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Abstract

Let R be a commutative ring with non-zero identity and let Z(R) be
the set of all zero-divisors. The Cayley graph CAY(R) of R is the simple
undirected graph whose vertices are elements of R and two distinct vertices
x and y are joined by an edge if and only if x− y ∈ Z(R). In this paper, we
determine all isomorphism classes of finite commutative rings with identity
whose CAY(R) has genus one.
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1. Introduction

The idea to associate a graph to a ring first appeared in [10]. There are a
number of papers in which the graphs associated to rings were introduced (see
for example [5, 6, 15]). The question concerning planarity of the zero-divisor
graph was first posed in [6]. The more general problem, the one about the genus
of graphs attached to rings, has received considerable attention. There are many
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extensive studies of this topic (see [11, 19, 21, 14]). Toroidal zero-divisor graphs
were classified independently by Wang [19, 20] and Wickham [21]. Genus two
zero-divisor graphs of local rings are studied by Bloomfield and Wickham [12].
In [4], Anderson et al. introduced and studied the total graph of a commutative
ring R. The total graph of R, denoted by TΓ(R), is the undirected graph whose
vertices are the elements in R and two distinct vertices x and y are adjacent if
x + y ∈ Z(R). In [14], Maimani et al. determined a lower bound for the genus
of the total graph of a direct product of two fields. Also in that article, the
authors classified the finite commutative rings R for which TΓ(R) is a planar or
toroidal graph and then Tamizh Chelvam et al. characterized all commutative
rings whose total graph has genus two. The complement of the total graph is
denoted by TΓ(R). Note that two distinct vertices x and y in TΓ(R) are adjacent
if x + y ∈ Reg(R). In [3], Akhtar et al. defined the unitary cayley graph of R,
denoted by Cay(R,U(R)), as the graph whose vertex set is R and two distinct
vertices x and y are adjacent if x− y ∈ U(R). Later on, Ashrafi et al. [7] intro-
duced the unit graph of R, denoted by G(R) = Cay(R+, U(R)). Actually G(R)
is the graph obtained by setting all the elements of R to be the vertices and
defining distinct vertices x and y to be adjacent if x + y ∈ U(R). Akhtar et al.

determined all finite commutative rings whose unitary cayley graph has genus zero
([3], Theorem 8.2). Also Ashrafi et al. determined all finite commutative rings
whose unit graph has genus zero ([7], Theorem 5.14) and then Tamizh Chelvam
et al. characterized all commutative rings whose unit and unitary cayley graphs
have genus one ([18], Theorem 4.3). Further, in variation to the concept of zero-
divisor graph, Akbari et al. [1] introduced and studied the Cayley graph of a
commutative ring R with respect to its zero-divisors. The Cayley graph of R,
denoted by CAY(R), is the undirected graph whose vertices are elements of R
and two distinct vertices x and y are adjacent if and only if x− y ∈ Z(R). The
purpose of this article is to explore the question of embedding a CAY(R) on
surfaces of higher genus, the torus in particular. In this paper, we characterize
all finite commutative rings R whose CAY(R) has genus one.

A ring R is called local if it has a unique maximal ideal. Note that R× be the
set of all units in R and J(R) be the Jacobson radical of R. For any set X, let X∗

denote the set of non-zero elements of X. We denote the ring of integers modulo
n by Zn, the field with q elements by Fq and the set of all nilpotent elements in
R by N(R). For basic definitions on rings, one may refer [8].

By a graph G = (V,E), we mean an undirected simple graph with vertex set
V and edge set E. A graph in which each pair of distinct vertices is joined by
an edge is called a complete graph. We use Kn to denote the complete graph on
n vertices. An r-partite graph is one whose vertex set can be partitioned into r

subsets so that no edge has both ends in any one subset. A complete r-partite
graph is one in which each vertex is joined to every vertex that is not in the same
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subset. The complete bipartite graph (2-partite graph) with part sizes m and n

is denoted by Km,n. The union of two graphs G1 = (V1, E1) and G2 = (V2, E2) is
the graph G1∪G2 whose vertex set is V1∪V2 and whose edge set is E1∪E2. The
cartesian product of graphs G1 and G2 is the graph G1�G2 whose vertex set is
V (G1)×V (G2) and whose edge set is the set of all pairs (u1, v1)(u2, v2) such that
either u1u2 ∈ E(G1) and v1 = v2 or v1v2 ∈ E(G2) and u1 = u2. Let G and H

be two graphs with disjoint vertex sets V1, V2 and edge sets E1, E2 respectively.
Their join is denoted by G + H and it consists of G ∪ H and all edges joining
every vertex of V1 with every vertex of V2. The girth of a graph is the length
of the shortest cycle in the graph. A clique in a graph G is a subset of pairwise
adjacent vertices and the supremum of the size of cliques in G, denoted by ω(G),
is called the clique number of G. For general references on graph theory, we use
Chartrand [13].

Let Sk denote the sphere with k handles, where k is a nonnegative integer,
that is, Sk is an oriented surface of genus k. The genus of a graph G, denoted
γ(G), is the minimal integer n such that the graph can be embedded in Sn.
Intuitively, G is embedded in a surface if it can be drawn in the surface so that
its edges intersect only at their common vertices. A genus 0 graph is called a
planar graph and a genus 1 graph is called a toroidal graph. We note here that
if H is a subgraph of a graph G, then γ(H) ≤ γ(G). A minor of G is a graph
obtained from G by contracting edges in G or deleting edges and isolated vertices
in G. A classical theorem due to Wagner states that a graph G is planar if and
only if G does not have K5 or K3,3 as a minor. It is well known that if G′ is a
minor of G, then γ(G′) ≤ γ(G). For xy ∈ E(G), we denote the contracted edge
by the vertex [x, y]. Also if H is a subgraph of G and H ′ is a minor of H, then
we call H ′ as a minor subgraph of G. Further note that if H is a subgraph of a
graph G, then g(H) ≤ g(G). A result of Battle, Harary, Kodama, and Youngs
states that the genus of a graph is the sum of the genera of its blocks [9]. For
example, the graph G in Figure 1.1 has two blocks, both isomorphic to K3,3, and
so has genus 2 [21, C. Wickham]. For details on the notion of embedding a graph
in a surface, see [22].

Figure 1.1. Graph G with γ(G) = 2.
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Now we summarize certain results and bounds on the genus of a graph.

Lemma 1.1 [17]. γ(Kn) =
⌈

(n−3)(n−4)
12

⌉

if n ≥ 3. In particular, γ(Kn) = 1 if

n = 5, 6, 7.

Lemma 1.2 [17]. γ(Km,n) =
⌈

(m−2)(n−2)
4

⌉

if m,n ≥ 2. In particular, γ(K4,4) =

γ(K3,n) = 1 if n = 3, 4, 5, 6. Also γ(K5,4) = γ(K6,4) = γ(Km,4) = 2 if m =
7, 8, 9, 10.

Lemma 1.3 [22, Euler formula]. If G is a finite connected graph with n vertices,

m edges, and genus g, then n −m+ f = 2− 2γ, where f is the number of faces

created when G is minimally embedded on a surface of genus γ.

Lemma 1.4 [9]. If G is a connected graph having a subgraph G1 and a block

G2 such that G = G1 ∪ G2, and G1 ∩ G2 = v (a vertex of G), then γ(G) ≥
γ(G1) + γ(G2).

Lemma 1.5 [16]. For all integers n 6≡ 5 or 9 (mod 12) with n ≥ 2, γ(Kn�K2) =
⌈

(n−3)(n−2)
6

⌉

. If n = 5, then γ(Kn�K2) = 2.

Theorem 1.6 [2]. Let R be a ring which is not an integral domain. Then

ω(CAY(R)), χ(CAY(R)), ω(Z(CAY(R))), ω(Z(CAY(R))) and sup{|m| : m ∈
Max(R)} are all infinite or all finite and equal, where Z(CAY(R)) is the induced

subgraphs of CAY(R) on Z(R).

Theorem 1.7 [2]. Let R be a ring which is not an integral domain. Then CAY(R)
is planar if and only if R is one of the following rings:

Z2 × Z2, Z2 × Z3, Z4,
Z2[x]
〈x2〉

, Z9,
Z3[x]
〈x2〉

, Z8,
Z2[x]
〈x3〉

,
Z2[x,y]

〈x,y〉2
,

Z4[x]
〈2x,x2−2〉

,
Z4[x]
〈2x,x2〉

,
Z4[x]

〈x2+x+1〉
,

F4[x]
〈x2〉

.

2. Genus of CAY(R)

In this paper, we determine all isomorphism classes of finite commutative non-
local rings with identity whose CAY(R) has genus one.

Theorem 2.1. Let R = F1×· · ·×Fm be a finite commutative ring with identity,

where each Fj is a field and m ≥ 2. Then γ(CAY(R)) = 1 if and only if R is

isomorphic to one of the following rings: Z3 × Z3, Z2 × F4.

Proof. Assume that γ(CAY(R)) = 1. Suppose n ≥ 4, Then |m| ≥ 8 for all
m ∈ Max(R) and by Theorem 1.6, ω(CAY(R)) ≥ 8. Hence K8 is a subgraph of
CAY(R) and by Lemma 1.1, γ(K8) = 2, a contradiction. Hence n ≤ 3.
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Suppose n = 3. Then R = F1 × F2 × F3. Suppose that |Fi| ≥ 3 for some i.
Without loss of generality, we assume that |F1| ≥ 3. Let Ω = {x1, x2, . . . , x11}
where x1 = (0, 0, 0), x2 = (0, 1, 0), x3 = (1, 1, 0), x4 = (u, 1, 0), x5 = (u, 0, 0), x6 =
(1, 0, 0), x7 = (u, 1, 1), x8 = (u, 0, 1), x9 = (0, 0, 1), x10 = (1, 0, 1), x11 = (1, 1, 1).
Then the subgraph induced by Ω in CAY(R) contains G (see Figure 1.1) as a
subgraph. Since γ(G) = 2, we get γ(CAY(R)) > 1, a contradiction. Hence
F1 = F2 = F3

∼= Z2 and so R ∼= Z2 × Z2 × Z2. Note that CAY(Z2 × Z2 × Z2)
is a subgraph of CAY(R). Since γ(CAY(Z2 × Z2 × Z2)) > 1, γ(CAY(R)) > 1,
a contradiction. Hence n = 2 and so R = F1 × F2. By definition of Cayley
graphs, CAY(R) = K|F1|�K|F2|. If |F1| ≥ 5, then K5�K2 is a subgraph of
CAY(R). By Lemma 1.5, γ(K5�K2) = 2 and so γ(CAY(R)) > 1, a contradiction.
Hence |Fi| < 5 for i = 1, 2. Since CAY(R) is non-planar and by Theorem 1.7,
R ≇ Z2 × Z2 and Z2 × Z3. Hence R is isomorphic to one of the following rings:

Z2 × F4,Z3 × Z3,Z3 × F4 or F4 × F4.

(1, 0) (0, 0) (0, 1) (1, 1)

(u2, 0) (u1, 0) (u2, 1) (u1, 0)

[(0, 2), (1, 2), (u2, 2), (u1, 2)]

Figure 1.2. H = (K4 ∪K4) +K1.

Figure 1.3. H1

Suppose R ∼= Z3×F4. Then CAY(R) ∼= K4�K3 and so H = (K4 ∪K4)+K1

(see Figure 1.2) is a minor subgraph of CAY(Z3×F4). By Lemma 1.4, γ(H) ≥ 2.
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This implies that γ(CAY(R)) > 1, a contradiction. Hence R ≇ Z3 × F4.
Suppose R ∼= F4×F4. Then CAY(R) ∼= K4�K4 and so H1 (see Figure 1.3) is

a subgraph of CAY(F4×F4) and H2 = (K4�K2)∪ (K4�K2) is a subgraph of H1.
By Lemma 1.5, γ(H2) = 2 which gives γ(H1) ≥ 1 and hence γ(CAY(F4×F4)) > 1,
a contradiction. Hence R ≇ F4×F4. Hence R is isomorphic to Z3×Z3 or Z2×F4.

(u1, 0)

(u3, 0)

(u1, 1)

(u2, 0) (u2, 0) (u3, 1)

(0, 0) (0, 1)

Figure 1.4. Embedding of CAY(Z2 × F4) ∼= CAY(F4 × Z2).

(0, 1)

(0, 1)

Figure 1.5. Embedding of CAY(Z3 × Z3).

(1, 2)

(2, 2)

(1, 1)

(0, 0) (2, 0)

(0, 2) (0, 2)

(2, 1)

(2, 1)

Converse follows from Figures 1.4 and 1.5.

Lemma 2.2. Let R = Z4 × Z4. Then γ(CAY(Z4 × Z4)) > 1.

Proof. Clearly (K4�K2)∪(K4�K2) is a subgraph of CAY(Z4×Z4). By Lemma
1.5, γ((K4�K2) ∪ (K4�K2)) = 2 and hence γ(CAY(Z4 × Z4)) > 1.

Theorem 2.3. Let R = R1×· · ·×Rn be a finite commutative ring with identity,

where each (Ri,mi) is a local ring with mi 6= {0} and n ≥ 2. Then γ(CAY(R))≥ 2.

Proof. Since mi 6= {0} for all i, |mi| ≥ 2, |R×
i | ≥ 2 for all i. This implies that

CAY(Z4 × Z4) is a subgraph of CAY(R) and by Lemma 2.2 γ(CAY(R)) ≥ 2.
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Theorem 2.4. Let R = R1 × · · · × Rn × F1 × · · · × Fm be a finite commutative

ring with identity, where each (Ri,mi) is a local ring and Fj is a field, m,n ≥ 1
and m + n ≥ 2. Then γ(CAY(R)) = 1 if and only if R is isomorphic to one of

the following rings: Z2 × Z4, Z2 ×
Z2[x]
〈x2〉 .

Proof. Assume that γ(CAY(R)) = 1. Then by Theorem 2.3, n = 1 and so
|R1| ≥ 4. Suppose m ≥ 2. By assumption that R1 has at least four distinct ele-
ments, say 0, 1, r1, r2. Let Ω = {x1, x2, . . . , x8} where x1 = (0, 0, 0, . . . , 0), x2 =
(1, 0, 0, . . . , 0), x3 = (r1, 0, . . . , 0), x4 = (r2, 0, . . . , 0), x5 = (0, 1, 0, 0, . . . , 0), x6 =
(1, 1, 0, 0, . . . , 0), x7 = (r1, 1, 0, . . . , 0), x8 = (r2, 1, 0, . . . , 0). Then the graph in-
duced by Ω in CAY(R) contains K8 as a subgraph and so by Lemma 1.1,
γ(CAY(R)) > 1, a contradiction. Hence m = 1 and so R = R1 × F1.

If |m1| ≥ 3, then |R1| ≥ 8. Let a1, . . . , a8 be distinct elements of R1. Then
(a1, 0), . . . , (a8, 0) induce a copy of K9 and by Lemma 1.1, γ(CAY(R)) > 1, a

contradiction. Hence |m1| = 2 and so R1
∼= Z4, or

Z2[x]
〈x2〉

.

Now R = Z4 × F1, or
Z2[x]
〈x2〉

× F1. Suppose |F1| ≥ 4. Then M1 = 〈2〉 × F1

and M2 = Z4 × 〈0〉 are maximal ideals in R and by Theorem 1.6, ω(CAY(R)) =
|M1| ≥ 8 which gives K8 is subgraph of CAY(R). By Lemma 1.1, γ(K8) > 1 and
so γ(CAY(R)) > 1, a contradiction. Therefore |F1| ≤ 3 and so F1

∼= Z2 or Z3.
Hence R is isomorphic to one of the following rings:

Z2 × Z4, Z2 ×
Z2[x]
〈x2〉 , Z3 × Z4, Z3 ×

Z2[x]
〈x2〉 .

(1, 0)

(3, 0)

(1, 1)

(2, 0) (2, 1) (3, 1)

(0, 0) (0, 1)

Figure 1.6. Embedding of CAY(Z2 × Z4).

Suppose R ∼= Z3 × Z4 or Z3 × Z2[x]
〈x2〉

. Then CAY(R) ∼= K4�K3 and so

(K4 ∪ K4) + K1 is a minor subgraph of CAY(F4 × Z3) and by Lemma 1.4,
γ((K4∪K4)+K1) ≥ 2, γ(CAY(R)) > 1, a contradiction. R is isomorphic to one of
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the following rings:

Z2 × Z4, Z2 ×
Z2[x]
〈x2〉

.

Converse follows from Figure 1.6
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