . . , tm ∈ Pk−1(smϕ). By the main inductive assumption, there
are trees s′1 ∈ Pk−1(s1), . . . , s

′
m ∈ Pk−1(sm) such that t1 ∈ Pk−1(s

′
1ϕ), . . . , tm ∈

Pk−1(s
′
mϕ). Then t ∈ Pk(s

′ϕ) for s′ := f(s′1, . . . , s
′
m) ∈ Pk(s).

Proposition 9.12. For each k ≥ 0, T(k) is a CSC and Pwtk is the quasi-
principal VUT defined by it. Hence, Pwt is also a VUT.

Proof. That the system T(k) is consistent follows from Lemma 9.11. Indeed,
if (ι, ϕ) : TΣ(X) → TΩ(Y ) is a g-morphism and s τk(Σ,X) t, then sϕ τk(Ω, Y ) tϕ
because Pk(s) = Pk(t) implies Pk(sϕ) = Pk(tϕ) by that lemma.

By the definition of τk(Σ,X), a recognizable ΣX-tree language T is piecewise
k-testable if and only if T is saturated by τk(Σ,X), and this is the case exactly
when τk(Σ,X) ⊆ θT . This means that Ct

T(k) = Pwtk.

10. Concluding remarks

We have defined and studied some basic algebraic notions for unranked algebras.
In particular, we considered finite unranked algebras in which the operations are
controlled by regular languages, and defined the recognizability of unranked tree
languages in terms of them. We introduced varieties of unranked tree languages
and established a bijection between them and varieties of regular algebras using
syntactic algebras. We have demonstrated that the natural unranked counter-
parts of several known varieties of ranked tree languages form varieties in our
sense. Thus it seems that we achieved a good general framework for an algebraic
classification theory of unranked tree languages. We also presented a general
scheme by which many varieties were obtained from certain systems of congru-
ences of term algebras. Of course, much remains to be done. For example, the
varieties of regular algebras corresponding to our example varieties of unranked
tree languages should be identified and studied. Concerning the formal language
aspect, one could try to characterize some of the VUTs by suitable tree logics.
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