SYMMETRIC BI-DERIVATIONS IN ALMOST DISTRIBUTIVE LATTICES

G.C. Rao ${ }^{1, *}$ and K. Ravi Babu ${ }^{2}$
${ }^{1}$ Department of Mathematics, Andhra University
${ }^{2}$ Department of Mathematics, Govt. Degree College, Sabbavaram
Visakhapatnam, Andhra Pradesh, India - 530003
e-mail: gcraomaths@yahoo.co.in
ravikavuru.99@gmail.com

Abstract

In this paper, we introduce the concept of symmetric bi-derivation in an Almost Distributive Lattice (ADL) and derive some important properties of symmetric bi-derivations in ADLs.

Keywords: Almost Distributive Lattice (ADL), derivations, isotone derivations and symmetric bi-derivations.
2010 Mathematics Subject Classification: 06D99, 06D20.

1. Introduction

In 1980, the concept of an Almost Distributive Lattice (ADL) was introduced by Swamy and Rao [13]. This class of ADLs include most of the existing ring theoretic generalizations of a Boolean algebra on one hand and the class of distributive lattices on the other.

The concept of derivation in an ADL was introduced in our earlier paper [11]. The notion of derivation in Lattices was first given in Szasz [14] in 1974. Posner [9] introduced derivations in ring theory and later several authors worked on it $([2,5])$. Several authors worked on derivations in Lattices $([1,3,4,6,7,8,14,15$, 16] and [17]). We have introduced the concept of f-derivations in an ADL in our paper [12]. The concept of symmetric bi-derivations in lattices was introduced by Ceven [4] in 2009.

In this paper, we introduce the concept of symmetric bi-derivation in an ADL and invistigate some important properties. Also, we define the trace d of a

[^0]symmetric bi-derivation D on an ADL L and prove some important properties based on it. We define a fixed set $F i x_{d}(L)$ and prove that it is a weak ideal if d is the trace of a join preserving symmetric bi-derivation D on an associative ADL L. Also, we introduce the concept of an isotone symmetric bi-derivation in an ADL and we establish a set of conditions which are sufficient for a symmetric biderivation on an ADL with a maximal element to become an isotone symmetric bi-derivation. We prove that if an ADL L has a maximal element, then the trace of a join preserving symmetric bi-derivation on L is a homomorphism. Finally, we prove that the set of all principal symmetric bi-derivations on an ADL L forms an ADL.

2. Preliminaries

In this section, we recollect certain basic concepts and important results on Almost Distributive Lattices.

Definition 2.1 [10]. An algebra (L, \vee, \wedge) of type $(2,2)$ is called an Almost Distributive Lattice, if it satisfies the following axioms:
$\begin{array}{ll}L_{1}: & (a \vee b) \wedge c=(a \wedge c) \vee(b \wedge c) \\ L_{2}: & (R D \wedge) \\ L_{3}: & (a \vee b) \wedge b=b \\ L_{4}: & (a \vee b) \wedge a=a \\ L_{5}: & a \vee(a \wedge b)=a .\end{array}$
Definition 2.2 [10]. Let L be any non-empty set. Define, for any $x, y \in L$, $x \vee y=x$ and $x \wedge y=y$. Then (L, \vee, \wedge) is an ADL and it is called a discrete ADL.

Throughout this paper L stands for an $\operatorname{ADL}(L, \vee, \wedge)$ unless otherwise specified.

Lemma 2.3 [10]. For any $a, b \in L$, we have
(i) $a \wedge a=a$,
(ii) $a \vee a=a$,
(iii) $(a \wedge b) \vee b=b$,
(iv) $a \wedge(a \vee b)=a$,
(v) $a \vee(b \wedge a)=a$,
(vi) $a \vee b=a$ if and only if $a \wedge b=b$,
(vii) $a \vee b=b$ if and only if $a \wedge b=a$.

Definition 2.4 [10]. For any $a, b \in L$, we say that a is less than or equal to b and write $a \leq b$, if $a \wedge b=a$ or, equivalently, $a \vee b=b$.

Theorem 2.5 [10]. For any $a, b, c \in L$, we have the following
(i) The relation \leq is a partial ordering on L,
(ii) $a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c) \quad(L D \vee)$,
(iii) $(a \vee b) \vee a=a \vee b=a \vee(b \vee a)$,
(iv) $(a \vee b) \wedge c=(b \vee a) \wedge c$,
(v) The operation \wedge is associative in L,
(vi) $a \wedge b \wedge c=b \wedge a \wedge c$.

Theorem 2.6 [10]. For any $a, b \in L$, the following are equivalent.
(i) $(a \wedge b) \vee a=a$,
(ii) $a \wedge(b \vee a)=a$,
(iii) $(b \wedge a) \vee b=b$,
(iv) $b \wedge(a \vee b)=b$,
(v) $a \wedge b=b \wedge a$,
(vi) $a \vee b=b \vee a$,
(vii) The supremum of a and b exists in L and equals to $a \vee b$,
(viii) there exists $x \in L$ such that $a \leq x$ and $b \leq x$,
(ix) the infimum of a and b exists in L and equals to $a \wedge b$.

Definition 2.7 [10]. L is said to be associative, if the operation \vee in L is associative.

Theorem 2.8 [10]. The following are equivalent.
(i) L is a distributive lattice,
(ii) the poset (L, \leq) is directed above,
(iii) $a \wedge(b \vee a)=a$, for all $a, b \in L$,
(iv) the operation \vee is commutative in L,
(v) the operation \wedge is commutative in L,
(vi) the relation $\theta:=\{(a, b) \in L \times L \mid a \wedge b=b\}$ is anti-symmetric,
(vii) the relation θ defined in (vi) is a partial order on L.

Lemma 2.9 [10]. For any $a, b, c, d \in L$, we have the following
(i) $a \wedge b \leq b$ and $a \leq a \vee b$,
(ii) $a \wedge b=b \wedge a$ whenever $a \leq b$,
(iii) $[a \vee(b \vee c)] \wedge d=[(a \vee b) \vee c] \wedge d$,
(iv) $a \leq b$ implies $a \wedge c \leq b \wedge c, c \wedge a \leq c \wedge b$ and $c \vee a \leq c \vee b$.

Definition 2.10 [10]. An element $0 \in L$ is called zero element of L, if $0 \wedge a=0$ for all $a \in L$.

Lemma 2.11 [10]. If L has 0 , then for any $a, b \in L$, we have the following
(i) $a \vee 0=a$, (ii) $0 \vee a=a$, (iii) $a \wedge 0=0$
and
(iv) $a \wedge b=0$ if and only if $b \wedge a=0$.

Definition 2.12 [13]. Let L be a non-empty set and $x_{0} \in L$. Define, for $x, y \in L$, $x \wedge y=y$ if $x \neq x_{0}$
$=x$ if $x=x_{0}$ and
$x \vee y=x$ if $x \neq x_{0}$
$=y$ if $x=x_{0}$, then $\left(L, \vee, \wedge, x_{0}\right)$ is an ADL with x_{0} as zero element. This is called discrete ADL with zero.

Definition 2.13 [10]. An element $x \in L$ is called maximal if, for any $y \in L$, $x \leq y$ implies $x=y$.

We immediately have the following.
Lemma 2.14 [10]. For any $m \in L$, the following are equivalent:
(1) m is maximal,
(2) $m \vee x=m$ for all $x \in L$,
(3) $m \wedge x=x$ for all $x \in L$.

Definition 2.15 [10]. A nonempty subset I of L is said to be an ideal if and only if it satisfies the following:
(1) $a, b \in I \Rightarrow a \vee b \in I$,
(2) $a \in I, x \in L \Rightarrow a \wedge x \in I$.

Definition 2.16. A nonempty subset I of L is said to be a weak ideal if and only if it satisfies the following:
(1) $a, b \in I \Rightarrow a \vee b \in I$,
(2) $a \in I, x \in L$ and $x \leq a \Rightarrow x \in I$.

Observe that every ideal of L is a weak ideal, but not conversely.
Definition 2.17 [10]. If L_{1}, L_{2} are ADLs, then a function $f: L_{1} \rightarrow L_{2}$ is said to be a homomorphism if it satisfies the following:
(1) $f(x \wedge y)=f x \wedge f y$,
(2) $f(x \vee y)=f x \vee f y$ for all $x, y \in L$.

Definition 2.18. A function $d: L \rightarrow L$ is called an isotone, if $d x \leq d y$ for any $x, y \in L$ with $x \leq y$.

3. Symmetric bi-derivations in ADLs

We begin this section with the following definition of a derivation in an ADL.
Definition 3.1 [11]. A function $d: L \rightarrow L$ is called a derivation on L, if $d(x \wedge y)=(d x \wedge y) \vee(x \wedge d y)$ for all $x, y \in L$.

Definition 3.2.

(i) A mapping $D: L \times L \rightarrow L$ is called symmetric if $D(x, y)=D(y, x)$ for all $x, y \in L$,
(ii) D is called an isotone map if, for any $x, y, z \in L$ with $x \leq y, D(x, z) \leq$ $D(y, z)$.

The following definition introduces the notion of a symmetric bi-derivation on ADLs.

Definition 3.3. A symmetric function $D: L \times L \rightarrow L$ is called a symmetric bi-derivation on L, if $D(x \wedge y, z)=[y \wedge D(x, z)] \vee[x \wedge D(y, z)]$.

Observe that a symmetric bi-derivation D on L also satisfies $D(x, y \wedge z)=$ $[z \wedge D(x, y)] \vee[y \wedge D(x, z)]$ for all $x, y, z \in L$.

Example 3.4. Let L be an ADL and $a \in L$. If we define a mapping $D_{a}: L \times$ $L \rightarrow L$ by $D_{a}(x, y)=x \wedge y \wedge a$ for all $x, y \in L$, then D_{a} is a symmetric bi-derivation on L.

The symmetric bi-derivation D_{a} given in the above example, is called as the principal symmetric bi-derivation on L induced by $a \in L$.

Example 3.5. Let L be an ADL with 0 and $0 \neq a \in L$. If we define a mapping $D: L \times L \rightarrow L$ by $D(x, y)=(x \vee y) \wedge a$ for all $x, y \in L$, then D is a symmetric map, but not a symmetric bi-derivation on L.

Example 3.6. In a discrete ADL $L=\{0, a, b\}$, if we define $D: L \times L \rightarrow L$ by $D(x, y)=a$ when $(x, y) \in\{(0,0),(0, a),(a, 0)\}$ and $D(x, y)=0$ otherwise, then D is a symmetric map but not a symmetric bi-derivation on L.

Example 3.7. Let L be a discrete ADL. Then any constant map $D: L \times L \rightarrow L$ is a symmetric bi-derivation on L.

Definition 3.8. If D is a symmetric bi-derivation on L, then the mapping d : $L \rightarrow L$ defined by $d(x)=D(x, x)$ for all $x \in L$ is called the trace of D.

Theorem 3.9. Let D be a symmetric bi-derivation on L and d be the trace of D. Then the following hold:

1. $D(x, y)=x \wedge D(x, y)$ for all $x, y \in L$,
2. $d x=x \wedge d x$ for any $x \in L$,
3. $D(x, d x)=d x$ for any $x \in L$,
4. $d^{2} x=d x$ for any $x \in L$.

Proof. (1) Let $x, y \in L$. Then $D(x, y)=D(x \wedge x, y)=[x \wedge D(x, y)] \vee[x \wedge$ $D(x, y)]=x \wedge D(x, y)$.
(2) Let $x \in L$. Then replace y by x in (1) above, we get $D(x, x)=x \wedge D(x, x)$. That is $d x=x \wedge d x$.
(3) Let $x \in L$. Then $D(x, d x)=D(x, x \wedge d x)=[d x \wedge D(x, x)] \vee[x \wedge D(x, d x)]=$ $d x \vee D(x, d x)=d x$.
(4) Let $x \in L$. Then $d^{2} x=D(d x, d x)=D(x \wedge d x, d x)=[d x \wedge D(x, d x)] \vee[x \wedge$ $D(d x, d x)]=d x \vee\left[x \wedge d^{2} x\right]=(d x \vee x) \wedge\left(d x \vee d^{2} x\right)=(d x \vee x) \wedge d x=d x$.

Corollary 3.10. Suppose L has 0 and D is a symmetric bi-derivation on L. Then $D(0, x)=0$ for all $x \in L$.

Definition 3.11. A symmetric map $D: L \times L \rightarrow L$ is called a joini preserving map if $D(x \vee y, z)=D(x, z) \vee D(y, z)$ for all $x, y, z \in L$.

Let us recall that in an ADL, it is not known whether V is assosiative or not. If \vee is assosiative in an ADL, then it is called an assosiative ADL. Now we prove the following.

Lemma 3.12. Let d be the trace of a join preserving symmetric bi-derivation D on an associative $A D L L$. Then $d(x \vee y)=d x \vee D(x, y) \vee d y$ for all $x, y \in L$ and d is an isotone map on L.

Proof. Let $x, y \in L$. Then $d(x \vee y)=D(x \vee y, x \vee y)=D(x, x) \vee D(x, y) \vee D(y, x) \vee$ $D(y, y)=d x \vee D(x, y) \vee d y$. If $x \leq y$, then $d y=d(x \vee y)=d x \vee D(x, y) \vee d y$. Thus $d x \leq d y$. Hence d is an isotone map on L.

Lemma 3.13. Let d be the trace of a symmetric bi-derivation D on an associative ADL L. Then $d(x \wedge y)=(y \wedge d x) \vee D(x, y) \vee(x \wedge d y)$ for all $x, y \in L$.

Proof. Let $x, y \in L$. Then $d(x \wedge y)=D(x \wedge y, x \wedge y)=[y \wedge D(x, x \wedge y)] \vee[x \wedge$ $D(y, x \wedge y)]=[y \wedge[[y \wedge D(x, x)] \vee[x \wedge D(x, y)]]] \vee[x \wedge[[y \wedge D(y, x)] \vee[x \wedge D(y, y)]]]=$ $(y \wedge d x) \vee D(x, y) \vee D(y, x) \vee(x \wedge d y)=(y \wedge d x) \vee D(x, y) \vee(x \wedge d y)$.

Corollary 3.14. If d is the trace of a symmetric bi-derivation D on L, then $y \wedge d x \leq d(x \wedge y)$ for all $x, y \in L$.

Corollary 3.15. Suppose m is a maximal element of L and d is the trace of a symmetric bi-derivation on L. Then, for any $x \in L$, we have,

1. $x \geq d m$ implies $d x \geq d m$,
2. $x \leq d m$ implies $d x=x$.

Proof. (1) If $x \geq d m$, then $d m=(x \wedge d m) \leq d(m \wedge x)$ by above Corollary. Thus $d x \geq d m$.
(2) If $x \leq d m$, then $x=x \wedge d m \leq d(m \wedge x)=d x$. Hence $d x=x \wedge d x=x$.

Theorem 3.16. Let d be the trace of a join preserving symmetric bi-derivation D on an associative $A D L L$. Then $F i x_{d}(L)=\{x \in L / d x=x\}$ is a weak ideal of L.

Proof. Let $x \in L, y \in \operatorname{Fix}_{d}(L)$ and $x \leq y$. Then, by Lemma 3.13, $d x=$ $d(y \wedge x)=(x \wedge d y) \vee D(x, y) \vee(y \wedge d x)=(x \wedge y) \vee D(x, y) \vee(y \wedge x \wedge d x)=x \vee$ $D(x, y) \vee(x \wedge d x)=x \vee(x \wedge d x)=x$. Thus $x \in$ Fix $_{d}(L)$. Now, let $x, y \in$ Fix $_{d}(L)$. Then, by Lemma 3.12, $d(x \vee y)=d x \vee D(x, y) \vee d y=x \vee D(x, y) \vee y=x \vee y$. Thus $x \vee y \in F i x_{d}(L)$. Hence $F i x_{d}(L)$ is a weak ideal of L.

Theorem 3.17. Let m be a maximal element of L and d be the trace of a symmetric bi-derivation D on L. Then the following are equivalent.

1. d is an isotone map on L,
2. $d x=x \wedge d m$ for all $x \in L$,
3. $d(x \wedge y)=d x \wedge d y$ for all $x, y \in L$,
4. $d(x \vee y)=d x \vee d y$ for all $x, y \in L$.

Proof. (1) $\Rightarrow(2)$: Let $x \in L$. By Corollary 3.14, $x \wedge d m \leq d(m \wedge x)=d x$. On the other hand, since d is isotone, $d(x \wedge m) \leq d m$. Thus, by Corollary 3.14, $m \wedge d x \leq d(x \wedge m) \leq d m$. Now, $d x=x \wedge d x=m \wedge x \wedge d x=x \wedge m \wedge d x \leq x \wedge d m$. Hence $d x=x \wedge d m$.
$(2) \Rightarrow(3):$ Let $x, y \in L$. Then $d(x \wedge y)=x \wedge y \wedge d m=x \wedge d m \wedge y \wedge d m=d x \wedge d y$.
$(2) \Rightarrow(4):$ Let $x, y \in L$. Then $d(x \vee y)=(x \vee y) \wedge d m=(x \wedge d m) \vee(y \wedge d m)=$ $d x \vee d y$.
$(3) \Rightarrow(1)$ and $(4) \Rightarrow(1)$ are trivial.
Theorem 3.18. Suppose L has a maximal element m. Then the trace of every join preserving symmetric bi-derivation on L is a homomorphism.

Proof. Let d be the trace of a join preserving symmetric bi-derivation D on L and $x, y \in L$ with $x \leq y$. Then $d(x \vee y)=D(x \vee y, x \vee y)=D(x, x \vee y) \vee$ $D(y, x \vee y)=[D(x, x) \vee D(x, y)] \vee D(y, x \vee y)=[d x \vee D(x, y)] \vee D(y, x \vee y)$. Now, $d x \leq d x \vee D(x, y) \leq d(x \vee y)=d y$. Hence d is an isotone map on L. Therefore, by Theorem 3.17, d is a homomorphism.

Finally we conclude this section with the following Theorem.
Theorem 3.19. Let $\mathscr{D}(L)$ be the set of all principal symmetric bi-derivations on L. Then $(\mathscr{D}(L), \vee, \wedge)$ is an $A D L$.

Proof. For $a, b, x, y \in L$, define $\left(D_{a} \vee D_{b}\right)(x, y)=D_{a}(x, y) \vee D_{b}(x, y)$ and $\left(D_{a} \wedge\right.$ $\left.D_{b}\right)(x, y)=D_{a}(x, y) \wedge D_{b}(x, y)$.

Now, $\left(D_{a} \vee D_{b}\right)(x, y)=D_{a}(x, y) \vee D_{b}(x, y)=(x \wedge y \wedge a) \vee(x \wedge y \wedge b)=$ $(x \wedge y) \wedge(a \vee b)=D_{a \vee b}(x, y)$. Thus $D_{a} \vee D_{b}=D_{a \vee b} \in \mathscr{D}(L)$. Now $\left(D_{a} \wedge D_{b}\right)(x, y)=$ $D_{a}(x, y) \wedge D_{b}(x, y)=(x \wedge y \wedge a) \wedge(x \wedge y \wedge b)=(x \wedge y) \wedge(a \wedge b)=D_{a \wedge b}(x, y)$. Thus $D_{a} \wedge D_{b}=D_{a \wedge b} \in \mathscr{D}(L)$. Therefore, $\mathscr{D}(L)$ is closed under \vee and \wedge and clearly it satisfies the properties of an ADL.

References

[1] N.O. Alshehri, Generalized Derivations of Lattices, International Journal of Contemp. Math. Sciences 5 (13) (2010) 629-640.
[2] H.E. Bell and L.C. Kappe, Ring in which derivations satisfy certain algebraic conditions, Acta Math. Hungar. 53 (3-4) (1989) 339-346. doi:10.1007/BF01953371
[3] Y. Ceven, On f-derivations of lattices, Bull. Korean Math. Soc. 45 (4) (2008) 701-707. doi:10.4134/BKMS.2008.45.4.701
[4] Y. Ceven, Symmetric Bi-derivations of lattices, Quaestiones Mathematicae 32 (2009) 241-245. doi:10.2989/QM.2009.32.2.6.799
[5] K. Kaya, Prime rings with a derivations, Bull. Mater. Sci. Eng. 16-17 (1987) 63-71.
[6] K.H. Kim, Symmetric Bi-f-derivations in lattices, Int. J. Math. Arch. 3 (10) (2012) 3676-3683.
[7] M. Asci and S. Ceran, Generalized (f, g)-Derivations of Lattices, Math. Sci. Appl. 2 (2013) 56-62.
[8] M.A. Ozlurk et al., Permuting Tri-derivations in lattices, Quaestiones Math. 32 (2009) 415-425. doi:10.2989/QM.2009.32.3.10.911
[9] E. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957) 1093-1100. doi:10.1090/S0002-9939-1957-0095863-0
[10] G.C. Rao, Almost Distributive Lattices. Doctoral Thesis (Department of Mathematics, Andhra University, Visakhapatnam, 1980).
[11] G.C. Rao and K. Ravibabu, The theory of Derivations in Almost Distributive Lattices, Comunicated to the Bulletin of International Mathematical Virtual Institute.
[12] G.C. Rao and K. Ravibabu, f-derivations in Almost Distributive Lattices, Int. J. Math. Arch. 7 (7) (2016) 14-20.
[13] U.M. Swamy and G.C. Rao, Almost Distributive Lattices, J. Aust. Math. Soc. (Series A) 31 (1981) 77-91.
doi:10.1017/S1446788700018498
[14] G. Szasz, Derivations of lattices, Acta Sci. Math. (Szeged) 37 (1975) 149-154.
[15] X.L. Xin et al., On derivations of lattices*, Information Science, 178 (2008) 307-316. doi:10.1016/j.ins.2007.08.018
[16] X.L. Xin, The fixed set of derivations in lattices, A Springer Open Journal (2012). http://www.fixedpointtheoryandapplication.com/content/2012/1/218.
[17] H. Yazarli and M.A. Ozlurk, Permuting Tri-f-derivations in lattices, Commun. Korean Math. Soc. 26 (1) (2011) 13-21. doi:10.4134/CKMS.2011.26.1.013

[^0]: *Corresponding author.

