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Abstract

A quasiorder (relation), also known as a preorder, is a reflexive and
transitive relation. The quasiorders on a set A form a complete lattice
with respect to set inclusion. Assume that A is a set such that there is
no inaccessible cardinal less than or equal to |A|; note that in Kuratowski’s
model of ZFC, all sets A satisfy this assumption. Generalizing the 1996 result
of Ivan Chajda and Gábor Czédli, also Tamás Dolgos’ recent achievement,
we prove that in this case the lattice of quasiorders on A is five-generated,
as a complete lattice.
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1. Introduction and goal

Reflexive and transitive relations of a set A are called quasiorders or, in other
fields of mathematics, preorders. Let Quord(A) and Equ(A) denote the set of all
quasiorders and equivalences on A, respectively. Equipped with meet (intersec-
tion) and join (transitive hull of union), both of them are algebraic lattices. The
lattices Equ(A) and, more recently, Quord(A) are natural objects to study; for
example, see Czédli [1], Tůma [12], and the other papers mentioned in the rest
of this section.

For finite sets, Strietz in [10] and Zádori in [13] gave a four-element generating
set for Equ(A).
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Developing his result in [4] for the ℵ0-case further, Czédli proved in [3] and
[5] that if A has at least four elements and there is no inaccessible cardinal m
such that m ≤ |A|, then Equ(A) is generated by four elements. This means
that Equ(A) has a four-element subset which is included in no proper complete
sublattice of Equ(A). A cardinal m is inaccessible if m > ℵ0, k < m implies
2k < m, and, finally, whenever J is a set of cardinals such that |J | and all k ∈ J
are strictly less than m, then sup{k : k ∈ J} < m. By Kuratowski’s result [7],
see also [8], ZFC has a model without inaccessible cardinals. Hence the existence
of inaccessible cardinals cannot be proved from ZFC, and the scope of our result,
Theorem 2.1 includes all sets in an appropriate model of set theory. For more on
inaccessible cardinals the reader can resort to standard textbooks, for example,
to Levy [8, pages 138–141].

Our first goal is to derive, in a short way, from Czédli’s result that Quord(A)
has a five-element generating set. However, the construction of the generating
equivalences in [3] and [5] is quite involved and long. In particular, even the
|A| = ℵ0 case needs a limit procedure there. This justifies our second goal: to
give an easier and more understandable five-element generating set for Quord(A).
For simplicity, we only deal with the case when |A| is at most continuum. Note,
however, that combining our approach with Czédli’s method [3] and [5] or, alter-
natively, with Takách [11], one could elaborate an alternative, quite long proof
for Theorem 2.1(i).

An earlier counterpart of Theorem 2.1, with three partial orders and their
inverses as generators, is due to Chajda and Czédli [2] for all finite and many
infinite cardinals, and to Takách [11] for all cardinals below the first inaccessible
cardinal. The particular case of Theorem 2.1 for |A| ≤ ℵ0 is due to Dolgos [6].
Our construction for the at most 2ℵ0-case generalizes Dolgos’ approach.

2. The main theorem and two approaches

For a, b ∈ A, let 〈a, b〉 and 〈a, b〉e denote the smallest quasiorder and the smallest
equivalence on A that contain the ordered pair (a, b), respectively. Typically, we
use the notation 〈a, b〉 only for a 6= b; then 〈a, b〉 is an atom in Quord(A). As
usual, ∆ stands for the diagonal relation {(x, x) | x ∈ A}.
Theorem 2.1. Let A be a set with at least three elements.

(i) If there is no inaccessible cardinal m such that m ≤ |A|, then Quord(A) has
a five-element generating set.

(ii) If ℵ0 ≤ |A| ≤ 2ℵ0, then Quord(A) has a five-element generating set.

Of course, part (ii) is a particular case of part (i). As mentioned before, these
parts will be proved with different methods.
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Proof of part (i) of Theorem 2.1. Pick a pair (a, b) ∈ A × A of distinct el-
ements, and denote the sublattice generated by 〈a, b〉 and the four equivalences
introduced in [3] by L. (Remember that the four equivalences in question gen-
erate Equ(A).) It suffices to show that L = Quord(A). Clearly, % =

∨
{〈c, d〉 :

(c, d) ∈ %} for any % ∈ Quord(A). Hence it is sufficient to show that 〈c, d〉 ∈ L
for every c, d ∈ A with c 6= d. Observe the rules

〈p, x〉 = 〈p, x〉e ∧ (〈p, q〉 ∨ 〈q, x〉e) and(1)

〈x, q〉 = 〈x, q〉e ∧ (〈x, p〉e ∨ 〈p, q〉),(2)

provided |{p, q, x}| = 3. Thus, since all equivalences belong to L, we obtain the
implication

(3) 〈p, q〉 ∈ L =⇒
(
〈p, x〉 ∈ L and 〈x, q〉 ∈ L

)
.

Next, assume that |A| ≥ 4 and pick u, v ∈ A with |{a, b, u, v}| = 4. Using (3)
twice, we obtain that 〈a, v〉 ∈ L and 〈u, v〉 ∈ L. Similarly, 〈v, u〉 ∈ L. Changing
the role of (a, b, u, v) to that of (u, v, b, a), we obtain that 〈b, a〉 ∈ L. Furthermore,
(3) yields that each atom 〈u, v〉 with |{a, b, u, v}| = 3 is also in L. That is, L
contains all atoms of Quo(A) as required.

Finally, let |A| = 3, say, A = {a, b, c}. Using (3), the equality 〈a, b〉e =
〈a, b〉 ∨ 〈b, a〉, and the fact that {〈a, b〉e, 〈b, c〉e, 〈c, a〉e} generates the five-element
Equ(A), it is straightforward to see that {〈a, b〉, 〈b, a〉, 〈b, c〉e, 〈c, a〉e} is a four-
element generating set of Quo(A). Adding a fifth element, we obtain a five-
element generating set.

Next, we give a self-contained proof for part (ii).

Proof of part (ii) of Theorem 2.1. Let A0 = {a0, b0, a1, b1, a2, b2, . . . }. The
subsets {a0, a1, a2, . . . } and {b0, b1, b2, . . . } are called rows, the a-row and the
b-row, respectively. For a technical reason, which will be clear soon, we denote
a3i+10 and b3i+11 by ei and e′i, respectively; these elements will be black-filled in
our figures. In Figure 1, ei and e′i are connected by a dotted edge whose role
will be explained in due time. Furthermore, sometimes we even use the notation
(e−1, e

′
−1) for (a7, b8) in our computations.

We are going to define five quasiorders on A0, denoted by α0
0, α

0
1, α

0
2, β

0, and
β0∗ ; in fact, the first three will be equivalences. (The upper subscripts 0 refer to
the fact that they are defined on A0; later we will also introduce α0, α1, α2, β,
and β∗, which will be defined on a larger set A.) Besides (or instead of) their
formal definition below, the reader is advised to understand them from Figure 1.
For i ∈ {0, 1, 2}, we define α0

i by the corresponding partition

(4)

{
{a3k+i : k ∈ Z}

}
∪
{
{a3k+i+1, a3k+i+2} : k ∈ Z

}
∪{

{b3k+i+1 : k ∈ Z}
}
∪
{
{b3k+i+1+1, b3k+i+1+2} : k ∈ Z

}
.
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Also, let

β0 = 〈a0, a2〉 ∨ 〈b0, b2〉 ∨ 〈a4, b5〉 ∨ 〈b8, a7〉

and, finally, let

β0∗ = (β0)−1.

For δ ∈ {α0
0, α

0
1, α

0
2, β

0} and x, y ∈ A0, we have (x, y) ∈ δ iff the vertices x and
y can be connected by a δ-colored directed path in Figure 1; this is the meaning
of the figure. (Almost all edges but (a0, a2), (b0, b2), (a4, b5) and (b8, a7) are
directed in both ways.) Since β0∗ is the inverse of β0, the β0∗-colored edges are not
indicated. At present, the dotted edges belong neither to β0, nor to β0∗ ; however,
some of these edges (directed upwards or downwards) will be added to β0 or β0∗
at a later stage of the construction.

Figure 1. Quasiorders on A0.

Later we will need κ ≤ 2ℵ0 copies of A0. Note that Dolgos [6] used only the
upper row of a single copy of A0. When we work in a single row, we often follow
his arguments.

Figure 2. A0 in a concise form.

Figure 3. A part of β ∈ Quord(A) if H =
{
∅, {2, 3}, {2, 4, 5}

}
.

Starting from the ℵ0-sized graph A0, we are going to define a more involved
graph. (Note at this point that our graphs and their vertex sets are usually de-
noted in the same way.) Let κ be an arbitrary cardinal such that ℵ0 ≤ κ ≤ 2ℵ0 .
Let I = {2, 3, 4, . . . }, and take a subset H of P(I) such that |H| = κ. For simplic-
ity, assume that ∅ ∈ H. Next, for U ∈ H, we modify the graph A0 to obtain a col-
ored graph A0(U) with vertex set {a0(U), b0(U), a1(U), b1(U), a2(U), b2(U), . . . }
as follows. When it is not confusing, we drop the parameter U and simply write
a0, b0, a1, b1, . . . . In particular, ei(U) and e′i(U) are denoted by ei and e′i in our
figures. However, A0(U) is given in the figures and it refers to all these elements.
Of course, we assume that A0(U) ∩ A0(V ) = ∅ whenever U 6= V ∈ H. Now,
to obtain A0(U) from A0, we replace the dotted edges with “real” edges (e′i, ei)
for i ∈ U and (ei, e

′
i) for i ∈ I \ U . For U ∈ H, the set A0(U) is called a box.

In Figure 3, boxes are grey. For example, the lower grey box in our figure is
A0({2, 4, 5}).
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Now, we are in the position to define a new colored graph, A, as follows. Its
vertex set is the union of the disjoint sets A0(U), that is, A = {A0(U) : U ∈ H}.
Besides that all the previous edges are preserved, we add the β-colored directed
edges (e0(∅), e0(U)) and (e1(U), e1(∅)) for all U ∈ H. In this way, we obtain
our new graph, A; see Figure 3 for the particular case H =

{
∅, {2, 3}, {2, 4, 5}

}
.

As before, for δ ∈ {α0, α1, α2, β}, we let (x, y) ∈ δ iff the vertices x and y can
be connected by a δ-colored directed path in the graph A. In this way, we have
defined four quasiorders, α0, α1, α2, and β on A; the fifth one is β∗ := β−1. Notice
that if δ, ε ∈ {α0, α1, α2, β, β∗} and δ 6= ε, then δ∧ε = ∆. Notice also that all the
αi are row-preserving ; this means that whenever (x, y) ∈ αi for some i ∈ {0, 1, 2},
then there is a unique U ∈ H such that either x, y ∈ {a0(U), a1(U), . . . }, or
x, y ∈ {b0(U), b1(U), . . . }. For an equivalence % on A and x ∈ A, the %-block
{y ∈ A : (x, y) ∈ %} will be denoted by x/%.

Now, let L denote the smallest complete sublattice of Quord(A) such that
{α0, α1, α2, β, β∗} ⊆ L; our task is to show that L = Quord(A). As it was
pointed out at the beginning of the previous proof, it suffices to show that L
contains all atoms 〈x, y〉, where x 6= y ∈ A.

For U ∈ H and distinct x, y ∈ A(U), we introduce the notation

〈x, y〉H :=
∨
V ∈H
〈x(V ), y(V )〉.

Let us emphasize that this notation is only permitted if x and y belong to the
same copy of A0, that is, to the same grey box in Figure 3.

We claim that

(5) 〈a3, a2〉H = (α0 ∨ β) ∧ α1 ∈ L.

To show the “⊇” inclusion, assume that x 6= y and (x, y) ∈ (α0 ∨ β) ∧ α1. Then
(x, y) ∈ α1 and there is a shortest path P from x to y in the graph whose edges
are colored with α0 and β. Since α1 is row-preserving, x and y belong to the
same row. Suppose, for a contradiction, that this row is {b0(U), b1(U), . . . }. If
P goes entirely within this row, then it is clear by definitions, or by our figures,
that either (x, y) ∈ α0 ∪ β, or (x, y) = (b0(U), b3(U)). In both cases, (x, y) /∈ α1,
which is a contradiction. On the other hand, if P leaves this b-row, then it
arrives at some ei(V ) in the next step, where V ∈ H and i ∈ {−1, 2, 3, 4, . . . }.
But the only new vertex we can go from ei(V ) via an (α0 ∪ β)-colored path is
the neighboring vertex to the right of ei(V ). Then, in the next step of the path,
we must turn back. This contradicts the minimality of P . Therefore, x and y
belong to an a-row, {a0(U), a1(U), . . . }. Observe that our path P lies entirely in
the same a-row. Really, if not, then P contains a β-colored edge (ei(U), e′i(U)),
(e0(∅), e0(U)) or (e1(U), e1(∅)). However, all ei(U) and all e′i(U) belong to distinct
two-element α0-classes. All of these α0-classes have the property that either
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at most one β-colored edge’s eindpoint belongs to the class or if two β-colored
edge’s eindpoints are in the class, then these edges are directed in the same way.
Hence, P can not leave this latter row, which is a contradiction. Thus, P lies
in the a-row containing x and y. Since α0 ∧ α1 = ∆ = α1 ∧ β, both colors, α0

and β, occur in our path P . Since P is the shortest path and the a-row of x
and y contains only one β-colored edge, P contains exactly one β-colored edge,
(a0(U), a2(U)). Therefore, x ∈ a0(U)/α0 and y ∈ a2(U)/α0. Using (4), we have
that x ∈ {a3k(U) : k ∈ Z} and y ∈ {a1(U), a2(U)}. Thus, taking (x, y) ∈ α1 into
account, (x, y) = (a3(U), a2(U)) ∈ 〈a3, a2〉H . This proves the “⊇” inclusion in
(5); the reverse inclusion is obvious. This proves (5).

Next, we assert that

(6) 〈a0, a2〉H = (〈a3, a2〉H ∨ α0) ∧ β ∈ L.

To see this, let (x, y) ∈ (〈a3, a2〉H ∨ α0)∧ β such that x 6= y. Since both 〈a3, a2〉H
and α0 are row-preserving, x and y belong to the same row. In the shortest
path connecting x and y, both of the colors α0 and 〈a3, a2〉H occur, because the
intersections of these colors with β is ∆. The presence of 〈a3, a2〉H yields that
we are in an a-row, say, in A0(U). Since the restriction of β to this a-row is
〈a0(U), a2(U)〉, we obtain that (x, y) = (a0(U), a2(U)) ∈ 〈a0, a2〉H . This proves
the “⊇” inclusion in (6), while the converse inclusion is evident.

Next, we show that

(7) 〈b0, b1〉H = (α2 ∨ β) ∧ α1 ∈ L.

Assume that (x, y) ∈ (α2 ∨ β) ∧ α1 and x 6= y. Again, since α1 is row-preserving
and α2∧α1 = ∆ = β∧α1, x and y are in the same row and the shortest (α2∪β)-
path P connecting them contains both colors, α2 and β. As in the argument
verifying (5), exactly one edge of this path is β-colored and P does not leave
the row of x and y. Suppose, for a contradiction, that we are in an a-row. It
follows easily from definitions that either (x, y) ∈ α2 ∪ β, or x ∈ {a0, a1} and
y ∈ {a3k+2 : k ∈ N0}, but this contradicts (x, y) ∈ α1. Hence, x and y are in
a b-row. So the only β-colored edge in P is (b0(U), b2(U)). After its β-colored
edge, P consists of at most one edge. This gives that y ∈ {b1(U), b2(U)}. There
can be arbitrary many α2-colored edges before the only β-colored one, but we
have that x ∈ {b3k : k ∈ N0}. Taking (x, y) ∈ α1 into account, we conclude that
(x, y) = (b0(U), b1(U)) ∈ 〈b0, b1〉H , as required. The converse inclusion is obvious,
so we have proved (7).

Similarly to (6), we obtain the following containment easily:

(8) 〈b0, b2〉H = (〈b0, b1〉H ∨ α2) ∧ β ∈ L.

Since the involutory automorphism L → L, defined by % 7→ %−1, maps β to β∗,
it follows that L is closed with respect to this automorphism, that is, for all
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x, y ∈ A, U ∈ H, and u, v ∈ A0(U),

(9) 〈x, y〉 ∈ L⇐⇒ 〈y, x〉 ∈ L and 〈u, v〉H ∈ L⇐⇒ 〈v, u〉H ∈ L.

Combining (6) and (8) with (9), we obtain that 〈a2, a0〉H ∈ L and 〈b2, b0〉H ∈ L.
For a subset X of Quord(A), the smallest complete sublattice including X will
be denoted by [X]. Our next task is to show that, for all k ∈ N0,

(10) 〈ak, ak+1〉H ∈
[
〈ak, ak+2〉H , α0, α1, α2

]
.

Observe that, for every U ∈ H, there exists a unique i ∈ {0, 1, 2} such that the
pair (ak+1(U), ak+2(U)) is in αi, and this i depends only on k but not on U . As
it is clear from definitions, for all s, t, j ∈ N0 and i ∈ {0, 1, 2},

(11) (as, at) ∈ αi ⇐⇒ (as+j , at+j) ∈ αi+j ,

where the addition in the subscript of α is understood modulo 3. This allows us
to assume that i above is 0, that is, (ak+1(U), ak+2(U)) ∈ α0 for all U ∈ H. This
means that k ≡ 3 (mod 3).

To prove (10), it suffices to show that

(12) 〈ak, ak+1〉H = (α0 ∨ 〈ak, ak+2〉H) ∧ α2.

The “⊆ ” inclusion is obvious. To verify the reverse inclusion, assume that
(x, y) ∈ (α0 ∨ 〈ak, ak+2〉H) ∧ α2. Since α2 is row-preserving, there is a U ∈ H
such that x and y are in the same row of A0(U). Using that α0 ∧ α2 = ∆, every
(α0 ∪ 〈ak, ak+2〉H)-path P from x to y must contain an 〈ak, ak+2〉H -colored edge.
So, since α0 is also row-preserving, both x and y are in the a-row of A0(U).
Let P above be a shortest path, then it contains an 〈ak, ak+2〉H -colored edge
only once. Thinking of the segments of P after this edge, it follows that y ∈
{ak+1(U), ak+2(U)}, while the segment before this edge yields that x ∈ {ai(U) :
i ≡ 0 (mod 3)}. Now the definition of α2 gives that (x, y) = (ak(U), ak+1(U)) ∈
〈ak, ak+1〉H , proving (10).

Since 〈ak+1, ak+2〉H = (α2∨〈ak, ak+2〉H)∧α0 follows basically in the same way
as (12), we obtain that

(13) 〈ak+1, ak+2〉H ∈
[
〈ak, ak+2〉H , α0, α1, α2

]
.

Similarly, we obtain 〈ak+2, ak+3〉H =
(
α0 ∨ 〈ak+2, ak〉H

)
∧ α1, whence

(14) 〈ak+2, ak+3〉H ∈
[
〈ak+2, ak〉H , α0, α1, α2

]
.

Using the rule

(15) (bs+1, bt+1) ∈ αi ⇐⇒ (as, at) ∈ αi,
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one concludes easily from (10), (13), and (14) that

(16)

〈bk, bk+1〉H ∈
[
〈bk, bk+2〉H , α0, α1, α2

]
,

〈bk+1, bk+2〉H ∈
[
〈bk, bk+2〉H , α0, α1, α2

]
, and

〈bk+2, bk+3〉H ∈
[
〈bk+2, bk〉H , α0, α1, α2

]
.

If we combine the generators occurring in (10), (13), and (14), then we obtain
a larger subset of Quord(A) that is closed with respect to the involutory auto-
morphism % mentioned right after (8). Therefore, (10), (13), (14), and (16) yield
that

(17)

{
〈ak+1, ak〉H , 〈ak+2, ak+1〉H , 〈ak+3, ak+2〉H , 〈ak, ak+1〉H ,

〈ak+1, ak+2〉H , 〈ak+2, ak+3〉H , 〈bk+1, bk〉H , 〈bk+2, bk+1〉H ,

〈bk+3, bk+2〉H , 〈bk, bk+1〉H , 〈bk+1, bk+2〉H , 〈bk+2, bk+3〉H
}

⊆
[
〈ak, ak+2〉H , 〈ak+2, ak〉H , 〈bk, bk+2〉H , 〈bk+2, bk〉H , α0, α1, α2

]
=: L̂.

Here L̂ denotes the sublattice on the right of “⊆”. We say that two sequences,
(x = p0, p1, . . . , pk = y) and (x = q0, q1, . . . , qn = y), are internally disjoint
sequences from x to y if {p1, . . . , pk−1}∩{q1, . . . , qn−1} = ∅. The following lemma
is straightforward.

Lemma 2.2. If (x = p0, p1, . . . , pk = y) and (x = q0, q1, . . . , qn = y) are inter-
nally disjoint sequences from x to y, then

(〈p0, p1〉 ∨ · · · ∨ 〈pk−1, pk〉) ∧ (〈q0, q1〉 ∨ · · · ∨ 〈qn−1, qn〉) = 〈x, y〉.

We claim that

(18)
{
〈ak+1, ak+3〉H ,〈bk+1, bk+3〉H

}
⊆ L̂.

To see this, consider any U ∈ H and the equivalence αi with (ak(U), ak+3(U)) ∈
αi. As usual, (11) allows us to assume that i = 0, and 〈ak, ak+3〉H = (〈ak, ak+2〉H∨
〈ak+2, ak+3〉H) ∧ α0 follows easily. So, according to (14),

(19) 〈ak, ak+3〉H ∈ L̂.

For every U ∈ H, Lemma 2.2 yields that

(20)
〈ak+1(U), ak+3(U)〉 = (〈ak+1(U), ak(U)〉 ∨ 〈ak(U), ak+3(U)〉)

∧ (〈ak+1(U), ak+2(U)〉 ∨ 〈ak+2(U), ak+3(U)〉).

Since all the atoms occurring in (20) are row-preserving, we conclude that

(21)
〈ak+1, ak+3〉H
= (〈ak+1, ak〉H ∨ 〈ak, ak+3〉H) ∧ (〈ak+1, ak+2〉H ∨ 〈ak+2, ak+3〉H).
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Hence, using (17) and (19) and (15), which says that the a-rows and b-rows play
similar roles, we obtain that

(22)
{
〈ak+1, ak+3〉H , 〈bk+1, bk+3〉H

}
⊆ L̂.

Combining L̂ ⊆ L, (6), (8), (9), (17), and (22), we obtain that, for all i, j ∈ N0,

(23) |i− j| ∈ {1, 2} =⇒
{
〈ai, aj〉H , 〈bi, bj〉H

}
⊆ L.

Next, let |i− j| > 2. In the computation below, (9) allows us to assume, without
loss of generality, that i < j. If j − i is even, then

(ai, ai+2, ai+4, . . . , aj−2, aj) and

(ai, ai+1, ai+3, ai+5, . . . , aj−5, aj−3, aj−1, aj)

are internally disjoint sequences from ai to aj in A0. So, Lemma 2.2 and (23)
give that

(24) 〈ai, aj〉H and 〈bi, bj〉H belong to L

in this case. The same holds for j − i being odd, because then

(ai, ai+1, ai+3, . . . , aj−2, aj) and (ai, ai+2, ai+4, aj−3, aj−1, aj)

are internally disjoint. Therefore,

(25) if x, y ∈ A are in the same row, then 〈x, y〉H ∈ L.

As a first step to go beyond the limits of a single row, we claim that

(26)
〈a5, b6〉H =

(
〈a5, a4〉H ∨ β ∨ 〈b5, b6〉H

)
∧
(
〈a5, a7〉H ∨ β∗ ∨ 〈b8, b6〉H

)
,

〈a6, b7〉H =
(
〈a6, a4〉H ∨ β ∨ 〈b5, b7〉H

)
∧
(
〈a6, a7〉H ∨ β∗ ∨ 〈b8, b7〉H

)
.

We only deal with the first equality, because the second one is analogous. We say
that a β- or β∗-colored edge is far on the right if both of its endpoints belong to
the set:

{ei(U), e′i(U) | i ∈ N0, U ∈ H}.

Observe that

(27)

〈a5, a4〉H ∨ β ∨ 〈b5, b6〉H =
⋃
U∈H
{(a0(U), a2(U)), (b0(U), b2(U)),

(a4(U), b5(U)), (b8(U), a7(U)), (a5(U), a4(U)),

(b5(U), b6(U)), (a5(U), b5(U)), (a4(U), b6(U)),

(a5(U), b6(U))} ∪ {some edges far on the right}.
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Similarly,

(28)

〈a5, a7〉H ∨ β∗ ∨ 〈b8, b6〉H =
⋃
U∈H
{(a2(U), a0(U)), (b2(U), b0(U)),

(b5(U), a4(U)), (a7(U), b8(U)), (a5(U), a7(U)),

(b8(U), b6(U)), (a5(U), b8(U)), (a7(U), b6(U)),

(a5(U), b6(U))} ∪ {some edges far on the right}.

By our construction, no edge far on the right occurs both in (27) and (28). Thus,
we obtain (26).

Now, we are in the position to fully extend the validity of (25) as follows:

(29) if x, y ∈ A are in the same A0(U), then 〈x, y〉H ∈ L.

To see this, let U ∈ H and x, y ∈ A0(U) such that x 6= y. Apart from x–y
symmetry, (25) allows us to assume that x = ai(U) and y = bj(U). Since we
obtain

〈x, y〉H =
(
〈x, a5〉H ∨ 〈a5, b6〉H ∨ 〈b6, y〉H

)
∧
(
〈x, a6〉H ∨ 〈a6, b7〉H ∨ 〈b7, y〉H

)
from Lemma 2.2, (29) follows.

Next, we turn our attention to atoms. As a first step, we will show that, for
every U ∈ H,

(30) 〈a1(U), b1(U)〉 ∈ L.

To see this, we claim that

(31)

〈a1(U), b1(U)〉 = 〈a1, b1〉H∧∧
i∈U

(
〈a1, e′i〉H ∨ β ∨ 〈ei, b1〉H

)
∧

i∈I\U

(
〈a1, e′i〉H ∨ β∗ ∨ 〈ei, b1〉H

)
.

The ”⊆” inclusion is evident. To see the reverse inclusion, let V ∈ H, V 6= U .
This means there is a j ∈ I such that j ∈ V \U or j ∈ U\V . Because of symmetry,
we can assume that j ∈ U and j /∈ V . This means that 〈a1, e′j〉H ∨ β ∨ 〈ej , b1〉H
is a part of the right side of (31). It is clear that (a1(U), b1(U)) ∈ 〈a1, e′j〉H ∨
β ∨〈ej , b1〉H . However, (a1(V ), b1(V )) /∈ 〈a1, e′j〉H ∨β ∨〈ej , b1〉H , because 〈a1, e′j〉H
and 〈ej , b1〉H are box-preserving, a1(V ) and b1(V ) are the only elements of their
β-blocks and, since j /∈ V , (e′j(V ), ej(V )) /∈ β. Hence, (31) holds.

Next, we claim that if U ∈ H and {w, x, y, z} ⊆ A0 such that |{w, x, y, z}| = 4,
then

(32) 〈w(U), z(U)〉 ∈ L =⇒ 〈x(U), y(U)〉 ∈ L.
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Since each quasiorder occurring in the right-hand side of

(33) 〈x(U), y(U)〉 = 〈x, y〉H ∧
(
〈x,w〉H ∨ 〈w(U), z(U)〉 ∨ 〈z, y〉H

)
is box-preserving, (33) holds and implies (32). Starting from (31) and applying
(33) once or twice, we obtain that

(34) if U ∈ H and x, y ∈ A0(U) with x 6= y, then 〈x, y〉 ∈ L.

Next, we leave a single box similarly as we left a single row around (26)–(29).
This justifies to give less details. First we obtain that, for U 6= V ∈ H,

(35)

〈a5(U), a5(V )〉

=
(
〈a5(U), e0(U)〉 ∨ β∗ ∨ 〈e0(∅), e1(∅)〉 ∨ β∗ ∨ 〈e1(V ), a5(V )〉

)
∧
(
〈a5(U), e1(U)〉 ∨ β ∨ 〈e1(∅), e0(∅)〉 ∨ β ∨ 〈e0(V ), a5(V )〉

)
is in L. Note that the second occurrence of β∗ and that of β could be omitted;
they only serve a better understanding. Similarly, 〈a6(U), a6(V )〉 ∈ L. Hence,
Lemma 2.2 yields easily that for all x 6= y ∈ A, 〈x, y〉 ∈ L. This proves part (ii)
of Theorem 2.1.
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