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Abstract

In this paper, we introduce the concept of symmetric bi-derivation in an
Almost Distributive Lattice (ADL) and derive some important properties of
symmetric bi-derivations in ADLs.
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1. INTRODUCTION

In 1980, the concept of an Almost Distributive Lattice (ADL) was introduced by
Swamy and Rao [13]. This class of ADLs include most of the existing ring theo-
retic generalizations of a Boolean algebra on one hand and the class of distributive
lattices on the other.

The concept of derivation in an ADL was introduced in our earlier paper [11].
The notion of derivation in Lattices was first given in Szasz [14] in 1974. Posner
[9] introduced derivations in ring theory and later several authors worked on it
([2, 5]). Several authors worked on derivations in Lattices ([1, 3, 4, 6, 7, 8, 14, 15,
16] and [17]). We have introduced the concept of f-derivations in an ADL in our
paper [12]. The concept of symmetric bi-derivations in lattices was introduced
by Ceven [4] in 2009.

In this paper, we introduce the concept of symmetric bi-derivation in an ADL
and invistigate some important properties. Also, we define the trace d of a
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symmetric bi-derivation D on an ADL L and prove some important properties
based on it. We define a fixed set Fiz4(L) and prove that it is a weak ideal if d is
the trace of a join preserving symmetric bi-derivation D on an associative ADL
L. Also, we introduce the concept of an isotone symmetric bi-derivation in an
ADL and we establish a set of conditions which are sufficient for a symmetric bi-
derivation on an ADL with a maximal element to become an isotone symmetric
bi-derivation. We prove that if an ADL L has a maximal element, then the trace
of a join preserving symmetric bi-derivation on L is a homomorphism. Finally,

we prove that the set of all principal symmetric bi-derivations on an ADL L forms
an ADL.

2. PRELIMINARIES

In this section, we recollect certain basic concepts and important results on Al-
most Distributive Lattices.

Definition 2.1 [10]. An algebra (L,V,A) of type (2,2) is called an Almost Dis-
tributive Lattice, if it satisfies the following axioms:

Li: (avb)ANc=(aNc)V(bAc) (RDA)

Ly: an(bVe)=(anb)V(anc) (LDA)

Ls: (aVb)Ab=Db

Ly: (avb)ANa=a

Ls: aV(and) =a.

Definition 2.2 [10]. Let L be any non-empty set. Define, for any z,y € L,
xVy=2aand x Ay = y. Then (L,V,A) is an ADL and it is called a discrete
ADL.

Throughout this paper L stands for an ADL (L, V, A) unless otherwise speci-
fied.

Lemma 2.3 [10]. For any a,b € L, we have
(i) aNa=a,
(ii) aVa=a,
(iii) (aAD) Vb=,
(iv) aA(aVb) =a,
(v) aV(bAa)=a,
(vi) aVb=a if and only if a Nb=b,
(vii) aVb=>bif and only if a Nb = a.

Definition 2.4 [10]. For any a,b € L, we say that a is less than or equal to b
and write a < b, if a A b = a or, equivalently, a V b = b.
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Theorem 2.5 [10]. For any a,b,c € L, we have the following
(i) The relation < is a partial ordering on L,

(ii)) avV(bAc)=(aVb)A(aVec) (LDV),

(iii) (avb)Va=aVb=aV (bVa),

(iv) (avb)Aec=(bVa)Ac,

(v) The operation A is associative in L,

(vi) aAbAc=bAaAc.

Theorem 2.6 [10]. For any a,b € L, the following are equivalent.
(i) (aAb)Va=a,

(ii) an(bVa)=a,

(iii) (bAa)Vb=Db,

(iv) bA(aVb) =b,

(v) anb=DbAa,

(vi) avVb=>bVa,

(vii) The supremum of a and b exists in L and equals to a \V b,
(viii) there exists x € L such that a < x and b < x,

(ix) the infimum of a and b exists in L and equals to a A b.

Definition 2.7 [10]. L is said to be associative, if the operation V in L is asso-
ciative.

Theorem 2.8 [10]. The following are equivalent.
(i) L is a distributive lattice,

the poset (L, <) is directed above,

aA(bVa)=a, for al a,b e L,

the operation V is commutative in L,

the relation 0 := {(a,b) € L x L | a ANb= b} is anti-symmetric,

)
)
)
(v) the operation A is commutative in L,
)
) the relation 0 defined in (vi) is a partial order on L.

Lemma 2.9 [10]. For any a,b,c,d € L,we have the following

(i) anb<banda<aVb,

(ii) a Ab=0bA a whenever a <b,

(iii) [aV(bVe)Ad=1[(aVb)VcAd,

(iv) a < b impliesaNc<bAc,cANa<cAbandcVa<cVb.

Definition 2.10 [10]. An element 0 € L is called zero element of L, if 0 Aa =0
for all a € L.
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Lemma 2.11 [10]. If L has 0, then for any a,b € L, we have the following

(i) av0=a, (ii) 0OVa=a, (ili) aA0 =0
and
(iv) a Ab =0 if and only if bAa=0.

Definition 2.12 [13]. Let L be a non-empty set and x¢ € L. Define, for z,y € L,
ANy =yif x # xg

=z if z = 2¢ and
xVy=uxif x # xg

=y if x = xg, then (L, V, A, x¢) is an ADL with x( as zero element. This is
called discrete ADL with zero.

Definition 2.13 [10]. An element = € L is called maximal if, for any y € L,
x <y implies x = y.

We immediately have the following.

Lemma 2.14 [10]. For any m € L, the following are equivalent:
(1) m is maximal,

(2) mVaz=m foralxzelL,

(3) mAx==x forall z € L.

Definition 2.15 [10]. A nonempty subset I of L is said to be an ideal if and
only if it satisfies the following:

(1) a,bel=aVvbel,

(2) ael,zeL=aNzel

Definition 2.16. A nonempty subset I of L is said to be a weak ideal if and
only if it satisfies the following:

(1) a,bel=aVvbel,

(2) acl,zeLandz<a=uzel.

Observe that every ideal of L is a weak ideal, but not conversely.

Definition 2.17 [10]. If Ly, Ly are ADLs, then a function f : L1 — Lo is said to
be a homomorphism if it satisfies the following:

(1) flzry)=fz A fy,
(2) f(xVy) = faV fyforall z,y € L.

Definition 2.18. A function d : L. — L is called an isotone, if dz < dy for any
x,y € L with z < y.
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3. SYMMETRIC BI-DERIVATIONS IN ADLS

We begin this section with the following definition of a derivation in an ADL.

Definition 3.1 [11]. A function d: L — L is called a derivation on L, if
dlx ANy) = (de ANy) V (z Ady) for all z,y € L.

Definition 3.2.
(i) A mapping D : L x L — L is called symmetric if D(z,y) = D(y, z) for all
z,y € L,
(ii) D is called an isotone map if, for any z,y,z € L with x < y, D(z,z) <
D(y, 2).

The following definition introduces the notion of a symmetric bi-derivation on
ADLs.

Definition 3.3. A symmetric function D : L x L — L is called a symmetric
bi-derivation on L, if D(x Ay,z) = [y A D(z, 2)] V [z A D(y, 2)].

Observe that a symmetric bi-derivation D on L also satisfies D(z,y A z) =
[z A D(z,y)] V [y AD(x,z)] for all x,y,z € L.

Example 3.4. Let L be an ADL and a € L. If we define a mapping D, : L X
L — Lby D,(x,y) = xAyAaforall x,y € L, then D, is a symmetric bi-derivation
on L.

The symmetric bi-derivation D, given in the above example, is called as the
principal symmetric bi-derivation on L induced by a € L.

Example 3.5. Let L be an ADL with 0 and 0 # a € L. If we define a mapping
D:LxL— Lby D(z,y)=(xVy)Aaforall z,y € L, then D is a symmetric
map, but not a symmetric bi-derivation on L.

Example 3.6. In a discrete ADL L = {0,a,b}, if we define D : L x L — L by
D(z,y) = a when (z,y) € {(0,0),(0,a),(a,0)} and D(z,y) = 0 otherwise, then
D is a symmetric map but not a symmetric bi-derivation on L.

Example 3.7. Let L be a discrete ADL. Then any constant map D : L x L — L
is a symmetric bi-derivation on L.

Definition 3.8. If D is a symmetric bi-derivation on L, then the mapping d :
L — L defined by d(z) = D(z,x) for all z € L is called the trace of D.

Theorem 3.9. Let D be a symmetric bi-derivation on L and d be the trace of
D. Then the following hold:

1. D(xz,y) =x A D(z,y) for all x,y € L,
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2. dr =x Ndzx for any x € L,
3. D(x,dx) = dx for any x € L,
4. &’z = dz for any x € L.

Proof. (1) Let z,y € L. Then D(z,y) = D(z A x,y) = [z A D(z,y)] V [z A
D(z,)] = = A D(z,p).

(2) Let z € L. Then replace y by x in (1) above, we get D(x,z) = 2 A D(x,x).
That is dx = = A dx.

(3) Let x € L. Then D(z,dx) = D(z,xAdx) = [deAD(z,x)|V[zAD(x,dz)] =
dx V D(z,dx) = dx.

(4) Let « € L. Then d?x = D(dx,dx) = D(x Adx,dx) = [dv A D(z,dz)] V [z A
D(dz,dx)] = dx V [z A d*z] = (dz V 2) A (dx V d*x) = (dox V x) A dz = da. |

Corollary 3.10. Suppose L has 0 and D is a symmetric bi-derivation on L.
Then D(0,z) =0 for all x € L.

Definition 3.11. A symmetric map D : L x L — L is called a joini preserving
map if D(z Vy,z) = D(x,z)V D(y, z) for all x,y,z € L.

Let us recall that in an ADL, it is not known whether V is assosiative or not.
If Vv is assosiative in an ADL, then it is called an assosiative ADL. Now we prove
the following.

Lemma 3.12. Let d be the trace of a join preserving symmetric bi-derivation D
on an associative ADL L. Then d(zVy) =dx N D(z,y)Vdy for all x,y € L and
d is an isotone map on L.

Proof. Let x,y € L. Then d(zVy) = D(xVy,xVy) = D(z,z)VD(z,y)VD(y,z)V
D(y,y) = dzV D(z,y) Vdy. If z <y, then dy = d(z Vy) = dzV D(z,y) V dy.
Thus dz < dy. Hence d is an isotone map on L. [ |

Lemma 3.13. Let d be the trace of a symmetric bi-derivation D on an associative

ADL L. Then d(x ANy) = (y Adz)V D(x,y) V (z Ady) for all z,y € L.

D(y,zAy)] = [yA[[yAD(z,z)]V [z AD(x, y)|]]V [z AllyAD(y, ©)|V [z AD(y, y)]]

Proof. Let z,y € L. Then d(z ANy) = D(z ANy, x ANy) = [y AND(z,x Ay)]V [z A
] pu—
(y Ndz)V D(z,y)V D(y,z) V (x Ady) = (y ANdx) V D(x,y) V (z A dy). ]

Corollary 3.14. If d is the trace of a symmetric bi-derivation D on L, then
yANdr < d(x Ay) for all z,y € L.

Corollary 3.15. Suppose m is a maximal element of L and d is the trace of a
symmetric bi-derivation on L. Then, for any x € L, we have,

1. © > dm implies dx > dm,
2. x < dm implies dx = x.
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Proof. (1) If x > dm, then dm = (x Adm) < d(m A x) by above Corollary. Thus
dx > dm.
(2) If 2 < dm, then x =x Adm <d(mAz) =dz. Hence de =xANder=2z. ®

Theorem 3.16. Let d be the trace of a join preserving symmetric bi-derivation
D on an associative ADL L. Then Fizxg(L) = {x € L/dx = z} is a weak ideal
of L.

Proof. Let © € L, y € Fixg(L) and x < y. Then, by Lemma 3.13, dz =
dlynz)=(xANdy)V D(z,y)V (y Ndx) = (x Ay)V D(z,y) V(y ANz Adx) =z V
D(z,y)V(zANdzr) = zV(xAdx) = x. Thus € Fizy(L). Now, let z,y € Fizy(L).
Then, by Lemma 3.12, d(x Vy) = dz V D(z,y) Vdy = 2V D(z,y) Vy =z Vy.
Thus z Vy € Fizyg(L). Hence Fizy(L) is a weak ideal of L. ]

Theorem 3.17. Let m be a maximal element of L and d be the trace of a sym-
metric bi-derivation D on L. Then the following are equivalent.

1. d is an isotone map on L,
2. de =x Ndm for oll x € L,
3. d(x Ny) =dx Ndy for all xz,y € L,
4. d(xVy)=dxVdy for all z,y € L.

Proof. (1) = (2) : Let z € L. By Corollary 3.14, 2 A dm < d(m A z) = dz.
On the other hand, since d is isotone, d(x A m) < dm. Thus, by Corollary 3.14,
mAde < d(xAm) < dm. Now, de = xANde =mAzANdx =z AmAde < xAdm.
Hence dz = x A dm.

(2) = (3) : Let x,y € L. Then d(zAy) = zAyAdm = xAdmAyAdm = dxAdy.

(2) = (4) : Let x,y € L. Then d(zVy) = (zVy)Adm = (xANdm)V (yAdm) =
dx V dy.

(3) = (1) and (4) = (1) are trivial. |

Theorem 3.18. Suppose L has a maximal element m. Then the trace of every
join preserving symmetric bi-derivation on L is a homomorphism.

Proof. Let d be the trace of a join preserving symmetric bi-derivation D on L
and z,y € L with z < y. Then d(z Vy) = D(xVy,xVy) = D(x,xzVy)V
D(y,xzVy) =[D(z,x)V D(z,y)]VD(y,xVy) = [dxV D(x,y)]V D(y,z Vy). Now,
dx < dzV D(z,y) <d(xVy)=dy. Hence d is an isotone map on L. Therefore,
by Theorem 3.17, d is a homomorphism. [ |

Finally we conclude this section with the following Theorem.

Theorem 3.19. Let (L) be the set of all principal symmetric bi-derivations on
L. Then (2(L),V,N) is an ADL.
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Proof. For a,b,z,y € L, define (D, V Dy)(z,y) = Dq(z,y) V Dy(x,y) and (Dg A
Db)(x’ y) = Da($, y) A Db($, y)

Now, (D V Dp)(2,y) = Da(x,y) V Dp(z,y) = (x Ay ANa)V(zAyAd) =
(xAy)A(aVb) = Dyyp(x,y). Thus DoV Dy = Doy € Z(L). Now (DaADy)(z,y) =
D,(z,y) A Dp(z,y) = (x AyAa)AN(x AyAb) = (xAy)A(aAb) = Dopp(x,y).
Thus D, A Dy = Dgpp € Z(L). Therefore, Z(L) is closed under V and A and
clearly it satisfies the properties of an ADL. [ |
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