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Abstract

A generalized non-deterministic hypersubstitution is a mapping which
maps operation symbols of type 7 to the set of terms of the same type
which does not necessarily preserve the arity. We apply the generalized non-
deterministic hypersubstitution to an algebra of type 7 and obtain a class
of derived algebras of type 7. The generalized non-deterministic hypersub-
stitutions can be also applied to sets of equations of type 7. We obtain
two closure operators which turn out to be a conjugate pair of completely
additive closure operators. This allows us to apply the theory of conju-
gate pairs of additive closure operators to characterize M-solid generalized
non-deterministic varieties of algebras.
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1. INTRODUCTION

Let 7 = (n;)ier be a type of algebras, indexed by a set I. Let (f;)ier be an indexed
set of operation symbols where f; is n;-ary and let X := {z1,...,2p,...} be a
countably infinite set of variables, and for each n > 1 let X,, := {z1,...,2,}.
Denoted by W,(X) and W,(X,,) the set of all the terms of type 7 and of all
n-ary terms of type 7, respectively. These two sets can be use as the universe of
the absolutely free algebras of type T

Fr(X) = (Wo(X); (fi)ier) and Fr(Xy) = (Wr(Xy); (fi)ier)
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here the operations f; are defined by setting fi(t1,...,tn,) = fi(t1,...,tn,).
In 2000, Leeratanavalee and Denecke [6] gave the concept of generalized su-
perposition operation of terms

S™ 5 (W (X)) = Wy(X)
by the following steps: For any term ¢t € W, (X)
(i) Ift =, for 1 < j <, then S™(xj,t1,...,t,) := ;.
(ii) If t = x5 for n < j, then S™(xj,t1,...,t,) := ;.

(iii) If t = fi(s1,...,sn,) and assume that S"(sq,t1,...,1ty,,) for 1 < g <mn;, are
already defined, then

S”(fi(sl,. . .,Sni),tl,. .. ,tn) = fi(Sn(Sl,tl, ce ,tn), .. .,S”(sm,tl, . ,tn)).

In 2007, Denecke and Glubudom [2] studied solid non-deterministic varieties of
algebras and characterized of M-solid non-deterministic varieties. They gave the
concept of superposition operation of the set of terms

S P(Wo(Xn)) X P(We( X)) — P(Wor(Xim))

inductively by the following steps: Let m,n € N*(:= N — {0}) and let B €
P(W,(Xy)) and By,...,B, € P(W.(X,,)) such that B, By,...,B, are non-
empty.

(i) If B = {z;} for 1 <j <n, then S ({x;}, B1,...,B,) := Bj.

(ii) If B = {fi(t1,...,tn,)} and assume that S’fn({tq},Bl, oo, Bp) for1 < g <
n;, are already defined, then S3, ({fi(t1,... tn,)}, B1,..., By) :=
{fi(rl, .. ';Tni) | rq € Sﬁn({tq},Bl, .. ,Bn)}

(iii) If B is an arbitrary subset of W;(X,,), then
Sp(B,By,...,By) = | Sp({b}, Bi,..., By).
beB

If one of the sets B, By, ..., B, is empty, we define S%(B,Bl, ...y Bp) = 10.

For the rest of this paper, if X is a set we mean P(X) the set of all subsets
of X. In this paper, we extend the concept of solid non-deterministic varieties
which studied in [2] to solid generalized non-deterministic varieties and we also
characterize M-solid generalized non-deterministic varieties.
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2.  GENERALIZED SUPERPOSITION OPERATIONS OF THE SET OF TERMS

In this section, we give the concept of generalized superposition operations of the
9set of terms and study some properties of such superposition operations.

Definition. Let B, By, ..., B, € P(W;(X)) be such that B, By, ..., B,, are non-
empty. Then the generalized superposition operation

S" 1 (P(W- (X)) = P(W-(X))

is inductively defined as follows:
(i) If B = {z;} for 1 < j <n, then S"({z;}, Bi,..., B,) := Bj.
(i) If B = {x;} for n < j, then S™({x;}, By, ..., B,) = {z,}.

(iii) If B = {fi(t1,...,tn;)} and assume that S*({ty}, Bi,...,By) for 1 < q <
n;, are already defined, then S*"({fi(t1,.. . tn;)}, B1,...,By) =
{filre, ... rn,) [ rq € S"({tq}, B1, .-, Bn)}-

(iv) If B is an arbitrary subset of W-(X,,), then

~

S™B,Bu,...,Bn) = ] §"({b}, B1, ..., Bn).
beB

If one of the sets B, By, ..., B, is empty, we define S'”(B,Bl, .., Bp) :=10.

Our next aim is to prove that the generalized superation operation Sn satisfy the
superassociative law but we need the following lemma.

Lemma 1. Let S be a subset of W.(X). Then

S"(U SP({sY, Ly, ... Ly), T4, ... ,Tn) = $"(5"({s}. L1, .., Ln), T, ..., Thn).

seS seS
Proof. Let z € S"(J S*({s},L1,...,Ln), T1,...,Ty)
seS

o xeS(S"({ul,L,...,Ly),Th,...,T,) for some u € S

sxe | S(S"({sY,Li,....,Ly),Th,...,Tp). n
seS

Lemma 2. Let S be a subset of W.(X). Then

S™(S8, 5Ly, Thy -, Tn)s o S™(Ln, T, . T)
= 57(8"(S,Ly,...,Ln),T1,...,T}).

Proof. If S is empty, the claim is clearly true.
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(1) If S is a one-element set, then we will give a proof by induction on the
complexity of the term which forms the only element of the one-element
of S.

(1.1) If S = {x;} for 1 < j < n, then
§”(S"(S Li,...,Ly),T1,....,Ty)

= 5"(S"({x;},L1,..., Ly), Th, ..., Tp)
:S”(Lj,Tl,...,Tn)
S"({xj} SMLy, Ty, ..., Th), ..., S (L, Th, .., Ty))
= 87(8,8™(L1, Ty, ..., Tp), .., S (L, T4, ..., T})).

(1.2) If S = {x;} for n < j, then

S (S™(S, Ly, ..., Ly), 1, ..., Ty)

= S"(8"({x;}, L1, ..., Ly), Ty, .., T})

= S"({z;},T1,...,T})

= {z;}

= 5" ({z;}, SMLy,Th, ..., Th), .., S (L, Th, - . ., Ty))

= 87(8,8"(L1, Ty, ..., Tp), .., S (L, T4, ..., T})).

(1.3) If S = {fi(s1,...,5n,)} and we assume that the equations
S™M8™({sq}, L1,y Ln), Th, - -, Ty)
= 5"({s4}, 8™ (L1, Th, ..., Tp), ., S (L, T, ..., T}))
where 1 < g < n;, then
Sn(S™(S, Ly,...,Ly), T, ..., Ty)
= S"(S"({fi(s1,-- o Sn) b, L1y Ln), T, T)
= S"({filur, - un;) | ug € S"({84}, L1y, L)}, T1y - oo, T)
= {fi(r1,.. . rn,) | rq € S"({ug | ug € S"({sq}, L1, ..., Ln)},

Tyi,.... Ty}
= {fi(r1,- . rn,) | 7q € ™S ({84}, L1y, L), Ths ..o, T}
= {fi(rl,...,rni) |74 € 5™"({s4}, 8™ (L T1, ., T), - -,
S™(Ly, Ty, ..., Tw)}

= S"({fi(s1,...,5n,)}, 5" (Ll,Tl,...,T )y ooy S L, Th, .. T))
= 587(8,58"(L1, Ty, ..., Tp), ..., S™(Lp, T4, ..., T}))

W\

(2) If S is arbitrary subset of W (X), then
S7(S™(S, Ly, ..., Ly), T1,...,Ty)
=5"(U S"{s}h. L1,...,Ln), Th,..., Ty)

seS
= |J S"(S"({s},L1,...,Lyp), T1,...,T})
sesS
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= U S"({s}, S™(L1, Ty, ..., Tp), ..., S (Ly, T4, ..., T}))
seS
= 57(8,8™(L1, Ty, ..., Tp), ..., S™(Lp, T4, ..., T}))
The following identity is also satisfied.

Lemma 3. Let T be a subset of W (X). Then
SYT, {x1}, ..., {xn}) =T.

Proof. If T is empty, the claim is clearly true.

29

(1) If T is a one-element set, then we will give a proof by induction on the
complexity of the term which forms the only element of the one-element

of T.

(1.1) T = {z;} for 1 < j <n, then

gn(T7 {x1}77{$n}) = ‘fn(i{xjh{wl}:v{xn})
_ TJ

(1.2) If T = {z;} for n < j, then
gn(T7 {x1}>7{xn}> = ‘fn({xj}7{x1}7>{xn})

T

(1.3) If T'= {fi(s1,...,5n,)} and we assume that the equations

S™({sq} {1}, {an}) = {sq}

where 1 < gq < n;, then

SUTAwr}, - {wn}) = S™({fils1s- v sn) bz} {2 })
= {filur, ... un,;) | ug € S"({s4}, {1}, ...

{zn})}

= {filur,...,un;) | ug € {s4}}

= {fi(s1,...,50,)}
=1T.

(2) If T is arbitrary subset of W, (X), then

ST, {x1}, ... {an)) = thS”({t},{:Ul},...,{:nn})

= {t|teT)
=T.

I
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Using the generalized superposition operation S™ we can form the new algebra
(P(W-(X)); S™).

We call this algebra the g-power-clone.

3. GENERALIZED NON-DETERMINISTIC HYPERSUBSTITUTIONS

Hypersubstitutions for terms over one-sorted algebras were introduced by
Graczynska and Schweigert ([5]). Our definitions and the properties of general-
ized superposition operations can be used to define generalized non-deterministic
hypersubstitutions and their extensions.

Definition. A generalized non-deterministic hypersubstitution (for short gnd-
hypersubstitution) of type 7 is a mapping from the set {f; | ¢ € I} of n;-ary
operation symbols of type 7 to the set P(W-(X)).

We denote by H ypgd(T) the set of all gnd-hypersubstitutions of type 7. Any
gnd-hypersubstitution o induces a mapping ¢ defined on the set P(W, (X)), as
follows.

Definition. Let o be a gnd-hypersubstitution of type 7. Then ¢ induces a
mapping ¢ : P(W,(X)) = P(W,(X)), by setting

(i) &[0] := 0.
(i) o[{z;}] := {x;} for every z; € X.

(i) 6[{fi(ts, ... tn)}] = S™(0(fi),6[{t1}],...,0[{tn,}]) if we inductively as-
sume that 6[{t,}] where 1 < g < n;, are already defined.

(iv) 6[B] := bgB&[{b}] for B C W (X).

Then we have:
Lemma 4. Leto € Hypgd(r). Then & is an endomorphism on the g-power-clone.
Proof. We have to shows that
alS™(T,Sy,...,S,) = S"(a[T],6[51],...,0[Sn]).
If T is empty, then the claim is clearly true.

(1) If T is a one-element set, then we will give a proof by induction on the
complexity of the term which forms the only element of the one-element
of T.
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(1.1) T = {z;} for 1 < j <n, then

6[S™(T, S, ..., 5] = A{S?({xj},sl,...,sn)}
- S”(J{x]} 5151),- - 615)
= S"(6[{z;}], 618, (Sn])
= S"(61[T),6(S4], .- -, 7 [Snl).
(1.2) If T = {z;} for n < j, then
6[S™(T, Sy, ..., S,)] = 6[S"({x;},51,..., S,)]
o[{z;}]

= gn({xj},&[sl],...,&[sn])
= 5"(6[{z;}],6[S1); ... 6[Sn])
= S™(6[T),6(S1],...,5[Sn)).

(1.3) If T'= {fi(t1,...,tn,)} and we assume that the equations
G15" ({tg}, St -, Sn)] = §™(61{tg}], 6[S1]; - - -, 6[S)).

where 1 < ¢ < n;, then
6[S™(T, S1,...,5n)
= 6[S™({fi(t1, ... tn)} S1s -, S0)]

= 6[{fi(us,..., Un,) | ug € S*({tq}, 51, - -, SO

= S (o (f), 6[{ur | wr € S™({t:1}, 51, .., St
A[{un |un Egn({tn} Sla---aSn)}D

= S"i(a(f;) [S”({tl} ST S, 615" ({tn;}, 51, -, S)))

= S"i(o(f ) "(ol{ti}t],6[5],- -, 6[Sn])s -, S™(6[{tn, . 6151); - - -,
[Sn)]))

= S"(S™i(o(fi), 6[{t1}],- -, o[{tn.}),0[51], .., [Sn)])

= S"(6[{fi(t, .-, tn)H, 051, 6[Sn)])

= S"(6(T),6(S1],- .., 6[Sn)))-

teT

(
= U 5"(s[{t}], 5[81),...,6Su])
[

teT

—Sn(UA
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Let 01,092 be elements in H ypgd. Since the extension of gnd-hypersubstitution
maps P(W-(X)) to P(W,(X)) we may define a product o1 o, o2 by

0104 09 1= 01 0 02.

Here o is the usual composition of mappings. Since d1 o o9 maps {f; | i € I} to
P(W-(X)), it is a gnd-hypersubstitution of type 7. The following lemmas shows
that the extension of this product is the product of the extensions of o1 and os.

Lemma 5. Let 01,09 be elements in Hypgd. Then we have
(0'1 Og O'Q)A: &1 o 5'2.

Proof. We will show that (o1 o4 02)[T"] = (61 0 62)[T] for all T C W (X).
If T' is empty, then the claim is clearly true.

(1) If T is a one-element set, then we will give a proof by induction on the
complexity of the term which forms the only element of the one-element
of T.

(1.1) If ' = {z;}, then
(01 09 02)[T] = (01 09 oa)[{2;}]

= {z;}
= o1[{z;}]
= 61[62[{z;}]]
= (610 62)[{z;}]
= (6‘1 O&Q)[T]

(1.2) If T = {fi(t1,...,tn,)} and we assume that the equations

(01 09 02)[{tg}] = (61 0 52)[{t4}]

where 1 < g < n;, then
(01 09 02)[T] = (01 09 02)[fi(t1, - .- tn,)]

= 5" ((01 04 02)(fi), (01 09 02)[t1], - ., (01 09 T2][tn,])
= S"i((61002)(fi), (610 62)[{t1}],. .., (610 62)[{tn;}])
= S"((61[o2(fi)], 61[62[{t1}]] - - -, o1[G2[{tn; }]])
= 61[5™ (02(fi), 62[{t1}], .., 62[{tn; }])]
= 61[&2[{fi(t1""7tni)}]]
= (61062)[{fi(t1,- - tn;)}]
== ((5'1 O&Q)[T]

(2) If T is arbitrary subset of W, (X), then
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(0104 02)[T] = U (01 0g 02)[{t}]

teT

= U (61 062)[{t}]

teT

= U a1[62[{t}]]
= o1[U oaf{t}]]

teT
= 61[62[T]]
= (61 0069)[T]. -
From Lemma 5, we get that the products o, are associative. In fact, for each
01,09 and o3 in Hypgd(r), we have

(0’1 Og 0'2) Og 03 = (01 Og O'Q)AO g3
= (5’1 ¢} 5‘2) C 03
= 5’1 ] (5’2 o 0'3)
= 5‘1 (e] (0'2 Og 0'3)A
= 0104 (02 04 03).
This shows that the set of all gnd-hypersubstitutions forms a semigroup with

respect to the associative binary operation o,.
If we consider ogq is an element in H yp’éd(T) defined by

Ugid(fi) = {f’i(xl’ ceey xnz)}?
then it is an identity element with respect to o, (see [2]).

Theorem 6. The algebra (HypXi(1); 0q, 04ia) forms a monoid.

4. SOLID GENERALIZED NON-DETERMINISTIC VARIETIES

In this section we want to apply the theory of conjugate pairs of additive clo-
sure operators to algebras and identities and want to define generalized non-
deterministic hyperidentities and solid generalized non-deterministic varieties of
algebras.

Definition. Let A = (4; (f)ics) be an algebra, and B € P(W,(X)). Then we

(2
define the set B4 of terms operations on A induced by terms as follows:

(1) If B = {x;}, then B := {x;‘\}

(2) If B = {fi(t1,....ty,)}, then BA = {fA(t,... t2)} where f/' is the
fundamental operation of A corresponding to the operation symbol f; and
where t;;‘ are the term operations on A which are induced in the usual way
by the ¢, 's for 1 < g < nj.
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(3) If B is an arbitrary subset of W,(X), then we define B4 := bUB{b}A.
€

If B is empty, then we define B4 := 0.

Definition. Let A be an algebra and let T',T; € P(W (X)) for 1 < j < n such
that T',T; are non-empty. Then the superposition operation

S (PWH (X)) = P(W(X))Y,
is inductively defined in the following way:
(1) T = {x;} for 1 < j <n, then

SPALe AT, TR = TA

2) f T ={x;} for n < j, then
J

S A a3 T TR =

(3) ¥ T = {fi(ts,...,ts,)} and we assume that S™4({t,}*, TA, ..., T:;}) where
1 < g < n;, are already defined, then

SPA{filty, ... b))} TA, . T
A, ) [ € S A T T

n

(4) If T is an arbitrary subset of W, (X), then

SEATATA, T = ST, L T,
teT

Lemma 7. Let A be an agebra of type T and let T be a subset of W, (X). Then
(S™(T,Ty,..., T))A = S™A(TATA, ..., TH.
Proof. If T is empty, then all is clear.

(1) If T is a one-element set, then we will give a proof by induction on the
complexity of term which is the only element of the one-element set T

(1.1) If T = {z;} where 1 < j < n, then
(S™(T,Tv,...,T.))A = (S"({z,}, Th, ..., T))*
=TA

Az A TA, . T,

n
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(1.2) If T = {z;} where n < j, then
(S™(T,Ty,...,T,))* = (Sn(;xj},Tl,...,Tn))A
= {zj}
= SPA{a AT, . TA).

n

(1.3) If T'= {fi(t1,...,tn,)} and if we assume that the equations

(S™({sq}, Th, ..., T)™ = S™A({s, }4, T, ..., TD),

where 1 < g < n;, are satisfied, then

~

(S™(T,Ty,...,T,))*
= (S"({filtr, - tn)}, Ty T))A

= ({fi(r1,..,rn;) | 7g € S"({tg}, 1y - .., Tr) DA

= {fA0 o) [t e (St} Ths - T)) Y
= {fA0 o) et e SMA{E AT, L T}
= SMA{filty, ..t ) YA TR, TAY)

(
= SPA(TATA ... TH).

(2) If T'is an arbitrary subset of W-(X), then
(S™T,Ty,..., TN = (U S"({t}, Ty, ..., Tu))*

teT
= UE"{th . Tt

teT
= U S™A{ATA, ..., T

teT "
= SPATATA, ..., TH).

Let B be a subset of W, (X) and let K be a subset of Alg(7). Then we set

B¥ .= | J BA
AeK

Definition. Let A = (4;(f)icr) be an algebra of type 7 and (By, B2) €
P(W,(X))?, written as By ~ By. Then A = B; ~ By iff B = Bj' and
K = By ~ By iff BE = BE where K C Alg(7).
Let K be a subset of P(Alg(7)). Then

K':BlfoBQ IHVKGK:(K':BleQ)

Let PL be a subset of P(W,(X))? = P(W,(X) x W-(X)). Then K | PL iff
K = By = By for all K € K and for all B; =~ By € PL.
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Let K, PL be a subset of P(W,(X)), a subset of P(W,(X))?, respectively.
Then we define a mapping PId : P(P(Alg(r))) — P(P(W-(X))?) by

PId(K) := {By ~ By € P(W,(X))? | VK € K(K |= B; ~ By)},
and a mapping PMod : P(P(W,(X))?) — P(P(Alg(t))) by
PMod(PL) := {K € P(Alg(r)) | VB ~ By € PL(K |= By ~ Ba)}.

In the next lemmas we will show that these two mapping satisfy the Galois-
conection properties.

Lemma 8. Let P(Alg(7)) be the class of all subsets of Alg(T) and let IC, K1, Ko €
P(Alg(T)). Then

(1) If]Cl g ]CQ, then PId’CQ g PId]Cl.
(2) K C PModPIdK.

Proof. (1) Assume that Ky C Ko and let By =~ By € PIdKy. Then for all
K € K9, K E By = By, but we have K; C Ky, so that K = By = By for all
K € K. It follows that By =~ By € PIdK:, and then PIdKy C PIdK;.

(2) Let K € K. Then K [= PIdK, means that K € PModPIdK, and then
K C PModPIdK. [

In the similarly method, we have

Lemma 9. Let P(W.(X)) be the set of all subsets of W-(X) and let PL, PLy, PLs
be subsets of P(W,(X))2 Then

(1) If PLy C PLy, then PModPLy C PModPLy.
(2) PL C PIdPModPL.

From both lemmas we have that (PMod, PId) is a Galois connection between
P(Alg(r)) and P(W,(X))? with respect to the relation

R = {(K, By = Bs) € P(Alg(7)) x P(Wr(X))* | K |= B1 ~ Ba}.
We have two closure operators PModPId and PIdPMod and their sets
{PL C P(W,(X))? | PIdPModPL = PL}

and
{K CP(Alg(r)) | PModPIdK = K}
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form two complete lattices £ and L, respectively.
If A = (A;(fY)ier) is an algebra of type 7 and if ¢ € Hyp(r) is gnd-
hypersubstitution, then we define

o(A) = {A; (T YYier | 1 € o(fi)}-

The set o(A) is called the set of derived algebras. Since for every sequence (I;);er
of terms there is a generalized non-deterministic hypersubstitution mapping f;
to l;, we can write o(A) also in the form

o(A) = {p(A) | p € Hypa(r) with p(f;)* € o(fi)* for i € I},

For a class K of algebras of type 7 we define

AeK

Definition. Let B € P(W,(X)), let A = (A; (f)icr) is an algebra of type 7.
Let 0 € HypPd(r) be gnd-hypersubstitution and let o(A) be the set of derived
algebras. Then we define the set B of term operations induced by the set
o(A) of derived algebras as follows:

(1) If B={z; | z; € X;,}, then
B7W = (o] | p(A) € 0(A) and p € Hypa(r)} = {e] "),

A
where e’

F (a1,...,ay) — a; is an n-ary projection onto the j-th coordi-
nate.
(2) If B={zj|z; € X\X,}, then
ag A n
BT = {af™ | p(A) € o(A) and p € Hype(7)} = {ch},

where ¢, is the n-ary constant operation on A with value a and each element
from A is uniquely by an element from X\X,,.

(3) If B = {fi(t1,...,tn,)}, and if we assume that {t,}7A) where 1 < ¢ < n;,
are already defined, then

BIW = SUA{ PN | p(A) € o (A}t ()T HY)

(4) If B is an arbitrary subset of W, (X), then B .= | J {p}°A.
beB
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If B is empty, then we set B7(A) .= (.

Lemma 10. Let A be an algebra of type 7, and let B € P(W,(X)). Let o €
Hyp(t) be a gnd-hypersubstitution of type 7. Then

6[BA = B°M.
Proof. If B is empty, then the claim is clearly true.

(1) If B is a one-element set, then we will give a proof by induction on the
complexity of the term which forms the only element of the one-element
of B.

(1.1) If B={z; | z; € Xy}, then
oBI = ol{z; | 2, € X, |2, € X,)}4
= {$g4| zj € Xn}
= {z} A| xzj € Xp}
~ {4
= {ﬂfj(ll)xj € X, )7
= B7WY.
(1.2) If B={z; | z; € X\X,}, then
OB = ol | 2; € X\X, 14
= {33€4| zj € X\X,}
= {2} [ zj € X\Xn}
~ (i |oe4)
o(A
= {af V] € X\ X}
= {ivj(l‘)wj € X\ X}
= BT,

(1.3) If B ={fi(t1,...,tn;)}, and we assume that the equations
&[{tq}]A = {tq}U(A)

where 1 < g < n;, then
G[BIA = 6[{fi(tr, - )}
= (S™(a(fi),6[{tr}),- ... o[{tn, )™
Ao (fi)A e [{t A, 6t 1)
AL e o(f)YA e[t - 6{En 1)

Uy Uy
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SPAI L € o(fi) ) 6T{t 1A, - 6 l{tn })
U S”A({l““} o[{t 14, ol{tn 1)

. Uf)S’ A{p(f)* | p(fi) = 1 for some p € Hype(r)
€a(

and p(A) € o(A)}, {11}, .. {tn, }7)
= SmA{fIY | p(A) € a(A) ()7, {1}

- {fz(tla” ) n )}U(
— Bo(A).

(2) If B is an arbitrary subset of W,(X), then
o[BI = (U al{p})*

beB
= U o)

beB

= (U {p™
beB
— Bo(A)
[ ]

Lemma 11. Let A = (A; (fz )icr) be an algebra of type T and 01,09 € Hypgd(T).
Then we have o1(02(A)) = (01 0 02)(A).

Proof. By Lemma 10, we have
a1(02(A)) = {B(p(A)) | p(f)"™ € Ul(f)UQ(A) B(A) € 03(A),i € I}
= {(Boc p)(A) | (Bog p)(fi)* € Uz[al(fz)]“: B(A) € 03(A),i € I}

= {(Boc p)(A) | (Bog p)(fi)* € (02 04 1) (fi) ", B(A) € 02(A),
iel}

= (0204 01)(A). "

Lemma 12. Let A = (A4;(f)ic1) be an algebra and o;q € Hypl (). Then

Proof. By Lemma 11, we have

ogia(A) = {p(A) | p(fi)* € ogia(fi)? i € T}

{p(A) | p(fi)* € {fi(xr, ... a0} i € T}

{p(A) | p(fi)* G{f““(wla---, ﬁ)}ZGI}

{p(A) | p(fi)* = A = ogia(fi)* € (A i€ T}
{ogia(A) | p(fi)* = [ = Ugld(fz) e{ffyiely
{A]p(fi)* = f = oga(fi)* € {7} i€ I}

Let (M;og4,04iq) be a submonoid of (HypnGd(T);Og,O'gid) and let By =~ By €
P(W,(X)). For every A = By ~ By such that A = 6[Bi] ~ 6[Bs] for all
o € M, we written as, A ':M—gnd—hyp By ~ By and K ):M—gnd—hyp By =~ By for
all A € K.
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Now we define two mappings which give a second Galois connection. Let I C
P(Alg()) and PL C P(W,(X))2. Then we define a mapping

HyPId: P(P(Alg(r))) = P(P(Wr(X))?),
by
HyPIdK := {B1 ~ By € P(W-(X))? | VK € K(K EM—gnd—hyp B1 =~ B2)}
and define a mapping
HyPMod : P(P(W(X))?) = P(P(Alg(r))),
by
HyPModPL := {K € P(Alg(1)) | VB = By € PL(K}=0r—gna—hypB1 ~ Ba2)}.

It is easy to see that (Hy PMod, HyPId) is a Galois connection between
P(Alg(7)) and P(W,(X))? with respect to the second relation

R':M—gnd—hyp
= {(Ka Bl ~ B2) € P(Alg(T)) X P(WT(X))2 | K ):M—gnd—hyp Bl ~ B2}

We have two closure operators Hy;PModHyPId and Hy;PIdHyPMod and
their sets

{PL C P(W,(X))?| HyPIdHy;PModPL = PL}

and
{K CP(Alg(r)) | HuPModHyPIdK = K}

form two complete sublattices SE, SL of £, L, respectively.

Theorem 13. Let A be an algebra of type 7, and o € Hyp?;d(T). Let By =~ By €
P(W.(X))2. Then

O'(A) ):Bl %BQ@A):&[Bl] %5'[32]

Proof. By Lemma 10, we have
o(A) = By ~ By & BIYW = I
& 6[B1)A = 6Byt
< A o6[By] = d[Ba. -



M-SOLID GENERALIZED NON-DETERMINISTIC VARIETIES 41

Definition. Let K C P(Alg(7)) and PL C P(W,(X))?. Then we set
Xi1[B1 = By] := {6[B1] ~ 6[Bo] | 0 € M}

and
XK = {o(K) | o € M}.

We define two operators in the following way:
Xir : P(P(Wr(X))?) = P(P(W-(X))?)
by x§;[PL] := {x%,[B1 =~ Bs] | By = By € PL} and
Xar : P(P(Alg(r))) = P(P(Alg(r)))

by X4y [K] = {x3;[K] | K € K}.
In the next lemmas we will show that the both operators are closure operators.
Lemma 14. Let PL, PLy, PLy be subsets of P(W,(X))2. Then

(i) PL C x%[PL).

(ii) PLy C PLy = x¥[PL1] C x§;[PLo.

(iii) x§7[PL] = xi; i [PL].

Proof. (i) Let By = By € PL. Then, since By = 64iq[B1] and By = 64,q4[B2], we
have 6[B1] = By &~ By = 6[Ba] € x{;[PL] and then PL C x¥,[PL].

(ii) Assume that PL; C PLy and let 6[Bi] ~ 6[B2] € x%[PL1]. Then
Bi ~ By € PLy but PL1 C PLs, so that By =~ By € PLo and &[Bl] ~ &[BQ] €
X% [PLs]. We have x§;[PL1] C x¥,[PLs].

(i) By (i) we have x5 [PL] € x5 [\5PL]. Let {By) ~ 6(B3] e & [PLI.
Then By ~ By € Xﬁ[PL], and there exists p € M and C7 = Cy € PL such that
By = p[C1] and By = p[Cs], and then

= A[C5] where A =0 o4 p € M.

Then we set \[C1] = 6[B1] ~ 6[Ba] = A[Cs)] € x¥,[PL], and obtain x % [x¥[PL]] €
E
Xa[PL]- u
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Similarly method we have
Lemma 15. Let KC, K1, Ko be subset of P(Alg(7)). Then
(i) K S xaylKl,
(if) K1 C K2 = xqylKa] € xjylKal,
(i) X3y [K] = xar xar (K1)

The next theorem needs the concept of a conjugate pair of additive closure op-
erators.

Theorem 16. The pair (Xf\ép Xﬁ) 18 a conjugate pair of completely additive clo-
sure operators with respect to the relation R .

Proof. By Theorem 13, Lemma 14 and Lemma 15. [ |

Definition. Let (M;o,,0,4) be a submonoid of (Hypl(7); 04, 04iq). A variety
V of type 7 is said to be an M-solid generalized non-deterministic variety, for
short an M-gnd-solid variety, if {{A} | A € V} = {6[{s}] = 6[{t}] | s =t €
I1dV,0 € M} and s = t is also said to be an M-solid generalized non-deterministic
hyperidentity in V, for short an M-gnd hyperidentity in V. In this case that
M=H yp’éd(T) we will speak of a solid generalized non-deterministic variety, for
short of a gnd-solid variety and generalized non-deterministic hyperidentity, for
short of a gnd hyperidentity, respectively.

Now we may apply the theory of conjugate pairs of additive closure operators
(see [4]) and obtain the following propositions:

Lemma 17. Let V. C Alg(7) be a class of algebras and ¥ C W,(X)2. Let
VE={{A} | A€V} and ¥* = {6[{s}] = 6[{t}] | s~t € X,0 € M}. Then the
following properties hold:

(i) HyPIdV* = PIdx{,[V*].
(ii) HyPIdV* C PIdV*.
(iil) X% [HyPIdV*) = Hy PIdV*.
(iv) x4 [PModHy PIdV*) = PModHy PIdV*.
(v) HyPIdHpy PModY* = PIdPMody%,[2*].

Using these propositions one obtains the following characterization of M-solid
generalized non-deterministic varieties.
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Theorem 18. Let V be a subset of Alg(t). Let V* = {{A} | A€ V}. Then the

following properties are equivalent:

(i) HyPModHy PIdV* = V*.

(ii) x4, [V*] = V* (i.e. V* is an M-gnd-solid variety).

(iii) PIdV* = HpPIdV* (i.e. every identity in V* is satisfied as an M-gnd

hyperidentity).

v) x§[PIdV*] = PIdV*.
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