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Abstract

In [5] M. Biliotti, V. Jha and N. Johnson were able to completely de-
termine the autotopism group of a generalized twisted field as a subgroup
of ΓL(K) × ΓL(K), where K = GF (pn) and ΓL(K) is the group of non-
singular semilinear transformations over K. In this article, we consider the
Cordero-Figueroa semifield of order 36, which is not a generalized twisted
field, and we prove that its autotopism group is isomorphic to a subgroup
of ΓL(K)× ΓL(K), where K = GF (36).
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1. Introduction

The study of finite semifields was initiated about a century ago by L.E. Dickson
[9]. Although nowadays it is common to use the term finite semifield (introduced
by Knuth [12] in 1965), in the earlier literature was known as nonassociative

division algebra or distributive quasifield. Shortly after the classification of finite
fields, the study of semifields took a purely algebraic point of view. By now, the
theory of semifields has become of considerable interest in many different areas of
mathematics. Besides the numerous links with finite geometry (e.g. translation
planes, generalized quadrangles), semifields arise in the context of difference sets,
coding theory and group theory.

A finite semifield is an algebraic structure (P,+, ∗) that consists of a set P 6= ∅,
with at least two elements 0 and 1, and two binary operations, addition (+) and
multiplication (∗), satisfying the following axioms:

1. (P,+) is a group with additive identity 0.

2. x ∗ y = 0 implies x = 0 or y = 0.

3. x ∗ (y + z) = x ∗ y + x ∗ z and (x+ y) ∗ z = x ∗ z + y ∗ z, for all x, y, z ∈ P .

4. There exists 1 ∈ P such that x ∗ 1 = 1 ∗ x = x, for all x ∈ P .

A finite semifield without multiplicative identity is called finite presemifield.
Throughout this article, the term semifield (or presemifield) will always be

used to refer a finite semifield (or a finite presemifield).
Two semifields (or presemifields) (P,+, ∗) and (P ′,+, ◦) are isotopic if there

exist a triple (F,G,H) of bijective functions from P to P ′ which are additives
and satisfy G(x ∗ y) = F (x) ◦H(y), for all x, y ∈ P . The triple (F,G,H) is called
isotopism from P to P ′.

Any presemifield (P,+, ∗) is isotopic to a semifield by defining a new operation
◦ as follows: (x ∗ e) ◦ (e ∗ y) = x ∗ y, where e ∈ P is a fixed element, e 6= 0, and
x, y ∈ P . Thus, (P,+, ◦) is a semifield isotopic to (P,+, ∗) with multiplicative
identity e ∗ e.

The notion of isotopy was introduced by A.A. Albert [2] for purely algebraic
reasons; however, it has a geometric meaning based on projective geometry: two
semifields are isotopic if and only if its corresponding projective translation planes
are isomorphic (for more details see [3]).

There are plenty of results concerning isotopism of semifields (or presemifields)
(see, for example, [8] and [13]), however, in this article, we are interested in
autotopisms of semifields (or presemifields). Any isotopism from a semifield (or
presemifield) P to itself is known as autotopism of P .

The autotopisms of a semifield (or presemifield) P form a group under compo-
nent-wise composition and it is known in the literature as the full autotopism

group of P . We denote this group by A(P ).
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It is not difficult to prove that the set

HG = {(f, g, h) ∈ A(P ) : g = i},

where i is the identity function from P to P , is a normal subgroup of A(P ).
On the other hand, if P is a semifield, the set

Nm = {x ∈ P : (a ∗ x) ∗ b = a ∗ (x ∗ b) for all a, b ∈ P}

is known as the middle nucleus of P . In [11] (Theorem 8.2) is proved that the
multiplicative group of Nm and HG are isomorphic. For this reason, from now
on, we will denote the subgroup HG by N∗

m.

Let K = GF (pn) and let α and β be automorphisms of K with α 6= 1 and
β 6= 1. Let c ∈ K be such that c 6= xα−1yβ−1 for all x, y ∈ K∗. Then the product
over K

x ∗ y = xy − cxαyβ

defines a presemifield which is called generalized twisted field.

The study of these presemifields began with A.A. Albert [1], disciple of Dick-
son, who wrote several seminal papers on twisted and generalized twisted fields
in the late 50’s and early 60’s.

In the late 90’s, M. Biliotti, V. Jha and N. Johnson determined the full au-
totopism group of a generalized twisted field as a subgroup of ΓL(K) × ΓL(K)
(see Theorem 5.2 in [5]).

2. A presemifield defined by a 3-term product

Let α 6= 1 and β 6= 1, α 6= β, be automorphisms of K = GF (pn), where p > 3
and n > 4. For constants A,B ∈ K∗, we define over K the product

x ∗ y = xy +Axαyβ +Bxβyα.

If there exist α, β, A, and B such that x ∗ y = 0 implies x = 0 or y = 0, the
triple (K,+, ∗) is a presemifield. In this case, we denote this presemifield by
P (K,α, β,A,B).

The first example of a presemifield with a 3-term product as defined above
was given by Figueroa in [10]. There in, a presemifield is defined by the product

(1) x ∗ y = xy + γx3y27 + γ13x27y3,

where x, y ∈ GF (36) and γ ∈ GF (36) is a primitive element such that γ6 = 1+γ.
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The idea of generating presemifields with this type of product arose in [7],
where the authors proved that a semifield of order pn 6= 26, for a prime number
p and an integer n ≥ 3, which admits an autotopism of order a p-primitive prime
divisor h of pn − 1 (that is, h | (pn − 1) but h ∤ (pi − 1) for each integer i with
1 6 i 6 n− 1) is a presemifield with a product of the form

x ∗ y = xy +

n−1∑

i=1

aix
piyp

ei

,

where x, y ∈ GF (pn), ai ∈ GF (pn) are constants, and 0 6 ei 6 n− 1.

The presemifield defined by the product (1) is a semifield that admits an
autotopism of order a 3-primitive prime divisor of 36 − 1 and it is known in the
literature of finite translation planes as Cordero-Figueroa semifield of order 36

(see Theorem 37.2 in [6]).

From now on, a presemifield of the type P (K,α, β,A,B) will be defined as a
Figueroa’s presemifield of order pn.

Since α and β in a Figueroa’s presemifield of order pn are automorphisms such
that α 6= 1, β 6= 1, and α 6= β, in what follows (without loss the generality) we
assume that α = pa and β = pb, with 0 < a < b < n.

In the next section we prove an important lemma about the middle nucleus
of a Figueroa’s presemifield of order pn that will culminate in our main result in
section 4.

3. On the middle nucleus of a Figueroa’s presemifield of order pn

The next lemma gives a description of the elements of N∗

m for a Figueroa’s pre-
semifield of order pn and, furthermore, gives a way to compute the order of N∗

m.
As we assumed at the end of Section 2, α = pa and β = pb, with 0 < a < b < n.

Lemma 1. Let (f, g, h) be an autotopism of a Figueroa’s presemifield P (K,α,

β,A,B) of order pn, and suppose that α3 6= 1 if αβ = 1. Then, (f, g, h) ∈ N∗

m if
and only if

f(x) = cx, g(y) = y, h(n) = c−1n,

where c ∈ K and cα = cβ. Furthermore, the order of N∗

m is pgcd(n, b−a) − 1.

Proof. Suppose (f, g, h) ∈ N∗

m. Then, x ∗ n = f(x) ∗ h(n) implies that

(2) xn+Axαnβ +Bxβnα = f(x)m+Afα(x)mβ +Bfβ(x)mα,

where m = h(n). Since f is additive, f(x) =
∑n−1

i=0 fix
pi . Thus, we have that
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Afα(x)mβ = (Amβ)

n−1∑

i=0

fα
i x

pi+a

=

n−1∑

t=0

Amβfα
t−ax

pt ,

Bfβ(x)mα = (Bmα)
n−1∑

i=0

f
β
i x

pi+b

=
n−1∑

t=0

Bmαf
β
t−bx

pt .

Therefore, the right-hand side of (2) becomes

n−1∑

t=0

(mft +Amβfα
t−a +Bmαf

β
t−b)x

pt .

If t 6= 0, a, b (mod n), then the coefficient of xp
t

in the left-hand side of (2) is 0,

which implies, for these values of t, that mft + Amβfα
t−a + Bmαf

β
t−b = 0. Then

we have that ft = 0, ft−a = 0, and ft−b = 0.
If a + b 6= n, then t = a + b 6= 0 (mod n). Therefore, ft−a = fb = 0 and

ft−b = fa = 0.
If a + b = n, then 2b = n if and only if 2a = n. Since a < b, then 2a 6= 0

(mod n) and 2b 6= 0 (mod n). In the case that 2a = b (mod n) or 2b = a

(mod n), we obtain that 3a = n, which is impossible by the assumption that
α3 6= 1 if αβ = 1. Thus, for t = 2a (mod n), we have ft−a = fa = 0, and for
t = 2b (mod n), we get fb = 0. Hence f(x) = f0x. Consequently, from equation

(2), n = f0m = f0h(n) and fα
0 = f

β
0 . The converse is obvious.

On the other hand, in order to compute the order of N∗

m, note that the order
of N∗

m is equal to the number of elements c ∈ K, c 6= 0, such that cα = cβ. So,

cp
a(pb−a

−1) = 1 and the order of N∗

m is pgcd(n, b−a) − 1.

4. The autotopism group of the Cordero-Figueroa semifield

of order 36

In the next theorem, we use a method that is purely algebraic and determine
that the full autotopism group of the Cordero-Figueroa semifield of order 36 is
isomorphic to a particular subgroup of ΓL(K) × ΓL(K), where K = GF (36),
and, furthermore, we compute its order.

Theorem 1. Let P = P (K,α, β,A,B) be the Cordero-Figueroa semifield of
order 36. The full autotopism group A(P ) is isomorphic to the subgroup of
ΓL(K)× ΓL(K):

〈(γ13x, γ26y)〉⋊ 〈(γx3, γy3)〉,

where 〈(γ13x, γ26y)〉 is normal in the group 〈(γ13x, γ26y)〉〈(γx3, γy3)〉. Further-
more, the order of A(P ) is 672.



122 W. Meléndez, R. Figueroa and M. Delgado

Proof. Let (f, g, h) ∈ A(P ). Since f , g, and h are additives:

f(x) =
5∑

k=0

fkx
3k , g(y) =

5∑

k=0

gky
3k , h(n) =

5∑

k=0

hkn
3k .

Let us denote m = h(n). Then g(x ∗n) = f(x) ∗m yields the following equations

f0m+Bf33
3 m31 +Af31

5 m33 = g0n+ g5A
35n32 + g3B

33n34 ,(3)

f1m+Bf33
4 m31 +Af31

0 m33 = g1n
31 + g0An

33 + g4B
34n35 ,(4)

f2m+Bf33
5 m31 +Af31

1 m33 = g5B
35n+ g2n

32 + g1A
31n34 ,(5)

f3m+Bf33

0 m31 +Af31

2 m33 = g0Bn31 + g3n
33 + g2A

32n35 ,(6)

f4m+Bf33

1 m31 +Af31

3 m33 = g3A
33n+ g1B

31n32 + g4n
34 ,(7)

f5m+Bf33

2 m31 +Af31

4 m33 = g4A
34n31 + g2B

32n33 + g5n
35 .(8)

Since N∗

m is a normal subgroup of A(P ), we have that for any (f, g, h) ∈ A(P )
and any (f0, i, h0) ∈ N∗

m, there exist (f̃0, i, h̃0) ∈ N∗

m such that

(f, g, h)−1 ∗ (f0, i, h0) ∗ (f, g, h) = (f̃0, i, h̃0).

Then, for all x ∈ K, we obtain

(9) f0(f(x)) = f(f̃0(x)).

Since (f0, i, h0), (f̃0, i, h̃0) ∈ N∗

m, from lemma 1 follows that f0(x) = c0x and
f̃0(x) = c̃0x, where c0, c̃0 ∈ K. Also, by lemma 1, as the order of N∗

m is 8,
c̃0 ∈ GF ∗(32). Then, from equation (9) we get

c0f0 = f0c̃0,(10)

c0f1 = f1c̃
3
0,(11)

c0f2 = f2c̃0,(12)

c0f3 = f3c̃
3
0,(13)

c0f4 = f4c̃0,(14)

c0f5 = f5c̃
3
0.(15)

Notice that f(x) 6= 0. If f0 6= 0, then the equation (10) implies that c0 = c̃0.
Therefore, the equations (11), (13), and (15) imply that f1 = f3 = f5 = 0.
Similarly, if f2 6= 0 or f4 6= 0, then f1 = f3 = f5 = 0. In the same fashion, if
f1 6= 0, f3 6= 0, or f5 6= 0, the equations (10), (12), and (14) imply f0 = f2 =
f4 = 0. Hence, at least one, and at most three, of the coefficients f0, f2, and f4
(or f1, f3, and f5) of f are nonzero.
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Consider the case that f has three nonzero coefficients, let say f0 6= 0, f2 6= 0,
and f4 6= 0. Then, the equations (3), (5), and (7) imply

(16)
g0

f0
=

g5B
35

f2
=

g3A
33

f4
,

(17)
g5A

35

f0
=

g2

f2
=

g1B
31

f4
,

(18)
g3B

33

f0
=

g1A
31

f2
=

g4

f4
.

From equations (16) and (17) we get

g1 =
g0f2f4A

35

f2
0B

35B31
,

and from equations (16) and (18) we obtain

g1 =
g0f2f4B

33

f2
0A

33A31
.

Thus, equating the right hand sides of the last two equations result that

g0(B
273 −A273) = 0.

But, since the order of γ is 728, B273 − A273 = γ637 − γ273 6= 0. Hence g0 = 0.
Then, equations (16), (17), and (18) imply that g1 = g2 = g3 = g4 = g5 = 0, and
thus g(y) = 0 for all y ∈ K, which is a contradiction.

Similarly for the case that the three coefficients f1, f3, and f5 are all nonzero.
Now consider the case that f has two nonzero coefficients, let say f0 6= 0

and f2 6= 0. Then, the left hand side of equation (7) is zero, implying that
g4 = g3 = g1 = 0. Hence, from (4), we get

Af31
0 m33 = g0An

33 .

Since

m = h(n) =
5∑

k=0

hkn
3k ,

we obtain that all the coefficients of h are zero except h0. Thus h(n) = h0n.
Using that m = h(n) = h0n in (6), we get h0 = 0. Therefore, h(n) = 0 for all

n ∈ K; a contradiction.
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Similarly in the other cases where two of the three coefficients f0, f2, and f4
(or f1, f3, and f5) are nonzero.

Hence f(x) has only one nonzero coefficient, and thus f is of the form

f(x) = fkx
3k ,

where k is an integer with 0 ≤ k ≤ 5.
Let k, 0 ≤ k ≤ 5, such that fi = 0 for all i 6= k, then from the equations (3)

through (8), we get

g(y) = gky
3k , h(n) = gkf

−1
k n3k

where fk and gk satisfy

gkf
33

k A3k = Af31

k g3
3

k ,

gkf
31

k B3k = Bf33

k g3
1

k .

Using these equations, it is possible to find fk and gk, 0 ≤ k ≤ 5, as powers of γ.
By direct computation it can be shown that

f0 = γ13j ,

f1 = γ13j +1,

f2 = γ13j +4,

f3 = γ13j ,

f4 = γ13j +1,

f5 = γ13j +4,

g0 = γ26j ;

g1 = γ26j+1;

g2 = γ26j+4;

g3 = γ26j+13;

g4 = γ26j+40;

g5 = γ26j+121,

where j is an integer with 0 6 j < 56.
To find a subgroup of ΓL(K)× ΓL(K) isomorphic to A(P ), first let us define

the subgroup H of ΓL(K)× ΓL(K) as

H = {(fkx
3k , gky

3k) : k is an integer with 0 ≤ k ≤ 5}.

Note that, for each k, the function Ψ : (fkx, gky, gkf
−1
k n) 7→ (fkx, gky) is an

isomorphism from A(P ) to H.
It is not difficult to verify that

H = 〈(γ13x, γ26y)〉〈(γx3, γy3)〉.

It can be shown that the subgroup 〈(γ13x, γ26y)〉 is normal in H. Furthermore,
the intersection of the subgroups 〈(γ13x, γ26y)〉 and 〈(γx3, γy3)〉 is the identity
(x, y), and 〈(γx3, γy3)〉 is not normal in H. Therefore, by definition of semidirect
product of groups,H is the semidirect product of the subgroups 〈(γ13x, γ26y)〉 and
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〈(γx3, γy3)〉; i.e., H = 〈(γ13x, γ26y)〉⋊ 〈(γx3, γy3)〉. Hence A(P ) is isomorphic to
〈(γ13x, γ26y)〉⋊ 〈(γx3, γy3)〉.

Finally, in order to compute the order of A(P ), notice that the order of
(γ13x, γ26y) is 56 and the order of (γx3, γy3) is 12. As the elements of H are
of the form

(γ13x, γ26y)i(γx3, γy3)j ,

where 0 ≤ i < 56 and 0 ≤ j < 12, the order of H is 56× 12 = 672. It is now clear
that the order of A(P ) is 672, and the proof is complete.

Some Remarks. We conclude this article with some comments:

(a) Cordero-Figueroa’s semifield of order 36 was found with the aid of an an-
tique computer program (Basic) in 1994. Because of being the first one of
its kind, we consider to study the autotopism group of this particular semi-
field. Nowadays computers and programs are much more powerful than
those of twenty years ago, therefore, now it should be possible to find all
the 3-term product semifields of order 36 (up to isotopism). Up to now, it
is unknown for us if this was done.

(b) Theorem 1 establish an important result related to the autotopism group
of the Cordero-Figueroa semifield of order 36, and its proof provides some
evidence that it can be generalized for a Figueroa’s presemifield of order pn.
To be more specific, we conjecture that the autotopism group of a Figueroa’s
presemifield of order pn is isomorphic to a subgroup of ΓL(K)×ΓL(K) and
its elements are of the form (uxφ, uvyφ, vnφ), where u, v ∈ K∗ and φ is an
automorphism of K.

(c) Some parts of the discussion concerning the middle nucleus can be simplified
by using recent arguments, as for example, the fact that the middle nucleus
of the Cordero-Figueroa semifield of order 36 has order 9 follows directly
from Proposition 3 in [4].
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