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Abstract

In this paper, we introduce the concept of symmetric bi-derivation in an
Almost Distributive Lattice (ADL) and derive some important properties of
symmetric bi-derivations in ADLs.
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1. Introduction

In 1980, the concept of an Almost Distributive Lattice (ADL) was introduced by
Swamy and Rao [13]. This class of ADLs include most of the existing ring theo-
retic generalizations of a Boolean algebra on one hand and the class of distributive
lattices on the other.

The concept of derivation in an ADL was introduced in our earlier paper [11].
The notion of derivation in Lattices was first given in Szasz [14] in 1974. Posner
[9] introduced derivations in ring theory and later several authors worked on it
([2, 5]). Several authors worked on derivations in Lattices ([1, 3, 4, 6, 7, 8, 14, 15,
16] and [17]). We have introduced the concept of f -derivations in an ADL in our
paper [12]. The concept of symmetric bi-derivations in lattices was introduced
by Ceven [4] in 2009.

In this paper, we introduce the concept of symmetric bi-derivation in an ADL
and invistigate some important properties. Also, we define the trace d of a

∗Corresponding author.

http://dx.doi.org/10.7151/dmgaa.1257


170 G.C. Rao and K.R. Babu

symmetric bi-derivation D on an ADL L and prove some important properties
based on it. We define a fixed set Fixd(L) and prove that it is a weak ideal if d is
the trace of a join preserving symmetric bi-derivation D on an associative ADL
L. Also, we introduce the concept of an isotone symmetric bi-derivation in an
ADL and we establish a set of conditions which are sufficient for a symmetric bi-
derivation on an ADL with a maximal element to become an isotone symmetric
bi-derivation. We prove that if an ADL L has a maximal element, then the trace
of a join preserving symmetric bi-derivation on L is a homomorphism. Finally,
we prove that the set of all principal symmetric bi-derivations on an ADL L forms
an ADL.

2. Preliminaries

In this section, we recollect certain basic concepts and important results on Al-
most Distributive Lattices.

Definition 2.1 [10]. An algebra (L,∨,∧) of type (2, 2) is called an Almost Dis-
tributive Lattice, if it satisfies the following axioms:

L1 : (a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c) (RD∧)

L2 : a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) (LD∧)

L3 : (a ∨ b) ∧ b = b

L4 : (a ∨ b) ∧ a = a

L5 : a ∨ (a ∧ b) = a.

Definition 2.2 [10]. Let L be any non-empty set. Define, for any x, y ∈ L,
x ∨ y = x and x ∧ y = y. Then (L,∨,∧) is an ADL and it is called a discrete
ADL.

Throughout this paper L stands for an ADL (L,∨,∧) unless otherwise speci-
fied.

Lemma 2.3 [10]. For any a, b ∈ L, we have

(i) a ∧ a = a,

(ii) a ∨ a = a,

(iii) (a ∧ b) ∨ b = b,

(iv) a ∧ (a ∨ b) = a,

(v) a ∨ (b ∧ a) = a,

(vi) a ∨ b = a if and only if a ∧ b = b,

(vii) a ∨ b = b if and only if a ∧ b = a.

Definition 2.4 [10]. For any a, b ∈ L, we say that a is less than or equal to b
and write a ≤ b, if a ∧ b = a or, equivalently, a ∨ b = b.
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Theorem 2.5 [10]. For any a, b, c ∈ L, we have the following

(i) The relation ≤ is a partial ordering on L,

(ii) a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) (LD∨),

(iii) (a ∨ b) ∨ a = a ∨ b = a ∨ (b ∨ a),

(iv) (a ∨ b) ∧ c = (b ∨ a) ∧ c,

(v) The operation ∧ is associative in L,

(vi) a ∧ b ∧ c = b ∧ a ∧ c.

Theorem 2.6 [10]. For any a, b ∈ L, the following are equivalent.

(i) (a ∧ b) ∨ a = a,

(ii) a ∧ (b ∨ a) = a,

(iii) (b ∧ a) ∨ b = b,

(iv) b ∧ (a ∨ b) = b,

(v) a ∧ b = b ∧ a,

(vi) a ∨ b = b ∨ a,

(vii) The supremum of a and b exists in L and equals to a ∨ b,

(viii) there exists x ∈ L such that a ≤ x and b ≤ x,

(ix) the infimum of a and b exists in L and equals to a ∧ b.

Definition 2.7 [10]. L is said to be associative, if the operation ∨ in L is asso-
ciative.

Theorem 2.8 [10]. The following are equivalent.

(i) L is a distributive lattice,

(ii) the poset (L,≤) is directed above,

(iii) a ∧ (b ∨ a) = a, for all a, b ∈ L,

(iv) the operation ∨ is commutative in L,

(v) the operation ∧ is commutative in L,

(vi) the relation θ := {(a, b) ∈ L× L | a ∧ b = b} is anti-symmetric,

(vii) the relation θ defined in (vi) is a partial order on L.

Lemma 2.9 [10]. For any a, b, c, d ∈ L,we have the following

(i) a ∧ b ≤ b and a ≤ a ∨ b,

(ii) a ∧ b = b ∧ a whenever a ≤ b,

(iii) [a ∨ (b ∨ c)] ∧ d = [(a ∨ b) ∨ c] ∧ d,

(iv) a ≤ b implies a ∧ c ≤ b ∧ c, c ∧ a ≤ c ∧ b and c ∨ a ≤ c ∨ b.

Definition 2.10 [10]. An element 0 ∈ L is called zero element of L, if 0 ∧ a = 0
for all a ∈ L.
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Lemma 2.11 [10]. If L has 0, then for any a, b ∈ L, we have the following

(i) a ∨ 0 = a, (ii) 0 ∨ a = a, (iii) a ∧ 0 = 0
and

(iv) a ∧ b = 0 if and only if b ∧ a = 0.

Definition 2.12 [13]. Let L be a non-empty set and x0 ∈ L. Define, for x, y ∈ L,

x ∧ y = y if x 6= x0
= x if x = x0 and

x ∨ y = x if x 6= x0
= y if x = x0, then (L,∨,∧, x0) is an ADL with x0 as zero element. This is

called discrete ADL with zero.

Definition 2.13 [10]. An element x ∈ L is called maximal if, for any y ∈ L,
x ≤ y implies x = y.

We immediately have the following.

Lemma 2.14 [10]. For any m ∈ L, the following are equivalent:

(1) m is maximal,

(2) m ∨ x = m for all x ∈ L,

(3) m ∧ x = x for all x ∈ L.

Definition 2.15 [10]. A nonempty subset I of L is said to be an ideal if and
only if it satisfies the following:

(1) a, b ∈ I ⇒ a ∨ b ∈ I,

(2) a ∈ I, x ∈ L ⇒ a ∧ x ∈ I.

Definition 2.16. A nonempty subset I of L is said to be a weak ideal if and
only if it satisfies the following:

(1) a, b ∈ I ⇒ a ∨ b ∈ I,

(2) a ∈ I, x ∈ L and x ≤ a ⇒ x ∈ I.

Observe that every ideal of L is a weak ideal, but not conversely.

Definition 2.17 [10]. If L1, L2 are ADLs, then a function f : L1 → L2 is said to
be a homomorphism if it satisfies the following:

(1) f(x ∧ y) = fx ∧ fy,

(2) f(x ∨ y) = fx ∨ fy for all x, y ∈ L.

Definition 2.18. A function d : L → L is called an isotone, if dx ≤ dy for any
x, y ∈ L with x ≤ y.
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3. Symmetric bi-derivations in ADLs

We begin this section with the following definition of a derivation in an ADL.

Definition 3.1 [11]. A function d : L → L is called a derivation on L, if

d(x ∧ y) = (dx ∧ y) ∨ (x ∧ dy) for all x, y ∈ L.

Definition 3.2.
(i) A mapping D : L × L → L is called symmetric if D(x, y) = D(y, x) for all

x, y ∈ L,

(ii) D is called an isotone map if, for any x, y, z ∈ L with x ≤ y, D(x, z) ≤
D(y, z).

The following definition introduces the notion of a symmetric bi-derivation on
ADLs.

Definition 3.3. A symmetric function D : L × L → L is called a symmetric
bi-derivation on L, if D(x ∧ y, z) = [y ∧D(x, z)] ∨ [x ∧D(y, z)].

Observe that a symmetric bi-derivation D on L also satisfies D(x, y ∧ z) =
[z ∧D(x, y)] ∨ [y ∧D(x, z)] for all x, y, z ∈ L.

Example 3.4. Let L be an ADL and a ∈ L. If we define a mapping Da : L ×
L → L byDa(x, y) = x∧y∧a for all x, y ∈ L, thenDa is a symmetric bi-derivation
on L.

The symmetric bi-derivation Da given in the above example, is called as the
principal symmetric bi-derivation on L induced by a ∈ L.

Example 3.5. Let L be an ADL with 0 and 0 6= a ∈ L. If we define a mapping
D : L× L → L by D(x, y) = (x ∨ y) ∧ a for all x, y ∈ L, then D is a symmetric
map, but not a symmetric bi-derivation on L.

Example 3.6. In a discrete ADL L = {0, a, b}, if we define D : L × L → L by
D(x, y) = a when (x, y) ∈ {(0, 0), (0, a), (a, 0)} and D(x, y) = 0 otherwise, then
D is a symmetric map but not a symmetric bi-derivation on L.

Example 3.7. Let L be a discrete ADL. Then any constant map D : L×L → L
is a symmetric bi-derivation on L.

Definition 3.8. If D is a symmetric bi-derivation on L, then the mapping d :
L → L defined by d(x) = D(x, x) for all x ∈ L is called the trace of D.

Theorem 3.9. Let D be a symmetric bi-derivation on L and d be the trace of
D. Then the following hold:

1. D(x, y) = x ∧D(x, y) for all x, y ∈ L,
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2. dx = x ∧ dx for any x ∈ L,

3. D(x, dx) = dx for any x ∈ L,

4. d2x = dx for any x ∈ L.

Proof. (1) Let x, y ∈ L. Then D(x, y) = D(x ∧ x, y) = [x ∧ D(x, y)] ∨ [x ∧
D(x, y)] = x ∧D(x, y).

(2) Let x ∈ L. Then replace y by x in (1) above, we get D(x, x) = x∧D(x, x).
That is dx = x ∧ dx.

(3) Let x ∈ L. ThenD(x, dx) = D(x, x∧dx) = [dx∧D(x, x)]∨[x∧D(x, dx)] =
dx ∨D(x, dx) = dx.

(4) Let x ∈ L. Then d2x = D(dx, dx) = D(x∧ dx, dx) = [dx∧D(x, dx)]∨ [x∧
D(dx, dx)] = dx ∨ [x ∧ d2x] = (dx ∨ x) ∧ (dx ∨ d2x) = (dx ∨ x) ∧ dx = dx.

Corollary 3.10. Suppose L has 0 and D is a symmetric bi-derivation on L.
Then D(0, x) = 0 for all x ∈ L.

Definition 3.11. A symmetric map D : L × L → L is called a joini preserving
map if D(x ∨ y, z) = D(x, z) ∨D(y, z) for all x, y, z ∈ L.

Let us recall that in an ADL, it is not known whether ∨ is assosiative or not.
If ∨ is assosiative in an ADL, then it is called an assosiative ADL. Now we prove
the following.

Lemma 3.12. Let d be the trace of a join preserving symmetric bi-derivation D
on an associative ADL L. Then d(x∨ y) = dx∨D(x, y)∨ dy for all x, y ∈ L and
d is an isotone map on L.

Proof. Let x, y ∈ L. Then d(x∨y) = D(x∨y, x∨y) = D(x, x)∨D(x, y)∨D(y, x)∨
D(y, y) = dx ∨D(x, y) ∨ dy. If x ≤ y, then dy = d(x ∨ y) = dx ∨D(x, y) ∨ dy.
Thus dx ≤ dy. Hence d is an isotone map on L.

Lemma 3.13. Let d be the trace of a symmetric bi-derivation D on an associative
ADL L. Then d(x ∧ y) = (y ∧ dx) ∨D(x, y) ∨ (x ∧ dy) for all x, y ∈ L.

Proof. Let x, y ∈ L. Then d(x ∧ y) = D(x ∧ y, x ∧ y) = [y ∧D(x, x ∧ y)] ∨ [x ∧
D(y, x∧y)] = [y∧[[y∧D(x, x)]∨[x∧D(x, y)]]]∨[x∧[[y∧D(y, x)]∨[x∧D(y, y)]]] =
(y ∧ dx) ∨D(x, y) ∨D(y, x) ∨ (x ∧ dy) = (y ∧ dx) ∨D(x, y) ∨ (x ∧ dy).

Corollary 3.14. If d is the trace of a symmetric bi-derivation D on L, then
y ∧ dx ≤ d(x ∧ y) for all x, y ∈ L.

Corollary 3.15. Suppose m is a maximal element of L and d is the trace of a
symmetric bi-derivation on L. Then, for any x ∈ L, we have,

1. x ≥ dm implies dx ≥ dm,

2. x ≤ dm implies dx = x.
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Proof. (1) If x ≥ dm, then dm = (x∧dm) ≤ d(m∧x) by above Corollary. Thus
dx ≥ dm.

(2) If x ≤ dm, then x = x∧ dm ≤ d(m ∧ x) = dx. Hence dx = x∧ dx = x.

Theorem 3.16. Let d be the trace of a join preserving symmetric bi-derivation
D on an associative ADL L. Then Fixd(L) = {x ∈ L/dx = x} is a weak ideal
of L.

Proof. Let x ∈ L, y ∈ Fixd(L) and x ≤ y. Then, by Lemma 3.13, dx =
d(y ∧ x) = (x ∧ dy) ∨D(x, y) ∨ (y ∧ dx) = (x ∧ y) ∨D(x, y) ∨ (y ∧ x ∧ dx) = x ∨
D(x, y)∨(x∧dx) = x∨(x∧dx) = x. Thus x ∈ Fixd(L). Now, let x, y ∈ Fixd(L).
Then, by Lemma 3.12, d(x ∨ y) = dx ∨D(x, y) ∨ dy = x ∨D(x, y) ∨ y = x ∨ y.
Thus x ∨ y ∈ Fixd(L). Hence Fixd(L) is a weak ideal of L.

Theorem 3.17. Let m be a maximal element of L and d be the trace of a sym-
metric bi-derivation D on L. Then the following are equivalent.

1. d is an isotone map on L,

2. dx = x ∧ dm for all x ∈ L,

3. d(x ∧ y) = dx ∧ dy for all x, y ∈ L,

4. d(x ∨ y) = dx ∨ dy for all x, y ∈ L.

Proof. (1) ⇒ (2) : Let x ∈ L. By Corollary 3.14, x ∧ dm ≤ d(m ∧ x) = dx.
On the other hand, since d is isotone, d(x ∧m) ≤ dm. Thus, by Corollary 3.14,
m∧dx ≤ d(x∧m) ≤ dm. Now, dx = x∧dx = m∧x∧dx = x∧m∧dx ≤ x∧dm.
Hence dx = x ∧ dm.

(2) ⇒ (3) : Let x, y ∈ L. Then d(x∧y) = x∧y∧dm = x∧dm∧y∧dm = dx∧dy.

(2) ⇒ (4) : Let x, y ∈ L. Then d(x∨y) = (x∨y)∧dm = (x∧dm)∨ (y∧dm) =
dx ∨ dy.

(3) ⇒ (1) and (4) ⇒ (1) are trivial.

Theorem 3.18. Suppose L has a maximal element m. Then the trace of every
join preserving symmetric bi-derivation on L is a homomorphism.

Proof. Let d be the trace of a join preserving symmetric bi-derivation D on L
and x, y ∈ L with x ≤ y. Then d(x ∨ y) = D(x ∨ y, x ∨ y) = D(x, x ∨ y) ∨
D(y, x∨ y) = [D(x, x)∨D(x, y)]∨D(y, x∨ y) = [dx∨D(x, y)]∨D(y, x∨ y). Now,
dx ≤ dx ∨D(x, y) ≤ d(x ∨ y) = dy. Hence d is an isotone map on L. Therefore,
by Theorem 3.17, d is a homomorphism.

Finally we conclude this section with the following Theorem.

Theorem 3.19. Let D(L) be the set of all principal symmetric bi-derivations on
L. Then (D(L),∨,∧) is an ADL.
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Proof. For a, b, x, y ∈ L, define (Da ∨Db)(x, y) = Da(x, y) ∨Db(x, y) and (Da ∧
Db)(x, y) = Da(x, y) ∧Db(x, y).

Now, (Da ∨ Db)(x, y) = Da(x, y) ∨ Db(x, y) = (x ∧ y ∧ a) ∨ (x ∧ y ∧ b) =
(x∧y)∧(a∨b) = Da∨b(x, y). ThusDa∨Db = Da∨b ∈ D(L). Now (Da∧Db)(x, y) =
Da(x, y) ∧Db(x, y) = (x ∧ y ∧ a) ∧ (x ∧ y ∧ b) = (x ∧ y) ∧ (a ∧ b) = Da∧b(x, y).
Thus Da ∧ Db = Da∧b ∈ D(L). Therefore, D(L) is closed under ∨ and ∧ and
clearly it satisfies the properties of an ADL.
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