SUPERIOR SUBALGEBRAS AND IDEALS OF BCK/BCI-ALGEBRAS

Young Bae Jun
The Research Institute of Natural Science
Department of Mathematics Education
Gyeongsang National University
Jinju 52828, Korea
e-mail: skywine@gmail.com

AND
Seok Zun Song ${ }^{1}$
Department of Mathematics
Jeju National University
Jeju 690-756, Korea
e-mail: szsong@jejunu.ac.kr

Abstract

The notions of superior subalgebras and (commutative) superior ideals are introduced, and their relations and related properties are investigated. Conditions for a superior ideal to be commutative are provided.

Keywords: superior mapping, superior subalgebra, (commutative) superior ideal.
2010 Mathematics Subject Classification: 06F35, 03G25, 06A11.

1. Introduction

Algebras have played an important role in pure and applied mathematics and have its comprehensive applications in many aspects including dynamical systems and genetic code of biology (see [1, 2, 6], and [11]). Starting from the four DNA bases order in the Boolean lattice, Sáanchez et al. [10] proposed a novel Lie Algebra of the genetic code which shows strong connections among algebraic

[^0]relationship, codon assignments and physicochemical properties of amino acids. A BCK/BCI-algebra (see $[3,4,9]$) is an important class of logical algebras introduced by Iséki and was extensively investigated by several researchers. Jun and Song [5] introduced the notion of BCK-valued functions and investigated several properties. They established block-codes by using the notion of BCK-valued functions, and shown that every finite BCK-algebra determines a block-code.

In this paper, we first introduce the notion of superior mapping by using partially ordered sets. Using the superior mapping, we introduce the concept of superiorsubalgebras and (commutative) superiorideals in BCK/BCI-algebras, and investigate related properties. We discuss relations among a superiorsubalgebra, a superiorideal and a commutative superiorideal.

2. Preliminaries

We display basic definitions and properties of BCK/BCI-algebras that will be used in this paper. For more details of BCK/BCI-algebras, we refer the reader to $[3,7,8]$ and $[9]$.

An algebra $\mathcal{L}:=(L ; *, 0)$ of type $(2,0)$ is called a BCI-algebra if it satisfies the following conditions:
(I) $(\forall x, y, z \in L)(((x * y) *(x * z)) *(z * y)=0)$,
(II) $(\forall x, y \in L)((x *(x * y)) * y=0)$,
(III) $(\forall x \in L)(x * x=0)$,
(IV) $(\forall x, y \in L)(x * y=0, y * x=0 \Rightarrow x=y)$.

If a BCI-algebra \mathcal{L} satisfies the following identity:
(V) $(\forall x \in L)(0 * x=0)$,
then \mathcal{L} is called a BCK-algebra.
Any BCK/BCI-algebra \mathcal{L} satisfies the following conditions:

$$
\begin{align*}
& (\forall x \in L)(x * 0=x), \tag{2.1}\\
& (\forall x, y, z \in L)(x \leq y \Rightarrow x * z \leq y * z, z * y \leq z * x), \tag{2.2}\\
& (\forall x, y, z \in L)((x * y) * z=(x * z) * y), \tag{2.3}\\
& (\forall x, y, z \in L)((x * z) *(y * z) \leq x * y) \tag{2.4}
\end{align*}
$$

where $x \leq y$ if and only if $x * y=0$.
A BCK-algebra \mathcal{L} is said to be commutative if $x \wedge y=y \wedge x$ for all $x, y \in L$ where $x \wedge y=y *(y * x)$.

A nonempty subset S of a BCK/BCI-algebra \mathcal{L} is called a subalgebra of \mathcal{L} if $x * y \in S$ for all $x, y \in S$. A subset A of a BCK/BCI-algebra \mathcal{L} is called an ideal of \mathcal{L} if it satisfies:

$$
\begin{align*}
& 0 \in A \tag{2.5}\\
& (\forall x, y \in L)(x * y \in A, y \in A \Rightarrow x \in A) \tag{2.6}
\end{align*}
$$

A subset A of a BCK-algebra \mathcal{L} is called a commutative ideal of \mathcal{L} if it satisfies (2.5) and

$$
\begin{equation*}
(\forall x, y, z \in L)((x * y) * z \in A, z \in A \Rightarrow x *(y *(y * x)) \in A) \tag{2.7}
\end{equation*}
$$

3. SUPERIOR MAPPINGS

Let L be a set of parameters and let U be a partially ordered set with the partial ordering \preceq and the first element e. For a mapping $\tilde{f}: L \rightarrow \mathcal{P}(U)$, we consider the mapping

$$
\|\tilde{f}\|: L \rightarrow U, x \mapsto \begin{cases}\sup \tilde{f}(x) & \text { if } \exists \sup \tilde{f}(x) \tag{3.1}\\ e & \text { otherwise }\end{cases}
$$

which is called the superiormapping of L with respect to (\tilde{f}, L). In this case, we say that (\tilde{f}, L) is a pair on (U, \preceq).

Example 3.1. Let $U=\{1,2,3,4,6,8,9,12,18,24\}$ be ordered by the relation " x divides y ". The Hasse diagram of U appears in Figure 1.

Figure 1
For a set $L=\{a, b, c, d\}$ of parameters, let (\tilde{f}, L) be a pair on (U, \preceq) where \tilde{f} is
given as follows:

$$
\tilde{f}: L \rightarrow \mathcal{P}(U), x \mapsto \begin{cases}\{2,4,6\} & \text { if } x=a, \\ \{8,12,18\} & \text { if } x=b, \\ \{1,3,6,9\} & \text { if } x=c, \\ \{4,6,8,12\} & \text { if } x=d .\end{cases}
$$

Then the superiormapping of L with respect to (\tilde{f}, L) is described as follows: $\|\tilde{f}\|(a)=12,\|\tilde{f}\|(c)=18$ and $\|\tilde{f}\|(d)=24$, but $\|\tilde{f}\|(b)=1$ because there does not exist the supremum of $\tilde{f}(b)$.

Example 3.2. For any positive integer m, we will let \mathbf{D}_{m} denote the set of divisors of m ordered by divisibility. The Hasse diagram of

$$
\mathbf{D}_{36}=\{1,2,3,4,6,9,12,18,36\}
$$

appears in Figure 2.

Figure 2
For a set $L=\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right\}$ of parameters, let (\tilde{f}, L) be a pair on (U, \preceq) with $U=\mathbf{D}_{36}$ in which \tilde{f} is defined as follows:

$$
\tilde{f}: L \rightarrow \mathcal{P}(U), x \mapsto \begin{cases}\{1,2,3\} & \text { if } x=a_{1}, \\ \{2,3,6\} & \text { if } x=a_{2}, \\ \{2,3,4,6\} & \text { if } x=a_{3}, \\ \{12,36\} & \text { if } x=a_{4}, \\ \{4,6,9\} & \text { if } x=a_{5}, \\ \{3,4,6,9\} & \text { if } x=a_{6} .\end{cases}
$$

Then the superiormapping of L with respect to (\tilde{f}, L) is described as follows: $\|\tilde{f}\|\left(a_{1}\right)=\|\tilde{f}\|\left(a_{2}\right)=6,\|\tilde{f}\|\left(a_{3}\right)=12$, and $\|\tilde{f}\|\left(a_{4}\right)=\|\tilde{f}\|\left(a_{5}\right)=\|\tilde{f}\|\left(a_{6}\right)=36$.

4. Superior subalgebras and ideals

Definition 4.1. Let $\mathcal{L}:=(L, *, 0)$ be a BCK/BCI-algebra and let (\tilde{f}, L) be a pair on (U, \preceq). By a superiorsubalgebra on (\mathcal{L}, \tilde{f}), we mean the superiormapping $\|\tilde{f}\|$ of \mathcal{L} with respect to (\tilde{f}, L) which satisfies:

$$
\begin{equation*}
(\forall x, y \in L)(\|\tilde{f}\|(x * y) \preceq \sup \{\|\tilde{f}\|(x),\|\tilde{f}\|(y)\}) \tag{4.1}
\end{equation*}
$$

whenever there exists $\sup \{\|\tilde{f}\|(x),\|\tilde{f}\|(y)\}$ for any $x, y \in L$.
Example 4.2. Let $L=\{0, a, b, c\}$ be a set with a binary operation '*' shown in Table 1.

Table 1. Cayley table for the binary operation ' $*$ '.

$*$	0	a	b	c
0	0	0	0	0
a	a	0	a	a
b	b	b	0	b
c	c	c	c	0

Then $\mathcal{L}:=(L, *, 0)$ is a BCK-algebra (see $[9])$. Consider the poset (U, \preceq) which is given in Example 3.1.
(1) Let (\tilde{f}, L) be a pair on (U, \preceq) where \tilde{f} is given by

$$
\tilde{f}: L \rightarrow \mathcal{P}(U), x \mapsto \begin{cases}\{1,2\} & \text { if } x=0 \\ \{4,6,8\} & \text { if } x=a, \\ \{2,3,4,6\} & \text { if } x=b, \\ \{1,2,3,6\} & \text { if } x=c .\end{cases}
$$

Then the superiormapping of \mathcal{L} with respect to (\tilde{f}, L) is described as follows: $\|\tilde{f}\|(0)=2,\|\tilde{f}\|(a)=24,\|\tilde{f}\|(b)=12$ and $\|\tilde{f}\|(c)=6$, and it is a superiorsubalgebra on (\mathcal{L}, \tilde{f}).
(2) Let (\tilde{g}, L) be a pair on (U, \preceq) in which \tilde{g} is provided as follows:

$$
\tilde{g}: L \rightarrow \mathcal{P}(U), x \mapsto \begin{cases}\{2,4,6\} & \text { if } x \in\{0, a\}, \\ \{1,3,6,9\} & \text { if } x=b, \\ \{4,6,8,12\} & \text { if } x=c .\end{cases}
$$

Then the superiormapping of \mathcal{L} with respect to (\tilde{g}, L) is described as follows: $\|\tilde{g}\|(0)=\|\tilde{g}\|(a)=12,\|\tilde{g}\|(b)=18$ and $\|\tilde{g}\|(c)=24$, and it is not a superiorsubalgebra on (\mathcal{L}, \tilde{f}) since $\|\tilde{g}\|(b * b)=\|\tilde{g}\|(0)=12$ and $\sup \{\|\tilde{g}\|(b),\|\tilde{g}\|(b)\}=18$ are noncomparable.
(3) Let (\tilde{h}, L) be a pair on (U, \preceq) in which \tilde{h} is given as follows:

$$
\tilde{h}: L \rightarrow \mathcal{P}(U), x \mapsto \begin{cases}\{2,4,6\} & \text { if } x=0, \\ \{8,12,18\} & \text { if } x=a, \\ \{1,3,6,9\} & \text { if } x=b, \\ \{2,3,9\} & \text { if } x=c .\end{cases}
$$

Then the superiormapping of \mathcal{L} with respect to (\tilde{h}, L) is described as follows: $\|\tilde{g}\|(0)=12,\|\tilde{g}\|(a)=1$, and $\|\tilde{g}\|(b)=\|\tilde{g}\|(c)=18$. Since

$$
\|\tilde{g}\|(a * a)=\|\tilde{g}\|(0)=12 \npreceq 1=\sup \{\|\tilde{g}\|(a),\|\tilde{g}\|(a)\},
$$

$\|\tilde{f}\|$ is not a superiorsubalgebra on (\mathcal{L}, \tilde{f}).
Example 4.3. Let $L=\{0,1,2, a, b\}$ be a set with a binary operation '*' shown in Table 2.

Table 2. Cayley table for the binary operation ' $*$ '.

$*$	0	1	2	a	b
0	0	0	0	a	a
1	1	0	1	b	a
2	2	2	0	a	a
a	a	a	a	0	0
b	b	a	b	1	0

Then $\mathcal{L}:=(L, *, 0)$ is a BCI-algebra (see [9]). Consider the poset (U, \preceq) which is given in Example 3.2. Let (\tilde{f}, L) be a pair on (U, \preceq) where \tilde{f} is defined by

$$
\tilde{f}: L \rightarrow \mathcal{P}(U), x \mapsto \begin{cases}\{1\} & \text { if } x=0 \\ \{4,6,9,12\} & \text { if } x \in\{1, b\} \\ \{2,3\} & \text { if } x=2, \\ \{3,6,9\} & \text { if } x=a\end{cases}
$$

Then the superiormapping of \mathcal{L} with respect to (\tilde{f}, L) is described as follows: $\|\tilde{f}\|(0)=1,\|\tilde{f}\|(a)=18,\|\tilde{f}\|(b)=\|\tilde{f}\|(1)=36$ and $\|\tilde{f}\|(2)=6$, and it is a superiorsubalgebra on (\mathcal{L}, \tilde{f}).
Definition 4.4. Let $\mathcal{L}:=(L, *, 0)$ be a BCK/BCI-algebra and let (\tilde{f}, L) be a pair on (U, \preceq). By a superiorideal on (\mathcal{L}, \tilde{f}), we mean the superiormapping $\|\tilde{f}\|$ of \mathcal{L} with respect to (\tilde{f}, L) which satisfies the following conditions:

$$
\begin{equation*}
(\forall x \in L)(\|\tilde{f}\|(0) \preceq\|\tilde{f}\|(x)), \tag{4.2}
\end{equation*}
$$

$$
\begin{equation*}
(\forall x, y \in L)(\|\tilde{f}\|(x) \preceq \sup \{\|\tilde{f}\|(x * y),\|\tilde{f}\|(y)\}), \tag{4.3}
\end{equation*}
$$

whenever there exists $\sup \{\|\tilde{f}\|(x),\|\tilde{f}\|(y)\}$ for any $x, y \in L$.

Example 4.5.

(1) In Example 4.2(1), the superiormapping $\|\tilde{f}\|$ of \mathcal{L} with respect to (\tilde{f}, L) is a superiorideal on (\mathcal{L}, \tilde{f}).
(2) In Example 4.2(2), the superiormapping $\|\tilde{g}\|$ of \mathcal{L} with respect to (\tilde{g}, L) is not a superiorideal on (\mathcal{L}, \tilde{g}).
(3) In Example 4.2(3), the superiormapping $\|\tilde{g}\|$ of \mathcal{L} with respect to (\tilde{h}, L) is not a superiorideal on (\mathcal{L}, \tilde{h}).

Proposition 4.6. Let $\mathcal{L}:=(L, *, 0)$ be a $B C K / B C I-a l g e b r a$. Then every superiorsubalgebra $\|\tilde{f}\|$ on (\mathcal{L}, \tilde{f}) satisfies the condition (4.2).

Proof. Since $x * x=0$ for all $x \in L$, it is clear.
Theorem 4.7. Let $\mathcal{L}:=(L, *, 0)$ be a BCK/BCI-algebra. If $\|\tilde{f}\|$ is a superiorsubalgebra (ideal) on (\mathcal{L}, \tilde{f}), then the nonempty set

$$
\|\tilde{f}\|_{\alpha}:=\{x \in L \mid\|\tilde{f}\|(x) \preceq \alpha\}
$$

is a subalgebra (ideal) of \mathcal{L} for all $\alpha \in U$.
Proof. Assume that $\|\tilde{f}\|$ is a superiorsubalgebra on (\mathcal{L}, \tilde{f}). Let $\alpha \in U$ and suppose that $\|\tilde{f}\|_{\alpha} \neq \emptyset$. If $x, y \in\|\tilde{f}\|_{\alpha}$, then $\|\tilde{f}\|(x) \preceq \alpha$ and $\|\tilde{f}\|(y) \preceq \alpha$. It follows from (4.1) that

$$
\|\tilde{f}\|(x * y) \preceq \sup \{\|\tilde{f}\|(x),\|\tilde{f}\|(y)\} \preceq \alpha
$$

and that $x * y \in\|\tilde{f}\|_{\alpha}$. Therefore $\|\tilde{f}\|_{\alpha}$ is a subalgebra of \mathcal{L}. Now, suppose that $\|\tilde{f}\|$ is a superiorideal on (\mathcal{L}, \tilde{f}). Let $\alpha \in U$ be such that $\|\tilde{f}\|_{\alpha} \neq \emptyset$. Then there exists $x \in L$ such that $\|\tilde{f}\|(x) \preceq \alpha$, and so $\|\tilde{f}\|(0) \preceq\|\tilde{f}\|(x) \preceq \alpha$. Thus $0 \in\|\tilde{f}\|_{\alpha}$. Let $x, y \in L$ be such that $x * y \in\|\tilde{f}\|_{\alpha}$ and $y \in\|\tilde{f}\|_{\alpha}$. Then $\|\tilde{f}\|(x * y) \preceq \alpha$ and $\|\tilde{f}\|(y) \preceq \alpha$. It follows from (4.3) that

$$
\|\tilde{f}\|(x) \preceq \sup \{\|\tilde{f}\|(x * y),\|\tilde{f}\|(y)\} \preceq \alpha .
$$

Thus $x \in\|\tilde{f}\|_{\alpha}$, and therefore $\|\tilde{f}\|_{\alpha}$ is an ideal of \mathcal{L}.
The following example illustrates Theorem 4.7.

Example 4.8. (1) Consider the BCK-algebra \mathcal{L} and the poset (U, \preceq) which are given in Examples 4.2 and 3.1, respectively. Let (\tilde{f}, L) be a pair on (U, \preceq) where \tilde{f} is given as follows:

$$
\tilde{f}: L \rightarrow \mathcal{P}(U), x \mapsto \begin{cases}\{1,3\} & \text { if } x=0 \\ \{2,3,6\} & \text { if } x=a \\ \{1,3,9\} & \text { if } x=b, \\ \{2,3,6,9\} & \text { if } x=c\end{cases}
$$

Then the superiormapping of \mathcal{L} with respect to (\tilde{f}, L) is described as follows: $\|\tilde{f}\|(0)=3,\|\tilde{f}\|(a)=6,\|\tilde{f}\|(b)=9$ and $\|\tilde{f}\|(c)=18$, and it is a superiorsubalgebra on (\mathcal{L}, \tilde{f}). It is routine to verify that $\|\tilde{f}\|_{\alpha}$ is a subalgebra of \mathcal{L} for all $\alpha \in U$.
(2) Consider the BCI-algebra \mathcal{L} and the poset (U, \preceq) which are given in Examples 4.3 and 3.1 , respectively. Let (\tilde{f}, L) be a pair on (U, \preceq) where \tilde{f} is defined by

$$
\tilde{f}: L \rightarrow \mathcal{P}(U), x \mapsto \begin{cases}\{1\} & \text { if } x=0, \\ \{4,6\} & \text { if } x \in\{1, b\}, \\ \{1,3\} & \text { if } x=2, \\ \{2,3,6\} & \text { if } x=a .\end{cases}
$$

Then the superiormapping $\|\tilde{f}\|$ of \mathcal{L} with respect to (\tilde{f}, L) is described as follows: $\|\tilde{f}\|(0)=1,\|\tilde{f}\|(1)=12,\|\tilde{f}\|(2)=3,\|\tilde{f}\|(a)=6$, and $\|\tilde{f}\|(b)=12$. It is routine to verify that $\|\tilde{f}\|$ is a superiorideal on (\mathcal{L}, \tilde{f}). Thus $\|\tilde{f}\|_{\tilde{8}}=\|\tilde{f}\|_{4_{\sim}}=\|\tilde{f}\|_{2}=\emptyset$, and $\|\tilde{f}\|_{24}=\|\tilde{f}\|_{12}=L,\|\tilde{f}\|_{18}=\|\tilde{f}\|_{6}=\{0,2, a\},\|\tilde{f}\|_{9}=\|\tilde{f}\|_{3}=\{0,2\}$, $\|\tilde{f}\|_{1}=\{0\}$ which are ideals of \mathcal{L}.
Proposition 4.9. If $\|\tilde{f}\|$ is a superiorideal on (\mathcal{L}, \tilde{f}), then $\|\tilde{f}\|(x) \preceq\|\tilde{f}\|(y)$ for all $x, y \in L$ with $x \leq y$.

Proof. Let $x, y \in L$ be such that $x \leq y$. Using (4.3) and (4.2), we have

$$
\|\tilde{f}\|(x) \preceq \sup \{\|\tilde{f}\|(x * y),\|\tilde{f}\|(y)\}=\sup \{\|\tilde{f}\|(0),\|\tilde{f}\|(y)\}=\|\tilde{f}\|(y)
$$

proving the result.
Theorem 4.10. Let \mathcal{L} be a BCK-algebra. Every superiorideal on (\mathcal{L}, \tilde{f}) is a superiorsubalgebra on (\mathcal{L}, \tilde{f}).
Proof. Let $\|\tilde{f}\|$ be a superiorideal on (\mathcal{L}, \tilde{f}). Since $x * y \leq x$ for all $x, y \in L$, it follows from Proposition 4.9 that

$$
\|\tilde{f}\|(x * y) \preceq\|\tilde{f}\|(x) \preceq \sup \{\|\tilde{f}\|(x * y),\|\tilde{f}\|(y)\} \preceq \sup \{\|\tilde{f}\|(x),\|\tilde{f}\|(y)\}
$$

and that $\|\tilde{f}\|$ is a superiorsubalgebra on (\mathcal{L}, \tilde{f}).

The converse of Theorem 4.10 may not be true as seen in the following example.
Example 4.11. Let $L=\{0,1,2,3\}$ be a set with a binary operation ' $*$ ' shown in Table 3.

Table 3. Cayley table for the binary operation ' $*$ '.

$*$	0	1	2	3
0	0	0	0	0
1	1	0	0	1
2	2	1	0	2
3	3	3	3	0

Then $\mathcal{L}:=(L, *, 0)$ is a BCK-algebra (see [9]). Let $U=\{a, b, c, d, e, f\}$ be ordered as pictured in Figure 3.

Figure 3
Let (\tilde{f}, L) be a pair on (U, \preceq) where \tilde{f} is given as follows:

$$
\tilde{f}: L \rightarrow \mathcal{P}(U), x \mapsto \begin{cases}\{a, b\} & \text { if } x=0, \\ \{a, b, c\} & \text { if } x=1, \\ \{b, c, d, f\} & \text { if } x \in\{2,3\} .\end{cases}
$$

Then the superiormapping $\|\tilde{f}\|$ of \mathcal{L} with respect to (\tilde{f}, L) is described as follows: $\|\tilde{f}\|(0)=b,\|\tilde{f}\|(1)=c$ and $\|\tilde{f}\|(2)=\|\tilde{f}\|(3)=f$. By routine calculations, we know that $\|\tilde{f}\|$ is a superiorsubalgebra on (\mathcal{L}, \tilde{f}), but it is not a superiorideal on (\mathcal{L}, \tilde{f}) because

$$
\|\tilde{f}\|(2)=f \npreceq c=\sup \{\|\tilde{f}\|(2 * 1),\|\tilde{f}\|(1)\} .
$$

Proposition 4.12. Every superiorideal $\|\tilde{f}\|$ on (\mathcal{L}, \tilde{f}) satisfies the following assertion.

$$
\begin{equation*}
(\forall x, y, z \in L)(x * y \leq z \Rightarrow\|\tilde{f}\|(x) \preceq \sup \{\|\tilde{f}\|(y),\|\tilde{f}\|(z)\}) . \tag{4.4}
\end{equation*}
$$

Proof. Let $x, y, z \in L$ be such that $x * y \leq z$. Then $(x * y) * z=0$, and so

$$
\|\tilde{f}\|(x * y) \preceq \sup \{\|\tilde{f}\|((x * y) * z),\|\tilde{f}\|(z)\}=\sup \{\|\tilde{f}\|(0),\|\tilde{f}\|(z)\}=\|\tilde{f}\|(z)
$$

by (4.3) and (4.2). It follows that

$$
\|\tilde{f}\|(x) \preceq \sup \{\|\tilde{f}\|(x * y),\|\tilde{f}\|(y)\} \preceq \sup \{\|\tilde{f}\|(z),\|\tilde{f}\|(y)\} .
$$

This completes the proof.
Theorem 4.13. Let $\|\tilde{f}\|$ be the superiormapping of \mathcal{L} with respect to (\tilde{f}, L). If $\|\tilde{f}\|$ satisfies two conditions (4.2) and (4.4), then $\|\tilde{f}\|$ is a superiorideal on (\mathcal{L}, \tilde{f}).

Proof. Since $x *(x * y) \leq y$ for all $x, y \in L$, it follows from (4.4) that

$$
\|\tilde{f}\|(x) \preceq \sup \{\|\tilde{f}\|(x * y),\|\tilde{f}\|(y)\}
$$

for all $x, y \in L$. Therefore $\|\tilde{f}\|$ is a superiorideal on (\mathcal{L}, \tilde{f}).

5. Commutative superiorideals

Definition 5.1. Let $\mathcal{L}:=(L, *, 0)$ be a BCK-algebra and let (\tilde{f}, L) be a pair on (U, \preceq). By a commutative superiorideal on (\mathcal{L}, \tilde{f}), we mean the superiormapping $\|\tilde{f}\|$ of \mathcal{L} with respect to (\tilde{f}, L) which satisfies the condition (4.2) and

$$
\begin{equation*}
(\forall x, y, z \in L)(\|\tilde{f}\|(x *(y *(y * x))) \preceq \sup \{\|\tilde{f}\|((x * y) * z),\|\tilde{f}\|(z)\}) \tag{5.1}
\end{equation*}
$$

whenever there exists $\sup \{\|\tilde{f}\|(x),\|\tilde{f}\|(y)\}$ for any $x, y \in L$.
Example 5.2. Let $U=\{1,2,3, \ldots, 8\}$ be ordered as pictured in Figure 4.

Figure 4

Table 4. Cayley table for the binary operation ' $*$ '.

$*$	0	a	b	c	d
0	0	0	0	0	0
a	a	a	0	a	
b	b	b	0	b	0
c	c	c	0	c	
d	d	d	d	d	0

Let $L=\{0, a, b, c, d\}$ be a set with a binary operation ' $*$ ' shown in Table 4. Then $\mathcal{L}:=(L, *, 0)$ is a BCK-algebra (see [9]).

Let (\tilde{f}, L) be a pair on (U, \preceq) where \tilde{f} is given as follows:

$$
\tilde{f}: L \rightarrow \mathcal{P}(U), x \mapsto \begin{cases}\{6,8\} & \text { if } x \in\{0, b\} \\ \{4,6,7\} & \text { if } x=d \\ \{2,3,5,6,7\} & \text { if } x \in\{a, c\}\end{cases}
$$

Then the superiormapping $\|\tilde{f}\|$ of \mathcal{L} with respect to (\tilde{f}, L) is described as follows: $\|\tilde{f}\|(0)=\|\tilde{f}\|(b)=6,\|\tilde{f}\|(d)=3$, and $\|\tilde{f}\|(a)=\|\tilde{f}\|(c)=2$. It is routine to check that $\|\tilde{f}\|$ is a commutative superiorideal on (\mathcal{L}, \tilde{f}).

Theorem 5.3. If \mathcal{L} is a BCK-algebra, then every commutative superiorideal on (\mathcal{L}, \tilde{f}) is a superiorideal on (\mathcal{L}, \tilde{f}).

Proof. Let $\|\tilde{f}\|$ be a commutative superiorideal on (\mathcal{L}, \tilde{f}) where \mathcal{L} is a BCKalgebra. Using (V), (2.1) and (5.1), we have

$$
\begin{aligned}
\|\tilde{f}\|(x) & =\|\tilde{f}\|(x *(0 *(0 * x))) \\
& \preceq \sup \{\|\tilde{f}\|((x * 0) * z),\|\tilde{f}\|(z)\} \\
& =\sup \{\|\tilde{f}\|(x * z),\|\tilde{f}\|(z)\}
\end{aligned}
$$

for all $x, z \in L$. Hence $\|\tilde{f}\|$ is a superiorideal on (\mathcal{L}, \tilde{f}).
The following example shows that the converse of Theorem 5.3 is not true in general.

Example 5.4. Let $L=\{0, a, b, c, d\}$ be a set with a binary operation ' $*$ ' shown in Table 5.

Table 5. Cayley table for the binary operation ' $*$ '.

$*$	0	a	b	c	d
0	0	0	0	0	0
a	a	0	0	0	
b	b	b	0	0	0
c	c	c	0	0	
d	d	d	c	0	

Then $\mathcal{L}:=(L, *, 0)$ is a BCK-algebra (see [9]). Consider the poset (U, \preceq) which is given in Example 5.2. Let (\tilde{f}, L) be a pair on (U, \preceq) where \tilde{f} is given as follows:

$$
\tilde{f}: L \rightarrow \mathcal{P}(U), x \mapsto \begin{cases}\{8\} & \text { if } x=0 \\ \{5,6,7\} & \text { if } x=a \\ \{3,4,5,7\} & \text { if } x \in\{b, c, d\}\end{cases}
$$

Then the superiormapping $\|\tilde{\tilde{f}}\|$ on (\mathcal{L}, \tilde{f}) is described as follows: $\|\tilde{f}\|(0)=8$, $\|\tilde{f}\|(a)=5$ and $\|\tilde{f}\|(b)=\|\tilde{f}\|(c)=\|\tilde{f}\|(d)=3$. Routine calculations show that $\|\tilde{f}\|$ is a superiorideal on (\mathcal{L}, \tilde{f}). But it is not a commutative superiorideal on (\mathcal{L}, \tilde{f}) since

$$
\|\tilde{f}\|(b *(c *(c * b))) \npreceq \sup \{\|\tilde{f}\|((b * c) * 0),\|\tilde{f}\|(0)\} .
$$

Proposition 5.5. Let $\|\tilde{f}\|$ be a commutative superiorideal on (\mathcal{L}, \tilde{f}) where \mathcal{L} is a BCK-algebra. Then the following assertion is valid.

$$
\begin{equation*}
(\forall x, y \in L)(\|\tilde{f}\|(x *(y *(y * x))) \preceq\|\tilde{f}\|(x * y)) . \tag{5.2}
\end{equation*}
$$

Proof. Taking $z=0$ in (5.1) and using (4.2) and (2.1), we have the desired result.

We provide conditions for a superiorideal to be commutative.
Theorem 5.6. Let $\|\tilde{f}\|$ be a superiorideal on (\mathcal{L}, \tilde{f}) where \mathcal{L} is a BCK-algebra. If the condition (5.2) is valid, then $\|\tilde{f}\|$ is commutative.

Proof. Assume that $\|\tilde{f}\|$ satisfies the condition (5.2). The condition (4.3) induces

$$
\begin{equation*}
\|\tilde{f}\|(x * y) \preceq \sup \{\|\tilde{f}\|((x * y) * z),\|\tilde{f}\|(z)\} \tag{5.3}
\end{equation*}
$$

for all $x, y, z \in L$. Combining (5.3) and (5.2), we know that

$$
\|\tilde{f}\|(x *(y *(y * x))) \preceq \sup \{\|\tilde{f}\|((x * y) * z),\|\tilde{f}\|(z)\}
$$

for all $x, y, z \in L$. Therefore $\|\tilde{f}\|$ is a commutative superiorideal on (\mathcal{L}, \tilde{f}).
Combining Theorems 4.13 and 5.6, we have the following corollary.
Corollary 5.7. Let $\|\tilde{f}\|$ be the superiormapping of a BCK-algebra \mathcal{L} with respect to (\tilde{f}, L). If $\|\tilde{f}\|$ satisfies (4.2), (4.4) and (5.2), then $\|\tilde{f}\|$ is a commutative superiorideal on (\mathcal{L}, \tilde{f}).

Theorem 5.8. In a commutative BCK-algebra, every superiorideal is a commutative superiorideal.
Proof. Let $\|\tilde{f}\|$ be a superiorideal on (\mathcal{L}, \tilde{f}) where \mathcal{L} is a commutative BCKalgebra. Note that

$$
\begin{aligned}
& ((x *(y *(y * x))) *((x * y) * z)) * z \\
& =((x *(y *(y * x))) * z) *((x * y) * z) \\
& \leq(x *(y *(y * x))) *(x * y) \\
& =(x *(x * y)) *(y *(y * x))=0,
\end{aligned}
$$

that is, $(x *(y *(y * x))) *((x * y) * z) \leq z$ for all $x, y, z \in L$. It follows from Proposition 4.12 that

$$
\|\tilde{f}\|(x *(y *(y * x))) \preceq \sup \{\|\tilde{f}\|((x * y) * z),\|\tilde{f}\|(z)\}
$$

for all $x, y, z \in L$. Therefore $\|\tilde{f}\|$ is a commutative superiorideal on (\mathcal{L}, \tilde{f}).
Corollary 5.9. If a BCK-algebra \mathcal{L} satisfies the following condition:

$$
\begin{equation*}
(\forall x, y \in L)(x *(x * y) \leq y *(y * x)) \tag{5.4}
\end{equation*}
$$

then every superiorideal is a commutative superiorideal.
Lemma 5.10 [9]. Let A be an ideal of a BCK-algebra \mathcal{L}. Then A is commutative if and only if the following assertion holds.

$$
\begin{equation*}
(\forall x, y \in A)(x * y \in A \Rightarrow x *(y *(y * x)) \in A) . \tag{5.5}
\end{equation*}
$$

Theorem 5.11. If $\|\tilde{f}\|$ is a commutative superiorideal on (\mathcal{L}, \tilde{f}) where \mathcal{L} is a BCK-algebra, then the nonempty set

$$
\|\tilde{f}\|_{\alpha}:=\{x \in L \mid\|\tilde{f}\|(x) \preceq \alpha\}
$$

is a commutative ideal of \mathcal{L} for all $\alpha \in U$.

Proof. Assume that $\|\tilde{f}\|$ is a commutative superiorideal on (\mathcal{L}, \tilde{f}) where \mathcal{L} is a BCK-algebra. Then $\|\tilde{f}\|$ is a superiorideal on (\mathcal{L}, \tilde{f}) by Theorem 5.3. Hence if $\|\tilde{f}\|_{\alpha} \neq \emptyset$, then $\|\tilde{f}\|_{\alpha}$ is an ideal of \mathcal{L} for all $\alpha \in U$. Let $x, y \in L$ be such that $x * y \in\|\tilde{f}\|_{\alpha}$. Using (5.2), we have $\|\tilde{f}\|(x *(y *(y * x))) \preceq\|\tilde{f}\|(x * y) \preceq \alpha$ and so $x *(y *(y * x)) \in\|\tilde{f}\|_{\alpha}$. Hence, by Lemma 5.10, $\|\tilde{f}\|_{\alpha}$ is a commutative ideal of \mathcal{L} for all $\alpha \in U$.

Theorem 5.12. Let $\|\tilde{f}\|$ and $\|\tilde{g}\|$ be superiorideals on (\mathcal{L}, \tilde{f}) and (\mathcal{L}, \tilde{g}), respectively, where \mathcal{L} is a BCK-algebra such that $\|\tilde{f}\|(0)=\|\tilde{g}\|(0)$ and $\|\tilde{g}\|(x) \preceq\|\tilde{f}\|(x)$ for all $x(\neq 0) \in L$. If $\|\tilde{f}\|$ is a commutative superiorideal on (\mathcal{L}, \tilde{f}), then $\|\tilde{g}\|$ is a commutative superiorideal on (\mathcal{L}, \tilde{g}).

Proof. For any $x, y \in L$, let $u=x * y$. Using hypothesis, (5.2), (2.3) and (III), we have

$$
\begin{aligned}
\|\tilde{g}\|((x * u) *(y *(y *(x * u)))) & \preceq\|\tilde{f}\|((x * u) *(y *(y *(x * u)))) \\
& \preceq\|\tilde{f}\|((x * u) * y)=\|\tilde{f}\|((x * y) * u) \\
& =\|\tilde{f}\|(0)=\|\tilde{g}\|(0),
\end{aligned}
$$

and so $\|\tilde{g}\|((x * u) *(y *(y *(x * u))))=\|\tilde{g}\|(0)$. Note that

$$
\begin{aligned}
& (x *(y *(y * x))) *(x *(y *(y *(x * u)))) \\
& \leq(y *(y *(x * u))) *(y *(y * x)) \\
& \leq(y * x) *(y *(x * u)) \\
& \leq(x * u) * x=0 * u=0
\end{aligned}
$$

and thus $(x *(y *(y * x))) *(x *(y *(y *(x * u))))=0$. It follows from (4.3), (4.2) and (2.3) that

$$
\begin{aligned}
\|\tilde{g}\|(x *(y *(y * x))) \preceq & \sup \{\|\tilde{g}\|((x *(y *(y * x))) *(x *(y *(y *(x * u))))) \\
& \|\tilde{g}\|(x *(y *(y *(x * u))))\} \\
& =\sup \{\|\tilde{g}\|(0),\|\tilde{g}\|(x *(y *(y *(x * u))))\} \\
= & \|\tilde{g}\|(x *(y *(y *(x * u)))) \\
& \preceq \sup \{\|\tilde{g}\|((x *(y *(y *(x * u)))) * u),\|\tilde{g}\|(u)\} \\
= & \sup \{\|\tilde{g}\|((x * u) *(y *(y *(x * u)))),\|\tilde{g}\|(u)\} \\
= & \sup \{\|\tilde{g}\|(0),\|\tilde{g}\|(u)\} \\
= & \|\tilde{g}\|(u)=\|\tilde{g}\|(x * y)
\end{aligned}
$$

Therefore $\|\tilde{g}\|$ is a commutative superiorideal on (\mathcal{L}, \tilde{g}) by Theorem 5.6.

Acknowledgements

The authors are highly grateful to referees for their valuable comments and suggestions helpful in improving this paper.

References

[1] J. D. Bashford and P. D. Jarvis, The genetic code as a peridic table: algebraic aspects, BioSystems 57 (2000) 147-161. doi:10.1016/S0303-2647(00)00097-6
[2] L. Frappat, A. Sciarrino and P. Sorba, Crystalizing the genetic code, J. Biological Physics 27 (2001) 1-34. doi:10.1023/A:1011874407742
[3] Y. Huang, BCI-algebra (Science Press, Beijing, 2006). ISBN 97-7-03-015411.
[4] K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japonica 23 (1978) 1-26.
[5] Y.B. Jun and S.Z. Song, Codes based on BCK-algebras, Inform. Sci. 181 (2011) 5102-5109. doi:10.1016/j.ins.2011.07.006
[6] M.K. Kinyon and A.A. Sagle, Quadratic dynamical systems and algebras, J. Diff. Equ. 117 (1995) 67-126. doi:10.1006/jdeq.1995.1049
[7] J. Meng, Commutative ideals in BCK-algebras, Pure Appl. Math. (in China) 9 (1991) 49-53.
[8] J. Meng, On ideals in BCK-algebras, Math. Japonica 40 (1994) 143-154.
[9] J. Meng and Y.B. Jun, BCK-algebras (Kyungmoon Sa Co. Seoul, 1994).
[10] R. Sáanchez, R. Grau and E. Morgado, A novel Lie algebra of the genetic code over the Galois field of four DNA bases, Mathematical Biosciences 202 (2006) 156-174. doi:10.1016/j.mbs.2006.03.017
[11] J.J. Tian and B.L. Li, Coalgebraic structure of genetics inheritance, Mathematical Biosciences and Engineering 1 (2004) 243-266. PMID: 20369970 [PubMed].

Received 12 November 2015
Revised 31 January 2016

[^0]: ${ }^{1}$ Corresponding author.

