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Abstract

Let L be a lattice with 1. In this paper we study the concept of 2-ab-
sorbing filter which is a generalization of prime filter. A proper filter F
of L is called a 2-absorbing filter (resp. a weakly 2-absorbing) if whenever
x1 ∨ x2 ∨ x3 ∈ F (resp. 1 6= x1 ∨ x2 ∨ x3 ∈ F ), for x1, x2, x3 ∈ L, then there
are 2 of the xi’s whose join is in F . A basic number of results concerning
2-absorbing filters and weakly of 2-absorbing filters are given in the case
when L is distributive.
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1. Introduction

Recently, the study of the 2-absorbing property in the rings, modules, and semi-
groups has become quite popular. In many ways this program began with the
paper in 2007, by Ayman Badawi, [2]. He introduced, for a commutative ring R,
the notion of 2-absorbing ideals of R. A proper ideal I of R is called a 2-absorbing
ideal if whenever x1x2x3 ∈ I for x1, x2, x3 ∈ R, then there are 2 of the xi’s whose
product is in I. There have been several generalizations and extensions of this
concept in the literature (see e.g. [1, 3, 5], and [10]).

In this paper, we are interested in investigating 2-absorbing filters to use
other notions of 2-absorbing and associate which exist in the literature as laid
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forth in [2]. Now we summarize the content of the paper. Among many results
in this paper, in Section 2, it is shown (Theorem 2.2) that the only weakly 2-
absorbing filters of L that are not 2-absorbing can only be {1} (so if L is an
L-domain, then a filter is 2-absorbing if and only if it is weakly 2-absorbing), and
F is a 2-absorbing filter of L if and only if whenever F1 ∨ F2 ∨ F3 ⊆ F for some
filters F1, F2, F3 of L, then F1 ∨F2 ⊆ F or F1 ∨F3 ⊆ F or F2 ∨F3 ⊆ F (Theorem
2.5). It is shown (Theorem 2.8) that If F is a 2-absorbing filter of L, then either
F is a prime filter or F = p ∩ q = p ∨ q, where p, q are the only distinct filters
of L that are minimal over F . Let G be a 2-absorbing subfilter of a filter F of
L. It is shown (Theorem 2.14 and Theorem 2.15) that either AssL(G :L F ) is
a totally ordered set or AssL(G :L F ) is the union of two totally ordered set.
Payrovi and Babaei [10], using the technique of efficient covering of submodules
(see [8]) proved the avoidance theorem for 2-absorbing submodules. They proved
that if a submodule N of a module is contained in the union of a finite number of
2-absorbing submodules with some conditions, then N must be contained in one
of them. Section 3 is devoted to prove that the 2-absorbing avoidance theorem.
More precisely, let F,F1, F2, . . . , Fn (n ≥ 2) be filters of L such that at most two
of F1, F2, . . . , Fn are not 2-absorbing. If F ⊆ ∪n

i=1Fi and Fi * (Fj :L x) for all
x ∈ L \Fj whenever i 6= j, then F ⊆ Fi for some i with 1 ≤ i ≤ n (Theorem 3.4).

Let us briefly review some definitions and tools that will be used later. A
lattice is a poset (L,≤) in which every couple elements x, y has a g.l.b. (called
the meet of x and y, and written x ∧ y) and a l.u.b. (called the join of x and
y, and written x ∨ y). A lattice L is complete when each of its subsets X has
a l.u.b. and a g.l.b. in L. Setting X = L, we see that any nonvoid complete
lattice contains a least element 0 and greatest element 1 (in this case, we say
that L is a lattice with 0 and 1). A lattice L is called a distributive lattice if
(a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c) for all a, b, c in L (equivalently, L is distributive if
(a∧ b)∨ c = (a∨ c)∧ (b∨ c) for all a, b, c in L). A non-empty subset F of a lattice
L is called a filter, if for a ∈ F , b ∈ L, a ≤ b implies b ∈ F , and x ∧ y ∈ F for all
x, y ∈ F (so if L is a lattice with 1, then 1 ∈ F and {1} is a filter of L). A lattice
L with 1 is called L-domain if a∨ b = 1 (a, b ∈ L), then a = 1 or b = 1. A proper
filter F of L is called prime if x∨ y ∈ F , then x ∈ F or y ∈ F . Let L be a lattice
with 0 and 1. If a ∈ L, then a complement of a in L is an element b ∈ L such
that a ∧ b = 0 and a ∨ b = 1. The lattice L is complemented if every element of
L has a complement in L [4]. First we need the following well-known lemma.

Lemma 1.1. Let L be a lattice.

(i) A non-empty subset F of L is a filter of L if and only if x ∨ z ∈ F and
x∧ y ∈ F for all x, y ∈ F , z ∈ L (so 0 ∈ F if and only if F = L). Moreover,
since x = x ∨ (x ∧ y) and y = y ∨ (x ∧ y), F is a filter and x ∧ y ∈ F gives
x, y ∈ F for all x, y ∈ L.
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(ii) If F1, . . . , Fn are filters of L and a ∈ L, then ∨n
i=1Fi = {∨n

i=1ai : ai ∈ Fi}
and a ∨ Fi = {a ∨ ai : ai ∈ Fi} are filters of L.

(iii) If D is an arbitrary non-empty subset of L, then the set T (D) consisting of
all elements of L of the form (a1 ∧ a2 ∧ · · · ∧ an) ∨ x (with ai ∈ D for all
1 ≤ i ≤ n and x ∈ L) is a filter of L containing D (so if D = {a}, then
T ({a}) = T (a) = {a ∨ t : t ∈ L}).

(iv) If L is distributive, F,G are filters of L, and x ∈ L, then (G :L F ) = {x ∈
L : x ∨ F ⊆ G} and (F :L {x}) = (F :L x) = {a ∈ L : a ∨ x ∈ F} are filters
of L.

(v) If {Fi}i∈∆ is a chain of filters of L, then ∪i∈∆Fi is a filter of L.

2. Some basic properties of 2-absorbing filters

In this section, we collect some properties concerning 2-absorbing filters of a
lattice L. Throughout this paper, we shall assume unless otherwise stated, that
L is a distributive lattice with 1 and 0.

Definition 2.1. A proper Filter F of L is called a 2-absorbing (resp. a weakly
2-absorbing) filter if whenever a, b, c ∈ L and a∨b∨c ∈ F (resp. 1 6= a∨b∨c ∈ F ),
then a ∨ b ∈ F or a ∨ c ∈ F or b ∨ c ∈ F .

Clearly, every 2-absorbing filter of L is a weakly 2-absorbing. However, since
{1} is always weakly 2-absorbing ”by definition”, a weakly 2-absorbing filter need
not be 2-absorbing.

Theorem 2.2. If F is a weakly 2-absorbing of L that is not 2-absorbing, then
F = {1}. In particular, the only weakly 2-absorbing filters of L that are not
2-absorbing can only be {1}.

Proof. We suppose that F 6= {1}, and look for a contradiction. Let x∨y∨z ∈ F .
If x∨y∨z 6= 1, then F weakly 2-absorbing gives x∨y ∈ F or y∨z ∈ F or x∨z ∈ F ;
so F is 2-absorbing which is a contradiction. So assume that x∨ y ∨ z = 1. Since
F 6= {1}, there exists b ∈ F with b 6= 1. Then 1 6= b = b ∧ 1 = b ∧ (x ∨ y ∨ z) =
((b∧ (x∨y))∨ ((b∧ (x∨z))∨ ((b∧ (y∨z)) ∈ F , so b∧ (x∨y) ∈ F or b∧ (x∨z) ∈ F
or b ∧ (y ∨ z) ∈ F . Thus x ∨ y ∈ F or x ∨ z ∈ F or y ∨ z ∈ F by Lemma 1.1
(i), and so F is 2-absorbing, a contradiction. Thus F = {1}. The ”in particular”
statement is clear.

Remark 2.3. (i) If F,F1, F2 are filters of L with F ⊆ F1 ∪ F2, then we show
that either F ⊆ F1 or F ⊆ F2. Suppose that F ⊆ F1 ∪ F2 such that F * F1; we
show that F ⊆ F2. Let a ∈ F be such that a /∈ F1. Let x ∈ F ∩ F1. Then F is
a filter gives a ∧ x ∈ F ⊆ F1 ∪ F2; so a, x ∈ F2. Therefore F ∩ F1 ⊆ F2. Thus
F = F ∩ (F1 ∪ F2) = (F ∩ F1) ∪ (F ∩ F2) ⊆ F2.
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(ii) Assume that m is a maximal filter of a lattice L with 0 and let a∨ b ∈ m

with a, b /∈ m for some a, b ∈ L. Then T (m ∪ {a}) = T (m ∪ {b}) = L since m

is maximal. An inspection will show that 0 ∈ L implies that L = F which is a
contradiction. Thus every maximal filter of L is prime [6].

(iii) If F is a filter of a L-domain L, then F is 2-absorbing if and only if it is
weakly 2-absorbing.

Proposition 2.4. Let F1, F2, F be filters of L such that F is 2-absorbing.

(i) If a, b ∈ L and (a∨ b)∨F1 ⊆ F , then a∨ b ∈ F or a∨F1 ⊆ F or b∨F1 ⊆ F .

(ii) If a ∈ L and a∨(F1∨F2) ⊆ F , then a∨F1 ⊆ F or a∨F2 ⊆ F or F1∨F2 ⊆ F .

Proof. (i) Let a ∨ b /∈ F and a ∨ F1 * F . Then there is an element c ∈ F1

such that a ∨ c /∈ F . Now a ∨ b ∨ c ∈ F gives b ∨ c ∈ F since F is 2-absorbing.
We have to show that b ∨ F1 ⊆ F . Let d be an arbitrary element of F1. Then
(d ∧ c) ∨ (a ∨ b) = (a ∨ b ∨ c) ∧ (a ∨ b ∨ d) ∈ F since F is a filter; so either
(d ∧ c) ∨ a = (a ∨ c) ∧ (a ∨ d) ∈ F or (d ∧ c) ∨ b = (b ∨ c) ∧ (b ∨ d) ∈ F . If
(d ∧ c) ∨ a ∈ F , then a ∨ c ∈ F by Lemma 1.1 (i) that is a contradiction. If
(d ∧ c) ∨ b ∈ F , then b ∨ d ∈ F . Thus b ∨ F1 ⊆ F .

(ii) Let a ∨ F1 * F and a ∨ F2 * F2. We have to show that F1 ∨ F2 ⊆ F .
Suppose that x ∈ F1 and y ∈ F2. By hypothesis, there exist z ∈ F1 \ F and
w ∈ F2 \F such that a∨ z /∈ F and a∨w /∈ F . As a∨ z ∨w ∈ a∨ (F1 ∨F2) ⊆ F ,
we get z ∨w ∈ F . Now z ∧ x ∈ F1 and y ∧w ∈ F2 gives a∨ (z ∧x)∨ (y ∧w) ∈ F ;
so (z ∧ x) ∨ (y ∧ w) ∈ F since F is 2-absorbing (see Lemma 1.1 (i)). It follows
that (z ∧ x)∨ y ∈ F ; hence x∨ y ∈ F by Lemma 1.1 (i). Therefore, F1 ∨F2 ⊆ F .

Theorem 2.5. Let F be a proper filter of L. The following statements are
equivalent:

(i) F is a 2-absorbing filter of L.

(ii) If F1 ∨ F2 ∨ F3 ⊆ F for some filters F1, F2, F3 of L, then F1 ∨ F2 ⊆ F or
F1 ∨ F3 ⊆ F or F2 ∨ F3 ⊆ F .

Proof. (i)⇒(ii) Suppose that F1 ∨ F2 ∨ F3 ⊆ F for some filters F1, F2, F3 of L
and F1 ∨ F2 * F . Then by Proposition 2.4 for all a ∈ F3 either a ∨ F1 ⊆ F or
a∨F2 ⊆ F . If a∨F1 ⊆ F , for all a ∈ F3 we are done. Similarly, if a∨F2 ⊆ F , for all
a ∈ F3 we are done. Assume that a, b ∈ L are such that a∨F1 * F and b∨F2 * F .
It follows that b ∨ F1 ⊆ F and a ∨ F2 ⊆ F . Since (a ∧ b) ∨ (F1 ∨ F2) ⊆ F , we get
either (a∧ b)∨F1 ⊆ F or (a∧ b)∨F2 ⊆ F by Proposition 2.4. If (a∧ b)∨F1 ⊆ F ,
then z∨(a∧b) = (z∨a)∧(z∨b) ∈ F for all z ∈ F1 which implies that a∨z ∈ F by
Lemma 1.1 (i); so a∨F1 ⊆ F which is a contradiction. Similarly, if (a∧b)∨F2 ⊆ F ,
we get a contradiction. Thus either F1 ∨ F3 ⊆ F or F2 ∨ F3 ⊆ F .

(ii)⇒(i) Let a, b, c ∈ L with a∨b∨c ∈ F . Then by (ii), T (a)∨T (b)∨T (c) ⊆ F
gives a∨b ∈ T (a)∨T (b) ⊆ F or a∨c ∈ T (a)∨T (c) ⊆ F or b∨c ∈ T (b)∨T (c) ⊆ F .
Thus F is 2-absorbing.
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We say that a subset D ⊆ L is Join closed if 0 ∈ D and a ∨ b ∈ D for all
a, b ∈ D. Clearly, if p is a prime filter of L, then L \ p is a join closed subset of
L. The set of all prime filters of L is denoted by Spec(L). If F is a filter of L,
then we set var(F ) = {p ∈Spec (L): F ⊆ p}, and the set of all prime filters of L
that are minimal over F is denoted by min(F ).

Lemma 2.6. (i) Assume that F is a filter of L and let S be a join closed set
of L such that S ∩ F = ∅. Then the set

∑
= {K : F ⊆ K,K ∩ S = ∅} of

filters under the relation of inclusion has at least one maximal element, and
any such maximal element of

∑
is a prime filter.

(ii) If F is a filter of L, then F = ∩p∈var(F )p.

(iii) Let F , p be filters of L with p prime and F ⊆ p. Then there exists a minimal
prime filter q of F with q ⊆ p.

(iv) If F is a filter of L, then F = ∩p∈min(F)p.

Proof. (i) Since F ∈
∑

,
∑

6= ∅. Of course, the relation of inclusion, ⊆, is
a partial order on

∑
. Now

∑
is easily seen to be inductive under inclusion,

so by Zorn’s Lemma
∑

has a mximal element q with q ∩ S = ∅ and F ⊆ q.
It suffices to show that q is prime. Now let x, x′ ∈ L \ q; we must show that
x ∨ x′ /∈ q. Since x /∈ q, we have F ⊆ q $ T (q ∪ {x}). By the maximality of q,
we have T (q ∪ {x}) ∩ S 6= ∅, and so there exist s ∈ S, c ∈ L and q ∈ q such that
s = (q∧x)∨ c. Similarly, s′ = (q′∧x′)∨ c′ for some s′ ∈ S, q′ ∈ q and c′ ∈ L. Set
z = c∨ c′. Then s∨ s′ = (q ∧ x)∨ (q′ ∧ x′)∨ z = [(q ∧ x)∨ x′]∧ [(q ∧ x)∨ q′]∨ z =
[(x ∨ x′)∧ (q ∨ x′)]∧ [(q ∧ x)∨ q′]∨ z. As (q ∧ x)∨ q′, q ∨ x′ ∈ q, S ∩ q = ∅ and q

is a filter, we have x ∨ x′ /∈ q. Thus q is a prime filter.

(ii) It is enough to show that ∩p∈var(F )p ⊆ F . Let a ∈ ∩p∈var(F )p. We
suppose that a /∈ F , and look for a contradiction. Set S = {0, a}. Then S is a
join closed set of L with S ∩F = ∅. Hence, by (i), there exists a prime filter q of
L such that F ⊆ q and q ∩ S = ∅. It follows that q ∈ var(F ), so that a ∈ S ∩ q,
a contradiction.

(iii) Set ∆ = {q ∈ Spec(L) : F ⊆ q ⊆ p}. Then p ∈ ∆, and so ∆ 6= ∅. By
an argument like that in (i) (take S = L \ p), the set ∆ of prime filters of L has
a minimal member with respect to inclusion (by partially ordering ∆ by reverse
inclusion and using Zorn’s Lemma) which is prime. (iv) follows from (iii) (since
every prime filter in var(F ) contains a minimal prime filter of F ).

Compare the next Proposition with Theorem 2.1, p. 2 in [7].

Proposition 2.7. Let F ⊆ p be filters of L, where p is a prime filter. Then the
following conditions are equivalent:

(i) p is a minimal prime filter of F .

(ii) L \ p is a join closed set that is maximal with (L \ p) ∩ F = ∅.



162 S.E. Atani and M.S.S. Bazari

(iii) For each x ∈ p, there is a y /∈ p such that y ∨ x ∈ F .

Proof. (i)⇒(ii) Since (L \ p) ∩ F = ∅, the set ∆ of all join closed sets, say H,
with H ∩ F = ∅ is not empty. Of course, the relation of inclusion, ⊆, is a partial
order on ∆. Now ∆ is easily seen to be inductive under inclusion, so by Zorn’s
Lemma ∆ has a mximal element S. Again by Zorn’s Lemma, there is a filter q
of L containing F that is maximal with respect to being disjoint from S which
is prime by Lemma 2.6 (i). Note that q is disjoint from L \ p which implies that
p = q. Thus S = L \ p.

(ii)⇒(iii) Assume that 1 6= x ∈ p and let S = {y ∨ (∧i
j=1x) : y ∈ L \ p, i =

0, 1, . . . } (Note that ∧0
j=1x is interpreted as 0, and clearly, ∧i

j=1x = x). Then S
is a join closed set that properly contains L \ p; so F ∩ S 6= ∅ by maximality of
L \ p. Thus there exists y ∈ L \ p such that x ∨ y ∈ F .

(iii)⇒(i) Let q be a prime filter such that F $ q ⊆ p. If p 6= q, then there
is an element x ∈ p with x /∈ q; so x ∨ y ∈ F $ q for some y /∈ p which is a
contradiction. Therefore p = q.

The following theorem is a lattice counterpart of Theorem 2.4 in [2] describing
the structure of 2-absorbing ideals.

Theorem 2.8. (i) If F is a 2-absorbing filter of L, then there exist at most two
prime filters of L that are minimal over F .

(ii) If F is a 2-absorbing filter of L, then either F is a prime filter of L or
F = p ∩ q = p ∨ q, where p, q are the only distinct filters of L that are
minimal over F .

(iii) If either F is a prime filter of L or F is an intersection of two prime filter
of L, then F is 2-absorbing.

Proof. (i) Assume that that ∆ is the set of prime filters of L which are minimal
over F and let ∆ has at least three elements. Let p,q ∈ ∆ with p 6= q. Then
there exist x1, x2 ∈ L such that x1 ∈ p \ q and x2 ∈ q \ p. First we show
that x1 ∨ x2 ∈ F . By Proposition 2.7, there exist a /∈ p and b /∈ q such that
a∨x1, b∨x2 ∈ F . Since x1, x2 /∈ p∩q and a∨x1, b∨x2 ∈ F ⊆ p∩q, we conclude
that a ∈ q \ p and b ∈ p \ q; so a, b /∈ p ∩ q. Since a ∨ x1, b ∨ x2 ∈ F , we have
(a ∧ b) ∨ (x1 ∨ x2) = [(a ∨ x1) ∨ x2] ∧ [(b ∨ x2) ∨ x1] ∈ F since F is a filter. By
Lemma 1.1 (i), a∧ b /∈ p and a∧ b /∈ q. Since (a∧ b)∨x1 /∈ q and (a∧ b)∨x2 /∈ p,
F is a 2-absorbing filter gives x1 ∨ x2 ∈ F . Now suppose there is a r ∈ ∆ such
that r is neither p nor q. Then we can choose z1 ∈ p \ (q ∪ r), z2 ∈ q \ (p ∪ r),
and z3 ∈ r \ (p ∪ q). By an argument like that as above, we have z1 ∨ z2 ∈ F .
Since F ⊆ p ∩ q ∩ r and z1 ∨ z2 ∈ F , we get either z1 ∈ r or z2 ∈ r that is a
contradiction, as required.
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(ii) By (i) and Lemma 2.6 (iv), we conclude that either F is a prime filter or
F = p ∩ q, where p, q are the only distinct filters of L that are minimal over F .
An inspection will show that p ∩ q = p ∨ q.

(iii) The first assertion is clear. Let p and p be two prime filters of L; we
have to show that F = p∩q is a 2-absorbing filter of L. Let a, b, c ∈ L such that
a ∨ b ∨ c ∈ p ∩ q. Therefore a ∨ b ∨ c ∈ p and a ∨ b ∨ c ∈ q. If a ∈ p ∩ q, then
a ∨ b ∈ p ∩ q. If a ∈ p and b ∈ p, then a ∨ b ∈ p ∩ q since p and q are filters of
L. The other cases we do the same.

The collection of ideals of Z, the ring of integers, form a lattice under set
inclusion which we shall denote by L(Z) with respect to the following definitions:
mZ ∨ nZ = (m,n)Z and mZ ∧ nZ = [m,n]Z for all ideals mZ and nZ of Z,
where (m,n) and [m,n] are greatest common divisor and least common multiple
of m,n, respectively. Note that L(Z) is a distributive complete lattice with least
element the zero ideal and the greatest element Z.

Theorem 2.9. The following hold:

(i) If p is a prime number and k is a positive integer, then the set Fpk = {mZ ∈

L(Z) : pk ∤ m} is a prime filter of L(Z).

(ii) L(Z) \ {0} is the only maximal filter of L(Z).

(iii) Every prime filter of L(Z) is of the form either Fpk for some prime number
p and positive integer k or L(Z) \ {0}.

(iv) Every 2-absorbing filter of L(Z) is of the form L(Z)\{0} or Fpm or Fpm∩Fqn

for some positive integers m,n and prime numbers p, q with p 6= q.

Proof. (i) Let mZ,nZ ∈ Fpk and sZ ∈ L(Z). Now pk ∤ m and pk ∤ n gives

pk ∤ [m,n]; so [m,n]Z ∈ Fpk . As pk ∤ m, we get pk ∤ (m, s) which implies that
(m, s)Z ∈ Fpk . Thus Fpk is a filter of L(Z). Let mZ ∨ nZ = (m,n)Z ∈ Fpk with

mZ /∈ Fpk . Then pk ∤ (m,n) and pk | m gives pk ∤ n; so nZ ∈ Fpk . Thus Fpk is
prime.

(ii) is clear.
(iii) Let F be a prime filter of L(Z). First we show that there exist at

most one prime number p and positive integer k such that for every mZ ∈ F
implies that pk ∤ m. Otherwise, there are distinct prime numbers p, q and positive
integers k, s such that for every mZ ∈ F implies that pk ∤ m and qs ∤ m. Then
pkZ ∨ qsZ = Z ∈ F gives either pkZ ∈ F or qsZ ∈ F which is a contradiction.
If there exists pk such that for every mZ ∈ F implies that pk ∤ m. Let t be least
positive integer such that for every mZ ∈ F implies that pt ∤ m; we show that
F = Fpt . It suffices to show that for every mZ with pt ∤ m, mZ ∈ F . There are
distinct prime numbers q1, . . . , qn such that m = plqs11 · · · qsnn , where 0 ≤ l < t,
p 6= qj with 1 ≤ j ≤ n, and sj is a positive integer for 1 ≤ j ≤ n. As l < t,
there exist m′Z ∈ F such that pl | m′, so m′Z ⊆ plZ. Thus plZ ∈ F since F is
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a filter. Moreover, plZ ∨ qsii Z = Z ∈ F gives qsii Z ∈ F with 1 ≤ i ≤ n. Thus
mZ = plZ ∧ (∧n

i=1q
si
i Z) ∈ F . Suppose that there is not such pk; we show that

F = L(Z)\{0}. Let m be a non-zero integer. It is enough to show that mZ ∈ F .
We can write m = ps11 · · · psnn , where pi 6= pj with i 6= j and for each i, si is a
positive integer. Then for each i, there exists miZ ∈ F such that psii | mi, so
miZ ⊆ psii Z ∈ F since F is a filter. Thus mZ = ∧n

i=1p
si
i Z ∈ F .

(iv) This follows from (i), (ii), (iii), and Theorem 2.8.

Remark 2.10 shows that prime filters which are maximals are abundant.

Remark 2.10. (i) Assume that F is a prime filter of a complemented lattice L
with 0 and 1 and let F ′ be a filter of L such that F $ F ′ ⊆ L. Then there exist
x ∈ F ′ \ F and y ∈ L such that x ∧ y = 0 and x ∨ y = 1 ∈ F . Then F is prime
gives y ∈ F ⊆ F ′, and so x ∧ y = 0 ∈ F ′; hence F ′ = L. Thus F is maximal.

(ii) Let D = {1, . . . , n}. Then the set L = {X : X ⊆ D} forms a comple-
mented distributive lattice under set inclusion with greatest element D and least
element ∅ (note that if x, y ∈ L, then x ∨ y = x ∪ y and x ∧ y = x ∩ y). Then
every prime filter of L is a maximal filter by (i).

Corollary 2.11. The following statements are equivalent:

(i) Every prime filter of L is maximal;

(ii) If F is a 2-absorbing filter of L, then either F is maximal or F = p1 ∩p2 =
p1 ∨ p2, where p1,p2 are some maximal filters of L.

Proof. (i)⇒(ii) follows from Theorem 2.8. To see that (ii)⇒(i), assume that F is
a prime filter of L. By (ii), if F is maximal, then we are done. So we assume that
F = p1 ∨ p2, where p1,p2 are some maximal filters of L. Then either p1 ⊆ F
or p2 ⊆ F ; hence either F = p1 or F = p1 (otherwise, there exist a ∈ p1 \ F
and b ∈ p2 \ F with a ∨ b /∈ F since F is a prime filter, and this contradicts the
statements of (ii)).

Proposition 2.12. If G is a 2-absorbing subfilter of a filter F of L, then (G :L F )
is a 2-absorbing filter of L.

Proof. Let a, b, c ∈ L, a∨b∨c ∈ (G :L F ), a∨c /∈ (G :L F ), and b∨c /∈ (G :L F ).
We must to show that a ∨ b ∈ (G :L F ). There exist x1, x2 ∈ L such that
a∨c∨x1, b∨c∨x2 /∈ G but (a∨b)∨ [(c∨x1)∧ (c∨x2)] = (a∨b∨c)∨ (x1∧x2) ∈ G
since G is a filter. Now G is a 2-absorbing filter gives a ∨ [(c ∨ x1) ∧ (c ∨ x2)] =
(a∨c∨x1)∧(a∨c∨x2) ∈ G or b∨[(c∨x1)∧(c∨x2) = (b∨c∨x1)∧(b∨c∨x2) ∈ G or
a∨b ∈ G. If a∨b ∈ G, we are done. If a∨ [(c∨x1)∧(c∨x2)] ∈ G, then by Lemma
1.1 (i), a∨c∨x1 ∈ G which is a contradiction. Similarly, b∨[(c∨x1)∧(c∨x2)] /∈ G.
This completes the proof.
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Proposition 2.13. If G is a 2-absorbing subfilter of a filter F of L, then (G :L F )
is a prime filter if and only if (G :L x) is a prime filter for all x ∈ F \G.

Proof. Let a, b ∈ L, x ∈ F \ G, and a ∨ b ∈ (G :L x). Then a ∨ b ∨ x ∈ G gives
a∨x ∈ G or b∨x ∈ G or a∨b ∈ G. If a∨x ∈ G or b∨x ∈ G we are done. If a∨b ∈ G,
then (a ∨ b) ∨ F ⊆ G since G is a filter; so a ∨ b ∈ (G :L F ). By assumption,
a ∈ (G :L F ) or b ∈ (G :L F ); hence a ∈ (G :L x) or b ∈ (G :L x). Thus (G :L x)
is a prime filter of L. Conversely, suppose that a∨ b ∈ (G :L F ) for some a, b ∈ L
with a, b /∈ (G :L F ). It follows that a∨x /∈ G and b∨y /∈ G for some x, y ∈ F \G
(so x∧ y /∈ G by Lemma 1.1 (i)). As a∨ b∨ (x∧ y) = (a∨ b∨x)∧ (a∨ b∨ y) ∈ G,
we have a ∨ b ∈ (G :L (x ∧ y)); hence a ∨ (x ∧ y) = (a ∨ x) ∧ (a ∨ y) ∈ G or
b ∨ (x ∧ y) = (b ∨ x) ∧ (b ∨ y) ∈ G since (G :L (x ∧ y)) is a prime filter which is a
contradiction. Thus a ∈ (G :L F ) or b ∈ (G :L F ) which implies that (G :L F ) is
a prime filter of L.

Let G be a proper subfilter of a filter F of L. We say that p ∈ Spec(L) is an
associated prime filter of F with respect to G if there is an element x ∈ F \ G
such that (G :L x) = p. The set of associated prime filters of F with respect to
G is denoted AssL(G :L F ).

Compare the next Theorem with Theorem 2.6 in [10].

Theorem 2.14. Let G be a 2-absorbing subfilter of a filter F of L. If (G :L F )
is a prime filter of L, then AssL(G :L F ) is a totally ordered set.

Proof. Let p,q ∈ AssL(G :L F ). Then there are elements x, y ∈ F \G such that
(G :L x) = p and (G :L y) = q. Suppose that q * p. We have to show that
(G :L x) ⊆ (G :L y). Let z ∈ (G :L x) (so z ∨ x ∈ G). There exists w ∈ (G :L y)
such that w /∈ (G :L x); so w ∨ y ∈ G and w ∨ x /∈ G. Clearly, x ∧ y /∈ G.
If z ∨ (x ∧ y) = (z ∨ x) ∧ (z ∨ y) ∈ G, then z ∨ y ∈ G by Lemma 1.1 (i) and
so z ∈ (G :L y). Now assume that z ∨ (x ∧ y) /∈ G, so (z ∨ w) ∨ (x ∧ y) =
(z ∨ w ∨ x) ∧ (z ∨ w ∨ y) ∈ G since G is a filter; hence z ∨ w ∈ (G :L (x ∧ y)).
By Proposition 2.13 and Lemma 1.1 (i), (G :L (x ∧ y)) is a prime filter gives
z ∨ (x∧ y) = (z ∨ x)∧ (z ∨ y) ∈ G and w ∨ (x∧ y) = (w ∨ x)∧ (w ∨ y) /∈ G. Thus
z ∨ y ∈ G and so z ∈ (G :L y).

Compare the next Theorem with Theorem 2.7 in [10].

Theorem 2.15. Let G be a 2-absorbing subfilter of a filter F of L such that
(G :L F ) = p ∩ q for some prime filters p,q of L.

(i) If x ∈ F \G and p ⊆ (G :L x), then (G :L x) is a prime filter of L.

(ii) If x, y ∈ F \G and p ⊆ (G :L x) ∩ (G :L y), then either (G :L x) ⊆ (G :L y)
or (G :L y) ⊆ (G :L x). Therefore AssL(G :L F ) is the union of two totally
ordered sets.
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Proof. (i) Let a, b ∈ L and a∨ b ∈ (G :L x). Then a ∨ b∨ x ∈ G gives a ∨ x ∈ G
or b ∨ x ∈ G or a ∨ b ∈ G. If a ∨ x ∈ G or b ∨ x ∈ G we are done. If a ∨ b ∈ G,
then (a ∨ b) ∨ F ⊆ G since G is a filter; so a ∨ b ∈ (G :L F ) ⊆ p. thus either
a ∈ p ⊆ (G :L x) or b ∈ p ⊆ (G :L x).

(ii) Suppose that (G :L y) * (G :L x). We have to show that (G :L x) ⊆
(G :L y). Let z ∈ (G :L x) (so z ∨ x ∈ G). There exists w ∈ (G :L y) such that
w /∈ (G :L x); so w ∨ y ∈ G and w ∨ x /∈ G. Clearly, x ∧ y /∈ G. If z ∨ (x ∧ y) =
(z ∨ x)∧ (z ∨ y) ∈ G, then z ∨ y ∈ G by Lemma 1.1 (i) and so z ∈ (G :L y). Now
assume that z ∨ (x ∧ y) /∈ G, so (z ∨w) ∨ (x ∧ y) = (z ∨w ∨ x) ∧ (z ∨w ∨ y) ∈ G
since G is a filter; hence z ∨w ∈ G since w ∨ (x∧ y) = (w ∨ x)∧ (w ∨ y) /∈ G and
z ∨ (x∧ y) /∈ G. Thus z ∨w ∈ (G :L F ) ⊆ p. If w ∈ p ⊆ (G :L x), then w∨x ∈ G
that is a contradiction; hence z ∈ p ⊆ (G :L y).

Theorem 2.16. If G is a 2-absorbing subfilter of a filter F of L, then (G :L F )
is a prime filter if and only if (G :L H) is a prime filter of L for all subfilters H
of F containing G.

Proof. By Proposition 2.13 and Theorem 2.14, the set {(G :L x) : x ∈ H \G} is
a totally ordered set of prime filters of L; so (G :L H) = ∩x∈H(G :L x) is a prime
filter of L. Conversely, suppose that x∨ y ∈ (G :L F ) with x, y /∈ (G :L F ). Then
there exist a, b ∈ F \G (so a∧ b /∈ G) such that x∨ a, y ∨ b /∈ G, so x∨ y ∈ (G :L
(a∧ b)). Now (G :L (a∧ b)) is a prime filter gives x∨ (a∧ b) = (x∨a)∧ (x∨ b) ∈ G
or y ∨ (a ∧ b) = (y ∨ a) ∧ (y ∨ b) ∈ G which is a contradiction. Thus (G :L F ) is
prime.

3. 2-Absorbing Avoidance Theorem

Let F,F1, F2, . . . , Fn be filters of L. We call a covering F ⊆ ∪n
i=1Fi efficient if

no Fi is superfluous. Analogously, we say that F = ∪n
i=1Fi is an efficient union

if none of the Fi may be excluded. Any cover or union consisting of filters of L
can be reduced to an efficient one, called an efficient reduction, by deleting any
unnecessary terms.

Theorem 3.1. If G is a 2-absorbing subfilter of a filter F of L and x ∈ F \ G,
then either (G :L x) is a prime filter of L or there exists an element a ∈ L such
that (G :L a ∨ x) is a prime filter of L.

Proof. By Proposition 2.12 and Theorem 2.8 (iii), (G :L F ) is a prime filter of
L or (G :L F ) is an intersection of two prime filter of L. We split the proof into
two cases:

Case 1. (G :L F ) = p, where p is a prime filter of L. We show that
(G :L x) is a prime filter of L. Clearly, p ⊆ G :L x). Suppose that a, b ∈ L and
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a ∨ b ∈ G :L x). Thus a ∨ b ∨ x ∈ G; hence a ∨ x ∈ G or b ∨ x ∈ G or a ∨ b ∈ G.
If either a ∨ x ∈ G or b∨ x ∈ G, we are done. So we may assume that a ∨ b ∈ G.
As G is a filter, (a∨ b)∨F ⊆ G; thus a∨ b ∈ p and so a ∈ p or b ∈ p. Therefore,
a ∈ G :L x) or b ∈ G :L x) and the assertion follows.

Case 2. (G :L F ) = p ∩ q, where p and p are distinct prime filters of L.
If p ⊆ (G :L x), then the result follows by an argument like that in the Case
1. So we may assume that p * (G :L x). There is an element a ∈ p such that
a ∨ x /∈ G. By Theorem 2.8 (ii), p ∨ q ⊆ (G :L x); so q ⊆ G :L a ∨ x) and the
result follows by a similar proof to that of Case 1.

Compare the next lemma with Lemma 1 in [7].

Lemma 3.2. Let F and Fi (i = 1, 2, . . . , n) be filters such that F ⊆ ∪n
i=1Fi is

an efficient covering of filters of L, where n ≥ 3. Then The intersection of any
n− 1 of the filters F ∩ Fi coincides with H = ∩n

i=1(F ∩ Fi).

Proof. It suffices to show that the intersection of any n− 1 of the filters F ∩ Fi

is contained in H. Since F ⊆ ∪n
i=1Fi is an efficient covering, we have F =

∪n
i=1(F∩Fi) is an efficient union consisting of subfilters of F , so F is not contained

in the union of any n−1 of the filters F∩Fi; hence there exists an element cn ∈ Fn

which is not in ∪n−1
i=1 (F ∩ Fi). If x ∈ ∩n−1

i=1 (F ∩ Fi), then the element x ∧ cn in F
can not be in Fi for 1 ≤ i ≤ n − 1; thus x ∧ cn ∈ Fn. By Lemma 1.1 (i), x ∈ Fn

and so x ∈ H, as needed.

Proposition 3.3. Let F and Fi (i = 1, 2, . . . , n) be filters such that F ⊆ ∪n
i=1Fi

is an efficient covering of filters of L, where n ≥ 3. If Fi * (Fj :L x) for all
x ∈ L \ Fj whenever i 6= j, then no Fi for 1 ≤ i ≤ n is a 2-absorbing filter of L.

Proof. Assume to the contrary, Fk is a 2-absorbing filter of L for some k =
1, . . . , n. By Lemma 3.2, ∩i 6=j(Fi ∩ F ) ⊆ F ∩ Fk. Clearly, F * Fk, so there
is an element b ∈ F with b /∈ Fk. Now Theorem 3.1 gives either (Fk :L b) is
a prime filter or there exists a ∈ L such that (Fk :L (a ∨ b)) is a prime filter
of L. Suppose first that (Fk :L b) is a prime filter. By assumption, there is
ai ∈ Fi \ (Fk :L b) for all i 6= k; so (∨i 6=jai) ∨ b ∈ ∩i 6=j(F ∩ Fi) \ (F ∩ Fk) since
(∨i 6=jai)∨b ∈ F∩Fk implies that (∨i 6=jai) ∈ (Fk :L b) and so there is ai ∈ (Fk :L b)
for some i 6= k that is a contradiction. If (Fk :L (a ∨ b)) is a prime filter of L for
some a ∈ L, then there exists ci ∈ Fi \ (Fk :L (a ∨ b)) for all i 6= k. Therefore
(∨i 6=jci) ∨ (a ∨ b ∈ ∩i 6=j(F ∩ Fi) \ (F ∩ Fk) which is a contradiction. Thus Fk is
not a 2-absorbing filter, as required.

The following theorem is a lattice counterpart of Theorem 3.2 in [10] describ-
ing the structure of 2-absorbing submodules.
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Theorem 3.4 (2-Absorbing Avoidance Theorem). Let F,F1, F2, . . . , Fn (n ≥ 2)
be filters of L such that at most two of F1, F2, . . . , Fn are not 2-absorbing. If
F ⊆ ∪n

i=1Fi and Fi * (Fj :L x) for all x ∈ L \ Fj whenever i 6= j, then F ⊆ Fi

for some i with 1 ≤ i ≤ n.

Proof. By Remark 2.3 (i), we may assume that n ≥ 3. Let F * Fi for all i with
1 ≤ i ≤ n. Then F ⊆ ∪n

i=1Fi is an efficient covering of filters of L. Then by
Proposition 3.3, no Fi is 2-absorbing that contradicts the assumption. Therefore
F ⊆ Fi for some i with 1 ≤ i ≤ n.
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