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Abstract

Let L be a lattice with 1. In this paper we study the concept of 2-ab-
sorbing filter which is a generalization of prime filter. A proper filter F
of L is called a 2-absorbing filter (resp. a weakly 2-absorbing) if whenever
x1VaaVag € F (resp. 1 # x1 VasVas € F), for x1,x9,23 € L, then there
are 2 of the x;’s whose join is in F. A basic number of results concerning
2-absorbing filters and weakly of 2-absorbing filters are given in the case
when L is distributive.

Keywords: lattice, filter, 2-absorbing filter, weakly 2-absorbing filter.
2010 Mathematics Subject Classification: 16Y60.

1. INTRODUCTION

Recently, the study of the 2-absorbing property in the rings, modules, and semi-
groups has become quite popular. In many ways this program began with the
paper in 2007, by Ayman Badawi, [2]. He introduced, for a commutative ring R,
the notion of 2-absorbing ideals of R. A proper ideal I of R is called a 2-absorbing
ideal if whenever x1xox3 € I for x1,x2,x3 € R, then there are 2 of the x;’s whose
product is in I. There have been several generalizations and extensions of this
concept in the literature (see e.g. [1, 3, 5], and [10]).

In this paper, we are interested in investigating 2-absorbing filters to use
other notions of 2-absorbing and associate which exist in the literature as laid
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forth in [2]. Now we summarize the content of the paper. Among many results
in this paper, in Section 2, it is shown (Theorem 2.2) that the only weakly 2-
absorbing filters of L that are not 2-absorbing can only be {1} (so if L is an
L-domain, then a filter is 2-absorbing if and only if it is weakly 2-absorbing), and
F' is a 2-absorbing filter of L if and only if whenever Fy V Fb V F3 C F for some
filters Fy, Fy, F5 of L, then F} V F, C F or F1V F3 C F or F5V F3 C F (Theorem
2.5). It is shown (Theorem 2.8) that If F' is a 2-absorbing filter of L, then either
F' is a prime filter or FF = pNq = pV q, where p, q are the only distinct filters
of L that are minimal over F. Let G be a 2-absorbing subfilter of a filter F' of
L. Tt is shown (Theorem 2.14 and Theorem 2.15) that either Ass; (G :p F) is
a totally ordered set or Assp(G :r F) is the union of two totally ordered set.
Payrovi and Babaei [10], using the technique of efficient covering of submodules
(see [8]) proved the avoidance theorem for 2-absorbing submodules. They proved
that if a submodule N of a module is contained in the union of a finite number of
2-absorbing submodules with some conditions, then N must be contained in one
of them. Section 3 is devoted to prove that the 2-absorbing avoidance theorem.
More precisely, let F, Fy, Fy, ..., F, (n > 2) be filters of L such that at most two
of Fi,F,...,F, are not 2-absorbing. If F C U |F; and F; ¢ (Fj :1, x) for all
x € L\ F; whenever i # j, then F' C Fj for some ¢ with 1 < i <n (Theorem 3.4).

Let us briefly review some definitions and tools that will be used later. A
lattice is a poset (L, <) in which every couple elements z,y has a g.l.b. (called
the meet of x and y, and written = A y) and a Lu.b. (called the join of = and
y, and written z V y). A lattice L is complete when each of its subsets X has
a Lub. and a glb. in L. Setting X = L, we see that any nonvoid complete
lattice contains a least element 0 and greatest element 1 (in this case, we say
that L is a lattice with 0 and 1). A lattice L is called a distributive lattice if
(avb)ANe=(aNc)V (bAc) for all a,b,c in L (equivalently, L is distributive if
(anb)Ve=(aVec)A(bVe)forall a,b,cin L). A non-empty subset F of a lattice
L is called a filter, if fora € F, b€ L, a < b implies b € F, and x Ay € F for all
xz,y € F (soif L is a lattice with 1, then 1 € F and {1} is a filter of L). A lattice
L with 1 is called L-domain if aVb=1 (a,b € L), thena=1or b =1. A proper
filter F' of L is called prime if x Vy € F, then x € F' or y € F. Let L be a lattice
with 0 and 1. If a € L, then a complement of a in L is an element b € L such
that a Ab =0 and a Vb = 1. The lattice L is complemented if every element of
L has a complement in L [4]. First we need the following well-known lemma.

Lemma 1.1. Let L be a lattice.

(i) A non-empty subset F' of L is a filter of L if and only if xV z € F and
x ANy € F forallz,y € F,z€ L (so0 € F if and only if F = L). Moreover,
sincex =xzV (xANy) andy=yV (xAy), F is a filter and x Ny € F gives
z,y € F for all z,y € L.
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(i) If F1,...,E, are filters of L and a € L, then VI | F; = {V}' ja; : a; € F;}
and aV F; ={aV a; : a; € F;} are filters of L.

(i) If D is an arbitrary non-empty subset of L, then the set T'(D) consisting of
all elements of L of the form (a1 Nag A -+ Nayp) V x (with a; € D for all
1 <i<mnandx € L) is a filter of L containing D (so if D = {a}, then
T({a})=T(a)={aVt:teL}).

(iv) If L is distributive, F,G are filters of L, and x € L, then (G :p F) = {z €
L:zVFCG}and (F:p{z})=(F:rx)={a€L:aVzxecF} are filters
of L.

(v) If {F;}ien is a chain of filters of L, then U;caF; is a filter of L.

2. SOME BASIC PROPERTIES OF 2-ABSORBING FILTERS

In this section, we collect some properties concerning 2-absorbing filters of a
lattice L. Throughout this paper, we shall assume unless otherwise stated, that
L is a distributive lattice with 1 and O.

Definition 2.1. A proper Filter F' of L is called a 2-absorbing (resp. a weakly
2-absorbing) filter if whenever a,b,c € L and aVbVe € F (resp. 1 # aVbVc € F),
thenavbe ForavVece ForbVceceF.

Clearly, every 2-absorbing filter of L is a weakly 2-absorbing. However, since
{1} is always weakly 2-absorbing by definition”, a weakly 2-absorbing filter need
not be 2-absorbing.

Theorem 2.2. If F' is a weakly 2-absorbing of L that is not 2-absorbing, then
F = {1}. In particular, the only weakly 2-absorbing filters of L that are not
2-absorbing can only be {1}.

Proof. We suppose that F' # {1}, and look for a contradiction. Let xVyVz € F.
IfxVyVz # 1, then F weakly 2-absorbing gives xVy € ForyVz € ForaVz € F}
so F'is 2-absorbing which is a contradiction. So assume that x VyV z = 1. Since
F £ {1}, there exists be F with b # 1. Then 1 £b=bA1=bA(xVyVz) =
(bA(xVY)V((bA(zV2)V((bA(yVz)) € F,s0bA(zVy) € ForbA(zVz)eF
or bA(yVvz)€F. ThuszVy e ForxzVze ForyVzeF by Lemma 1.1
(i), and so F is 2-absorbing, a contradiction. Thus F' = {1}. The ”in particular”
statement is clear. [

Remark 2.3. (i) If F, Fy, Fy are filters of L with F' C F} U Fy, then we show
that either FF C F} or F' C Fy. Suppose that F' C F} U F5 such that F Q Fi; we
show that F' C F,. Let a € F be such that a ¢ Fy. Let x € F N Fy. Then F is
a filter gives a Ax € F C F} U Fy; so a,xz € Fy. Therefore F N F; C F,. Thus
F:Fﬂ(FlLJFQ) = (FﬂFl)U(FﬂFQ) C F.
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(ii) Assume that m is a maximal filter of a lattice L with 0 and let a Vb € m
with a,b ¢ m for some a,b € L. Then T(m U {a}) = T(m U {b}) = L since m
is maximal. An inspection will show that 0 € L implies that L = F' which is a
contradiction. Thus every maximal filter of L is prime [6].

(iii) If F is a filter of a L-domain L, then F is 2-absorbing if and only if it is
weakly 2-absorbing.

Proposition 2.4. Let Fy, F5, F be filters of L such that F is 2-absorbing.
(i) Ifa,b€ L and (aVb)VFy CF, thenaVbe F oraVFy CF orbVF, CF.
(ii)) Ifa € L and aV (F1VFy) C F, thenaVF, C F oraVF, CF or F{VF, C F.

Proof. (i) Let aVb ¢ F and aV Fy ¢ F. Then there is an element ¢ € I}
such that aVe ¢ F. Now aVbVe € F gives bV ¢ € F since F is 2-absorbing.
We have to show that bV F; C F. Let d be an arbitrary element of F}. Then
(dANc)V(aVvd) = (aVvbVe)A(aVvbVd) € F since F is a filter; so either
(dhNc)Va=(aVe)A(avd) € For(dhe)Vb= (bVe)A(bVvd) € F. If
(dANc)Va e F, then aVe € F by Lemma 1.1 (i) that is a contradiction. If
(dNhc)Vbe F,thenbvde F. ThusbVv F; C F.

(i) Let a V Fy € F and aV F» € F». We have to show that Fy V F, C F.
Suppose that x € F} and y € Fy. By hypothesis, there exist z € F; \ F' and
we Fy\ FsuchthataVz¢ FandaVw ¢ F. AsaVzVweaV (F1VFy) CF,
we get zVw € F. Now zAx € Fy and y Aw € Fy gives aV (z Az) V (y Aw) € F;
so (zAz)V (y ANw) € F since F is 2-absorbing (see Lemma 1.1 (i)). It follows
that (zAz)Vy € F; hence zVy € F by Lemma 1.1 (i). Therefore, F} V Fy C F.

|
Theorem 2.5. Let F be a proper filter of L. The following statements are
equivalent:

(i) F is a 2-absorbing filter of L.
(ii) If Fy V Fy V F3 C F for some filters Fy, Fy, F3 of L, then Fy V F, C F or
FivF;CF orFyVF3CF.

Proof. (i)=(ii) Suppose that F} V Fy V F3 C F' for some filters Fy, Fy, F3 of L
and I}V Fy Q F. Then by Proposition 2.4 for all a € F3 either a V F} C F or
aVFy, CF. IfavF) C F, forall a € F3 we are done. Similarly, if aV Fy C F, for all
a € F3 we are done. Assume that a,b € L are such that aV I} Q F and bV Fy SZ F.
It follows that bV F; C F and aV F5 C F. Since (a Ab) V (F1 V Fy) C F, we get
either (a AD)V F; C F or (aAb)V Fy C F by Proposition 2.4. If (aAb)V F; C F,
then zV (aAb) = (2Va)A(zVb) € F for all z € Fy which implies that aVz € F by
Lemma 1.1 (i); so aV F; C F which is a contradiction. Similarly, if (aAb)VF, C F,
we get a contradiction. Thus either Fy V F3 C F or Fy V F3 C F.

(ii)=(i) Let a,b,c € L with aVbVe € F. Then by (ii), T(a)VT(b)VT(c) C F
gives aVb € T(a)VT(b) C ForaVee T(a)VT(c) C ForbVeeT(b)VT(c) C F.
Thus F' is 2-absorbing. [ |
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We say that a subset D C L is Join closed if 0 € D and a Vb € D for all
a,b € D. Clearly, if p is a prime filter of L, then L\ p is a join closed subset of
L. The set of all prime filters of L is denoted by Spec(L). If F' is a filter of L,
then we set var(F') = {p €Spec (L): F C p}, and the set of all prime filters of L
that are minimal over F' is denoted by min(F).

Lemma 2.6. (i) Assume that F is a filter of L and let S be a join closed set
of L such that SNF = (. Then the set ., ={K : F C K, KNS =0} of
filters under the relation of inclusion has at least one mazximal element, and
any such maximal element of Y  is a prime filter.

(ii) If F is a filter of L, then F' = Npcyar(r)P-

(iii) Let F, p be filters of L with p prime and F' C p. Then there exists a minimal
prime filter q of F with q C p.

(iv) If F is a filter of L, then F = Npemin(r)P-

Proof. (i) Since F € >, >, # 0. Of course, the relation of inclusion, C, is
a partial order on > . Now ) is easily seen to be inductive under inclusion,
so by Zorn’s Lemma > has a mximal element q with qNS = @ and F C q.
It suffices to show that q is prime. Now let z,2’ € L\ q; we must show that
x V' ¢ q. Since x ¢ q, we have F € q G T(qU {z}). By the maximality of q,
we have T (qU {z}) NS # 0, and so there exist s € S, ¢ € L and ¢ € q such that
s = (qAz)Ve. Similarly, s = (¢ Ax’) vV for some s’ € S, ¢’ € qand ¢ € L. Set
z=cVd. Then sVs =(qAx)V (N )Vz=[(ghz)VZIAN[(gAx) V]|V 2z=
[(xVZ YNV A[(ghz)V|Vz As (ghz)V{, gV €q,SNq=0 and q
is a filter, we have x V 2’ ¢ q. Thus q is a prime filter.

(ii) It is enough to show that Npecyar(myP € F. Let a € Npcyar(ryp- We
suppose that a ¢ F', and look for a contradiction. Set S = {0,a}. Then S is a
join closed set of L with SN F = (). Hence, by (i), there exists a prime filter q of
L such that F C q and qN S = (). Tt follows that q € var(F), so that a € SN q,
a contradiction.

(iii) Set A = {q € Spec(L) : F C q C p}. Then p € A, and so A # (. By
an argument like that in (i) (take S = L\ p), the set A of prime filters of L has
a minimal member with respect to inclusion (by partially ordering A by reverse
inclusion and using Zorn’s Lemma) which is prime. (iv) follows from (iii) (since
every prime filter in var(F') contains a minimal prime filter of F'). ]

Compare the next Proposition with Theorem 2.1, p. 2 in [7].

Proposition 2.7. Let F' C p be filters of L, where p is a prime filter. Then the
following conditions are equivalent:

(i) p is a minimal prime filter of F.
(ii) L\ p is a join closed set that is mazimal with (L \ p) N F = (.
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(i) For each x € p, there is ay ¢ p such that yV x € F.

Proof. (i)=(ii) Since (L \ p) N F = 0, the set A of all join closed sets, say H,
with H N F = () is not empty. Of course, the relation of inclusion, C, is a partial
order on A. Now A is easily seen to be inductive under inclusion, so by Zorn’s
Lemma A has a mximal element S. Again by Zorn’s Lemma, there is a filter q
of L containing F' that is maximal with respect to being disjoint from S which
is prime by Lemma 2.6 (i). Note that q is disjoint from L\ p which implies that
p=gq. Thus S=L\p.

(ii)=(iii) Assume that 1 # = € p and let S = {y Vv (/\3‘:133) cy € L\ p,i=
0,1,...} (Note that /\9:195 is interpreted as 0, and clearly, A;le = z). Then S
is a join closed set that properly contains L \ p; so F'N S # () by maximality of
L\ p. Thus there exists y € L\ p such that x Vy € F.

(iii)=(i) Let q be a prime filter such that /' G q C p. If p # q, then there
is an element = € p with x ¢ q; soxVy € F ;Cé q for some y ¢ p which is a
contradiction. Therefore p = q. [ |

The following theorem is a lattice counterpart of Theorem 2.4 in [2] describing
the structure of 2-absorbing ideals.

Theorem 2.8. (i) If F is a 2-absorbing filter of L, then there exist at most two
prime filters of L that are minimal over F.

(ii) If F is a 2-absorbing filter of L, then either F is a prime filter of L or
F =pnNnq=pVaq, where p, q are the only distinct filters of L that are
manimal over F.

(iii) If either F is a prime filter of L or F is an intersection of two prime filter
of L, then F is 2-absorbing.

Proof. (i) Assume that that A is the set of prime filters of L which are minimal
over I' and let A has at least three elements. Let p,q € A with p # q. Then
there exist z1,z9 € L such that 27 € p\ q and 29 € q \ p. First we show
that x1 V 29 € F. By Proposition 2.7, there exist a ¢ p and b ¢ q such that
aVxy,bVxze € F. Since z1,22 ¢ pNqand aVxy,bVre € F C pNgq, we conclude
that a € q\pand b € p\ q; so a,b ¢ pNq. Since aVx1,bV x5 € F, we have
(@ND)V (x1 V) =[(aVz)Va A[(bV x2)Vx] € F since F is a filter. By
Lemma 1.1 (i), aAb ¢ pand aAb ¢ q. Since (aAb) V1 ¢ qand (aAb) Vs ¢ p,
F' is a 2-absorbing filter gives z1 V 2o € F. Now suppose there is a r € A such
that r is neither p nor q. Then we can choose z1 € p\ (qUr), 20 €q\ (pUr),
and z3 € r\ (pUq). By an argument like that as above, we have z; V 29 € F.
Since FF C pNgNr and z; V2o € F, we get either z1 € r or 2o € r that is a
contradiction, as required.
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(ii) By (i) and Lemma 2.6 (iv), we conclude that either F' is a prime filter or
F = pnNaq, where p, q are the only distinct filters of L that are minimal over F.
An inspection will show that pNngq=pVaq.

(iii) The first assertion is clear. Let p and p be two prime filters of L; we
have to show that F' = pNq is a 2-absorbing filter of L. Let a,b,c € L such that
aVbVcepngq. ThereforeavbVvcepandaVbVeeq. Ifaepnaq, then
avVbepnq. Ifaepandbe< p, then aVbe pnNq since p and q are filters of
L. The other cases we do the same. [ |

The collection of ideals of Z, the ring of integers, form a lattice under set
inclusion which we shall denote by L(Z) with respect to the following definitions:
mZ N nZ = (m,n)Z and mZ AnZ = [m,n|Z for all ideals mZ and nZ of Z,
where (m,n) and [m,n| are greatest common divisor and least common multiple
of m,n, respectively. Note that L(Z) is a distributive complete lattice with least
element the zero ideal and the greatest element Z.

Theorem 2.9. The following hold:

(i) If p is a prime number and k is a positive integer, then the set F = {mZ €
L(Z) : p* ¥ m} is a prime filter of L(Z).
(i1) L(Z) \ {0} is the only mazimal filter of L(Z).
(iii) Ewvery prime filter of L(Z) is of the form either F. for some prime number
p and positive integer k or L(Z) \ {0}.
(iv) Every2-absorbing filter of L(Z) is of the form L(Z)\{0} or Fym or FymNEyn
for some positive integers m,n and prime numbers p,q with p # q.

Proof. (i) Let mZ,nZ € Fy and sZ € L(Z). Now p* f m and p* { n gives
Pkt [m,n]; so [m,n]Z € Fyr. As Pt m, we get p¥ { (m,s) which implies that
(m,s)Z € Fy. Thus Fy is a filter of L(Z). Let mZ VnZ = (m,n)Z € Fy with
mZ ¢ Fy. Then p* { (m,n) and p* | m gives p* { n; so nZ € Fi. Thus F is
prime.

(ii) is clear.

(iii) Let F be a prime filter of L(Z). First we show that there exist at
most one prime number p and positive integer k such that for every mZ € F
implies that p* { m. Otherwise, there are distinct prime numbers p, ¢ and positive
integers k, s such that for every mZ € F implies that p* fm and ¢° t m. Then
pfZ N ¢°Z = Z € F gives either p*Z € F or ¢°Z € F which is a contradiction.
If there exists p* such that for every mZ € F implies that p* { m. Let t be least
positive integer such that for every mZ € F implies that p' t m; we show that
F = F,:. It suffices to show that for every mZ with pttm, mZ € F. There are
distinct prime numbers ¢, ..., q, such that m = plq‘f1 <o-qon, where 0 < [ < ¢,
p # q; with 1 < j < n, and s; is a positive integer for 1 < j < n. Asl <,
there exist m’Z € F such that p' | m’, so m'Z C p!Z. Thus p'Z € F since F is
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a filter. Moreover, p'Z V ¢;'Z = Z € F gives ¢;'Z € F with 1 <i < n. Thus
mZ = pZ A (A_1¢;"'Z) € F. Suppose that there is not such p¥; we show that
F = L(Z)\{0}. Let m be a non-zero integer. It is enough to show that mZ € F.
We can write m = pi* ---p5, where p; # p; with ¢ # j and for each 4, s; is a
positive integer. Then for each i, there exists m;Z € F such that p;* | m;, so
m;Z C p;'Z € F since F is a filter. Thus mZ = Al pi*Z € F.

(iv) This follows from (i), (ii), (iii), and Theorem 2.8. |

Remark 2.10 shows that prime filters which are maximals are abundant.

Remark 2.10. (i) Assume that F' is a prime filter of a complemented lattice L
with 0 and 1 and let F’ be a filter of L such that F ;Cé F' C L. Then there exist
x € F'\ Fand y € L such that t Ay =0and xVy =1 € F. Then F is prime
givesye FCF' andsox Ay =0 € F’; hence F/ = L. Thus F is maximal.

(ii) Let D = {1,...,n}. Then the set L = {X : X C D} forms a comple-
mented distributive lattice under set inclusion with greatest element D and least
element () (note that if z,y € L, then xVy =2z Uy and x Ay = x Ny). Then
every prime filter of L is a maximal filter by (i).

Corollary 2.11. The following statements are equivalent:

(i) Ewvery prime filter of L is mazimal;
(ii) If F is a 2-absorbing filter of L, then either F' is mazimal or F = p1 Npa =
P1 V p2, where p1,p2 are some maximal filters of L.

Proof. (i)=(ii) follows from Theorem 2.8. To see that (ii)=(i), assume that F is
a prime filter of L. By (ii), if F' is maximal, then we are done. So we assume that
F = p1 V p2, where p1, p2 are some maximal filters of L. Then either p; C F
or p2 C F; hence either F' = p; or F' = py (otherwise, there exist a € p1 \ F’
and b € pg \ F with a Vb ¢ F since F is a prime filter, and this contradicts the
statements of (ii)). ]

Proposition 2.12. If G is a 2-absorbing subfilter of a filter F' of L, then (G :, F)
s a 2-absorbing filter of L.

Proof. Let a,b,c € LyaVvbVce (G:p F),aVe ¢ (G: F),andbVc ¢ (G F).
We must to show that a Vb € (G :p F). There exist z1,29 € L such that
aVeVay,bVeVay ¢ Gbut (aVb)V[(eVa)A(eVar)] = (aVbVe)V(z1Axe) € G
since G is a filter. Now G is a 2-absorbing filter gives a V [(¢c V 1) A (¢ V 22)] =
(aVeVzi)A(aVeVza) € Gor bV |[(eVay)A(cVar) = (bVeVa)A(bVeVag) € Gor
aVbe G. Ifavb € G, we are done. If aV[(cVz1)A(cVzs)] € G, then by Lemma
1.1 (i), aVeVay € G which is a contradiction. Similarly, bV [(cVz1)A(cVaxe)] ¢ G.
This completes the proof. [ |
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Proposition 2.13. If G is a 2-absorbing subfilter of a filter F' of L, then (G :, F)
is a prime filter if and only if (G :p x) is a prime filter for all z € F \ G.

Proof. Let a,b e L,z € F\G,and aVb € (G :p x). ThenaVbVzx e G gives
aVe € Gorbvz € GoraVb € G. Ifave € Gor bve € G we are done. If aVb € G,
then (a Vb) VvV F C G since G is a filter; so a Vb € (G :1 F). By assumption,
a€(G:p F)orbe (G: F); hencea e (G:pz)orbe (G:px). Thus (G 1 x)
is a prime filter of L. Conversely, suppose that aVb € (G :1, F) for some a,b € L
with a,b ¢ (G :, F). It follows that aVx ¢ G and bVy ¢ G for some z,y € F\G
(sox Ay ¢ G by Lemma 1.1 (i)). AsaVbV (zAy)=(aVbVz)A(aVbVy) € G,
we have a Vb € (G : (x Ay)); hence aV (z Ay) = (aVa)A(aVy) €Gor
bV(xAy)=(bVa)A(bVy) € G since (G :1 (xAy)) is a prime filter which is a
contradiction. Thus a € (G : F) or b € (G :1 F) which implies that (G :1 F) is
a prime filter of L. [ |

Let G be a proper subfilter of a filter F' of L. We say that p € Spec(L) is an
associated prime filter of F' with respect to G if there is an element z € F'\ G

such that (G :1, ) = p. The set of associated prime filters of F' with respect to
G is denoted Assr (G :1 F).

Compare the next Theorem with Theorem 2.6 in [10].

Theorem 2.14. Let G be a 2-absorbing subfilter of a filter F of L. If (G :p F)
is a prime filter of L, then Assp(G :1, F') is a totally ordered set.

Proof. Let p,q € Assy(G : F). Then there are elements x,y € F'\ G such that
(G :p z) = p and (G :, y) = q. Suppose that g € p. We have to show that
(G:px) C(G:rLy). Let z€ (G:p x) (so zVax e G). There exists w € (G :1 y)
such that w ¢ (G L x); sowVy € Gand wVa ¢ G. Clearly, xt ANy ¢ G.
Ifzv(xAy) =(zVz)A(z2Vy) € G, then zVy € G by Lemma 1.1 (i) and
so z € (G :p y). Now assume that zV (z Ay) ¢ G, so (zVw)V(zAy) =
(zVwVz)A(zVwVy) € G since G is a filter; hence z Vw € (G ;1 (x Ay)).
By Proposition 2.13 and Lemma 1.1 (i), (G :1 (z Ay)) is a prime filter gives
zV(zAy)=(Ve)A(zVy) eGandwV (zAy) = (wVz)A(wVy) ¢ G. Thus
zVyeGandsoze (G:Ly). ]

Compare the next Theorem with Theorem 2.7 in [10].

Theorem 2.15. Let G be a 2-absorbing subfilter of a filter F' of L such that
(G : F) =pnq for some prime filters p,q of L.
(i) Ifr € F\G and p C (G : =), then (G : z) is a prime filter of L.
(ii)) Ifz,y € F\G and p C (G :, ) N (G :1 y), then either (G :f, z) C (G :L y)
or (G :r y) C (G :1 ). Therefore Assp(G :1 F) is the union of two totally
ordered sets.



166 S.E. ATANI AND M.S.S. BAZARI

Proof. (i) Let a,b€ Land aVbe€ (G :px). ThenaVbVz e GgivesaVa el
orbVzeGoravVbeG. Ifave e GorbVae € G we are done. If aVb € G,
then (a Vb) V F C G since G is a filter; so a Vb € (G ;1 F) C p. thus either
aepC (G:ipx)orbepC (G:p x).

(ii) Suppose that (G : y) € (G : ). We have to show that (G :1, z) C
(G:ry). Let z € (G:L x) (so zVz € G). There exists w € (G :, y) such that
wé¢ (G:px);sowVyeGandwVa ¢G. Clearly, t Ay ¢ G. If zV (z ANy) =
(zVx)A(zVy) € G, then zVy € G by Lemma 1.1 (i) and so z € (G :1 y). Now
assume that zV (z Ay) ¢ G,so (zVw)V (zAy)=(:zVwVz)AN(zVwVy) €EG
since G is a filter; hence z Vw € G since wV (x Ay) = (wV ) A(wVy) ¢ G and
zV(zrAy) ¢ G. Thus zVw € (G: F)Cp. fwepC (G:px),thenwVeeG
that is a contradiction; hence z € p C (G 11, y). |

Theorem 2.16. If G is a 2-absorbing subfilter of a filter F' of L, then (G :, F)
is a prime filter if and only if (G :, H) is a prime filter of L for all subfilters H
of F' containing G.

Proof. By Proposition 2.13 and Theorem 2.14, the set {(G : z) : x € H\ G} is
a totally ordered set of prime filters of L; so (G :f, H) = Ngem (G i x) is a prime
filter of L. Conversely, suppose that Vy € (G :f, F) with z,y ¢ (G :1 F'). Then
there exist a,b € F\ G (so aAb ¢ G) such that xVa,yVb¢ G,soxVy € (G
(anb)). Now (G :1, (aAD)) is a prime filter gives xV (aAb) = (zVa)A(xVb) € G
oryV(aAb)=(yVa)A(yVb) e G which is a contradiction. Thus (G :1 F) is
prime. ]

3. 2-ABSORBING AVOIDANCE THEOREM

Let F, Fy,Fy,...,F, be filters of L. We call a covering F' C U} | F; efficient if
no F; is superfluous. Analogously, we say that F' = U} F; is an efficient union
if none of the F; may be excluded. Any cover or union consisting of filters of L
can be reduced to an efficient one, called an efficient reduction, by deleting any
unnecessary terms.

Theorem 3.1. If G is a 2-absorbing subfilter of a filter F' of L and x € F \ G,
then either (G 1, ) is a prime filter of L or there exists an element a € L such
that (G :, aV x) is a prime filter of L.

Proof. By Proposition 2.12 and Theorem 2.8 (iii), (G :;, F') is a prime filter of
L or (G :1 F) is an intersection of two prime filter of L. We split the proof into
two cases:

Case 1. (G :, F) = p, where p is a prime filter of L. We show that
(G :1 x) is a prime filter of L. Clearly, p C G :; x). Suppose that a,b € L and
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aVbe G:pz). ThusavbVe e G;henceavee GorbVez e GoraVbeQ .
If either a Ve € Gor bV x € G, we are done. So we may assume that a Vb € G.
As G is afilter, (aVb)VF C G; thus aVb € p and so a € p or b € p. Therefore,
a€G:x)orbe G x) and the assertion follows.

Case 2. (G :1 F) = pNq, where p and p are distinct prime filters of L.
If p C (G :L x), then the result follows by an argument like that in the Case
1. So we may assume that p ¢ (G :1 x). There is an element a € p such that
aVx ¢ G. By Theorem 2.8 (ii), pVq C (G :1 x); so q C G :1 aV ) and the
result follows by a similar proof to that of Case 1. [

Compare the next lemma with Lemma 1 in [7].

Lemma 3.2. Let F' and F; (i = 1,2,...,n) be filters such that F C U}, F; is
an efficient covering of filters of L, where n > 3. Then The intersection of any
n — 1 of the filters F'N F; coincides with H = N (F N F;).

Proof. It suffices to show that the intersection of any n — 1 of the filters F'N F;
is contained in H. Since F' C U F; is an efficient covering, we have F' =

* L (FNF;) is an efficient union consisting of subfilters of F', so F' is not contained
in the union of any n—1 of the filters F'NF;; hence there exists an element ¢, € F,,
which is not in Ul "(F N F}). If z € N?~(F N F}), then the element x A ¢, in F
can not be in F; for 1 <i¢ <mn —1; thus x A¢, € F,. By Lemma 1.1 (i), x € F),
and so x € H, as needed. [ |

Proposition 3.3. Let F' and F; (i =1,2,...,n) be filters such that F C U}' | F;
is an efficient covering of filters of L, where n > 3. If F; ¢ (Fj :1, ) for all
x € L\ Fj whenever i # j, then no F; for 1 <i < n is a 2-absorbing filter of L.

Proof. Assume to the contrary, Fj is a 2-absorbing filter of L for some k =
1,...,n. By Lemma 3.2, Niz;(F; N F) C FNF,. Clearly, FF ¢ Fj, so there
is an element b € F with b ¢ F,. Now Theorem 3.1 gives either (F} :1 b) is
a prime filter or there exists a € L such that (Fj :1 (a Vb)) is a prime filter
of L. Suppose first that (Fy :1 b) is a prime filter. By assumption, there is
a; € F; \ (Fy, o1 b) for all i # k; so (Vizja;) Vb € Nigi(F'NF;) \ (F N Fy) since
(Vizjai) Vb € FNFy, implies that (V,zja;) € (F) :1, b) and so thereis a; € (Fj, :, b)
for some i # k that is a contradiction. If (Fj :1 (a V b)) is a prime filter of L for
some a € L, then there exists ¢; € F; \ (Fy :1 (a Vb)) for all i # k. Therefore
(Vigjci) V (a Vb € NMiygi(F N E;)\ (FNFy) which is a contradiction. Thus Fj, is
not a 2-absorbing filter, as required. [ |

The following theorem is a lattice counterpart of Theorem 3.2 in [10] describ-
ing the structure of 2-absorbing submodules.
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Theorem 3.4 (2-Absorbing Avoidance Theorem). Let F, Fy, Fy,..., F, (n > 2)
be filters of L such that at most two of Fy, Fs,..., F, are not 2-absorbing. If
F C U™, F; and F; ¢ (Fj :p z) for all z € L\ F; whenever i # j, then F C F;

for some 1 with 1 <i <mn.

Proof. By Remark 2.3 (i), we may assume that n > 3. Let F ¢ F; for all ¢ with
1 <¢<n. Then FF C Ul F; is an efficient covering of filters of L. Then by
Proposition 3.3, no F; is 2-absorbing that contradicts the assumption. Therefore
F C F; for some 7 with 1 <7 <n. []
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