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Abstract

Let I and J be two ideals of a commutative Noetherian ring R and
M be an R-module. For a non-negative integer n it is shown that, if the
sets AssR(ExtnR(R/I,M)) and SuppR(ExtiR(R/I,Hj

I,J(M))) are finite for all
i ≤ n + 1 and all j < n, then so is AssR(HomR(R/I,Hn

I,J(M))). We also

study the finiteness of AssR(ExtiR(R/I,Hn
I,J(M))) for i = 1, 2.
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1. Introduction

Let R be a commutative Noetherian ring, I and J be two ideals of R and M be
an R-module. For all i ∈ N0 the i-th local cohomology functor with respect to
(I, J), denoted by H i

I,J(−), defined by Takahashi et al. in [14] as the i-th right
derived functor of the (I, J)- torsion functor ΓI,J(−), where

ΓI,J(M) := {x ∈M : Inx ⊆ Jx for n� 1}.

This notion coincides with the ordinary local cohomology functor H i
I(−) when

J = 0, see [5].

The main motivation for this generalization comes from the study of a dual
of ordinary local cohomology modules H i

I(M) ([12]). Basic facts and more infor-
mation about local cohomology defined by a pair of ideals can be obtained from
[7, 8] and [14].

Hartshorne in [9] proposed the following conjecture: “Let M be a finitely
generated R-module and a be an ideal of R. Then ExtiR(R/a, Hj

a (M)) is finitely
generated for all i ≥ 0 and j ≥ 0.”

Also, Huneke in [10] raised some crucial problems on local cohomology mod-
ules. One of them was about the finiteness of the set of associated prime ideals
of the local cohomology modules H i

I(M).

Although there are some counterexamples to these conjectures, see [13], but
there are some partial positive answers in some special cases too, see for example
[3] or [4].

In this paper, we consider these two problems for local cohomology modules
defined by a pair of ideals over not necessary finitely generated modules. In
particular, we investigate certain conditions on Hj

I,J(M) such that the set of

associated prime ideals of ExtiR(R/I,Hj
I,J(M)) is finite.

More precisely, let n ∈ N0 and assume that the sets AssR(ExtnR(R/I,M)) and
SuppR(ExtiR(R/I,Hj

I,J(M))) are finite for all i ≤ n+1 and all j < n then, we use
a spectral sequence argument to show that AssR(HomR(R/I,Hn

I,J(M))) is finite,

too (Theorem 2.3). Moreover, it is shown that if the sets AssR(Extn+1
R (R/I,M))

and Supp(ExtiR(R/I,Hj
I,J(M))) are finite for all i ≤ n+ 2 and all j < n then, so

is AssR(Ext1R(R/I,Hn
I,J(M))) (Theorem 2.7).

We also present a necessary and sufficient condition for the finiteness of the set
AssR(Ext2R(R/I,Hn

I,J(M))) (Theorem 2.8). These, also, generalize some known
results concerning ordinary local cohomology modules.

Moreover, we study the grade p
M

(:= inf{i ∈ N0 : H i
p(M) 6= 0}) for p ∈

AssR(Ht
I,J(M)), where t = inf{i ∈ N0 : H i

I,J(M) 6= 0} (Theorem 2.11).
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2. Associated prime ideals

In this section, first, we are going to study the set of associated prime ideals of
some Ext-modules of local cohomology modules defined by a pair of ideals.

The following relation between associated prime ideals of modules in an exact
sequence, which can be proved easily, is frequently used in our results.

Lemma 2.1. Let M → N → K → 0 be an exact sequence of R-modules. Then
Ass(K) ⊆ Supp(M) ∪Ass(N).

Next lemma describes a convergence of Grothendieck spectral sequences.

Lemma 2.2. Let M be an R-module. Then the following convergence of spectral
sequences exists

ExtiR(R/I,Hj
I,J(M))

i⇒ Exti+j
R (R/I,M).

Proof. It is easy to see that HomR(R/I,ΓI,J(M)) = HomR(R/I,M). Also, for
any injective R-module E, ΓI,J(E) is an injective R-module, by [14, 3.2] and [5,
2.1.4]. Now, in view of [11, 10.47], the assertion follows.

The following theorem, which concerns with Hartshorne’s problem mentioned in
the introduction, is one of the main results in this paper.

Theorem 2.3. Let n be a non-negative integer and M be an R-module such that
AssR(ExtnR(R/I,M)) and SuppR(ExtiR(R/I,Hj

I,J(M))) are finite for all i ≤ n+1
and all j < n. Then so is AssR(HomR(R/I,Hn

I,J(M))).

Proof. Consider the convergence of spectral sequences in Lemma 2.2 and note
that Ei,j

2 = 0 for all i < 0. Therefore, for all 2 ≤ r ≤ n + 1 there exists an exact
sequence

(2.1) 0→ E0,n
r+1 → E0,n

r
d0,nr−−→ Er,n+1−r

r .

Since, Er,n+1−r
r is a subquotient of Er,n+1−r

2 = ExtrR(R/I,Hn+1−r
I,J (M)), SuppR

(Er,n+1−r
r ) is a finite set. So, the above exact sequence implies that ]AssR(E0,n

r )
< ∞ if ]AssR(E0,n

r+1) < ∞. Also, from the fact that Ei,j
2 = 0 for all j < 0, we

have E0,n
∞ ∼= E0,n

n+2. Therefore, to prove the assertion it is enough to show that

AssR(E0,n
∞ ) is a finite set.

Using the concept of the convergence of spectral sequences, there exists a
bounded filtration

0 = ϕn+1Hn ⊆ ϕnHn ⊆ · · · ⊆ ϕ1Hn ⊆ ϕ0Hn = ExtnR(R/I,M)
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of submodules of ExtnR(R/I,M) such that

Ei,n−i
∞

∼= ϕiHn/ϕi+1Hn for all i = 0, . . . , n.

Therefore, En,0
n+1
∼= En,0

∞ ∼= ϕnHn is a subquotient of En,0
2 = ExtnR(R/I,ΓI,J(M)).

So, by the assumption, SuppR(ϕnHn) is a finite set. Now, assume inductively
that ] SuppR(ϕiHn) <∞ for all 1 < i ≤ n. Then, since

E1,n−1
n+1

∼= E1,n−1
∞

∼= ϕ1Hn/ϕ2Hn

is a subquotient of E1,n−1
2 = Ext1R(R/I,Hn−1

I,J (M)), we deduce that SuppR(ϕ1Hn)
is finite. But,

E0,n
∞
∼= ExtnR(R/I,M)/ϕ1Hn

and Lemma 2.1 implies that ]AssR(E0,n
∞ ) <∞, as desired.

As some immediate consequences of Theorem 2.3, we obtain the following results.

Corollary 2.4. Let M be a finite R-module. Suppose that there is an integer n
such that for all i < n the set SuppR(H i

I,J(M)) is finite. Then AssR(HomR(R/I,
Hn

I,J(M))) is finite.

Proof. Using the fact that SuppR(ExtiR(R/I,Hj
I,J(M))) ⊆ V (I) ∩ SuppR

(H i
I,J(M)) for all i and j, the result follows from Theorem 2.3.

Corollary 2.5. Let M be a finite R-module. Suppose that q = inf{i : H i
I,J(M)

is not Artinian} is an integer, then AssR(HomR(R/I,Hq
I,J(M))) is finite.

Proof. By [2, IV, p. 275, Proposition 7], SuppR(H i
I,J(M)) is finite for all i < q.

Now, the result follows from Corollary 2.4.

For an R-module M and an ideal a of R, the grade of a on M is defined by

grade a
M

:= inf {i ∈ N0 : H i
a(M) 6= 0},

if this infimum exists, and∞ otherwise. If M is a finite R-module and aM 6= M ,
this definition coincides with the length of a maximal M -sequence in a (cf. [5,
6.2.7]).

Corollary 2.6. Let M be a finite R-module and t = inf{i|H i
I,J(M) 6= 0} be an

integer. Then AssR(HomR(R/I,Ht
I,J(M))) is finite. If in addition, grade I

M
= t,

then for a maximal M -sequence x1, . . . , xt in I, we have

AssR(HomR(R/I,Ht
I,J(M))) = {p ∈AssR(M/(x1, . . . , xt)M)∩V (I); grade p =

M
t}.
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Proof. In view of Theorem 2.3, AssR(HomR(R/I,Ht
I,J(M))) is finite. In the

case where grade I
M

= t, using [1, 2.4(i)] and [6, 1.2.27], we have

AssR(HomR(R/I,Ht
I,J(M))) = AssR(HomR(R/I,Ht

I(M))) = AssR(Ht
I(M)).

Now, the assertion follows by [15, 3.10].

In the rest of this paper we consider the set of associated prime ideals of some
Ext modules of local cohomology modules defined by a pair of ideals.

Theorem 2.7. Let n be a non-negative integer and M be an R-module such
that AssR(Extn+1

R (R/I,M)) and SuppR(ExtiR(R/I,Hj
I,J(M))) are finite for all

i ≤ n + 2 and all j < n. Then so is AssR(Ext1R(R/I,Hn
I,J(M))).

Proof. Considering the convergence of the spectral sequences of Lemma 2.2, we
have to show that AssR(E1,n

2 ) is a finite set. Using similar arguments as used in

Theorem 2.3, one can see that it is enough to show that AssR(E1,n
∞ ) = AssR(E1,n

n+2)
is a finite set.

By the concept of convergence of spectral sequences, there exists a filtration

0 = ϕn+2Hn+1 ⊆ ϕn+1Hn+1 ⊆ ... ⊆ ϕ1Hn+1 ⊆ ϕ0Hn+1 = Extn+1
R (R/I,M)

of submodules of Extn+1
R (R/I,M) such that Ei,n+1−i

∞ ∼= ϕiHn+1/ϕi+1Hn+1 for

all i = 0, . . . , n + 1. Using the fact that ] SuppR(Ei,j
2 ) <∞ for all i ≤ n + 2 and

all j < n one can see that SuppR(ϕiHn+1) is a finite set for all i = 2, . . . , n + 2.
Also, ]AssR(ϕ1Hn+1) <∞. Now, since

E1,n
n+2
∼= E1,n

∞
∼= ϕ1Hn+1/ϕ2Hn+1,

using Lemma 2.1, we have ]AssR(E1,n
∞ ) <∞, and the result follows.

The following theorem presents a necessary and sufficient condition for the finite-
ness of the set AssR(ExtiR(R/I,Hn

I,J(M))) when i = 0, 2.

Theorem 2.8. Let n be a non-negative integer and M be an R-module such that
the sets SuppR(Extn+1

R (R/I,M)) and SuppR(ExtiR(R/I,Hj
I,J(M))) are finite for

all i ≤ n + 2 and all j < n. Then AssR(HomR(R/I,Hn+1
I,J (M))) is finite if and

only if AssR(Ext2R(R/I,Hn
I,J(M))) is finite.

Proof. (⇐) Again, consider the convergence of spectral sequences of Lemma 2.2
and assume that AssR(E2,n

2 ) is finite. Since Ei,j
2 = 0 for all i < 0 or j < 0,

using similar arguments as used in Theorem 2.3, one can see that E0,n+1
∞ ∼=

E0,n+1
n+3 and in order to prove that ]AssR(E0,n+1

2 ) < ∞ we have to show that

]AssR(E0,n+1
∞ ) <∞.
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There exists a filtration

0 = ϕn+2Hn+1 ⊆ ϕn+1Hn+1 ⊆ · · · ⊆ ϕ1Hn+1 ⊆ ϕ0Hn+1 = Extn+1
R (R/I,M)

of submodules of Extn+1
R (R/I,M) such that E0,n+1

∞ ∼= Extn+1
R (R/I,M)/ϕ1Hn+1.

Since ]SuppR(Extn+1
R (R/I,M)) <∞ we have ]AssR(E0,n+1

∞ ) <∞, as desired.

(⇒) Now, assume that AssR(HomR(R/I,Hn+1
I,J (M))) <∞ and consider the exact

sequence

0→ Ker d0,n+1
2 → E0,n+1

2

d0,n+1
2−−−−→ Im d0,n+1

2 → 0.

Since Ker d0,n+1
2 = E0,n+1

3 and ]SuppR(E0,n+1
3 ) <∞, in view of Lemma 2.1, we

have ]AssR(Im d0,n+1
2 ) <∞. Now, using the exact sequence

0→ Im d0,n+1
2 → E2,n

2

d2,n2−−→ E4,n−1
2

and the fact that E4,n−1
2 = Ext4R(R/I,Hn−1

I,J (M)) has finite support, we have

]AssR(E2,n
2 ) <∞, as desired.

Theorem 2.9. Let n be a non-negative integer and M be an R-module of di-
mension d, such that AssR(Extn+d

R (R/I,M)) and SuppR(ExtiR(R/I,Hj
I,J(M)))

are finite for all i ≥ n + 1 and all j < d. Then AssR(ExtnR(R/I,Hd
I,J(M))) is

finite.

Proof. The method of the proof is similar to the Theorem 2.7, considering [14,
4.7].

In the rest of this paper, we study the grade of prime ideals p ∈ AssR(Ht
I,J(M))

on M . For that, we shall use the following notations introduced in [14].

W (I, J) := {p ∈ Spec (R) : In ⊆ p + J for some integer n ≥ 1},

and

W̃ (I, J) := {a : a is an ideal of R and In ⊆ a + J for some integer n ≥ 1}.

The following lemma can be proved using [14, 3.2].

Lemma 2.10. For any non-negative integer i and any R-module M ,

(i) SuppR(H i
I,J(M)) ⊆

⋃
a∈W̃ (I,J)

Supp(H i
a(M)).

(ii) SuppR(H i
I,J(M)) ⊆ SuppR(M) ∩W (I, J).
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In [15, 3.6] the authors study the grade p
M

for p ∈ AssR(Ht
I,J(M)), where

t = inf {i ∈ N0 : H i
I,J(M) 6= 0}

in the case where M is a finitely generated R-module. But their proof is not
correct. Actually, they use the equality SuppR(Mx) = {p ∈ SuppR(M) : x /∈ p}
which is not true. Here, we also made a correction to this result for not necessary
finite modules.

Theorem 2.11. Let M be an R-module and t = inf{i ∈ N0 : H i
I,J(M) 6= 0} be a

non-negative integer. Then for all p ∈ AssR(Ht
I,J(M)), grade p =

M
t.

Proof. We use induction on t. Let t = 0 and p ∈ AssR(ΓI,J(M)). Then p =
(0 :R x) for some x ∈ ΓI,J(M). Hence x ∈ Γp(M) and so Γp(M) 6= 0.

Now suppose that t > 0 and the case t− 1 is settled. Let p ∈ AssR(Ht
I,J(M))

and consider the exact sequence 0 → M → E → L → 0, where E = ER(M) is
the injective envelope of M . Therefore, using [15, 2.2], H i

I,J(L) ∼= H i+1
I,J (M) for

all i ≥ 0 and we get

inf {i ∈ N0 : H i
I,J(L) 6= 0} = inf {i ∈ N0 : H i

I,J(M) 6= 0} − 1 = t− 1

and that p ∈ AssR(Ht−1
I,J (L)) . Thus, by inductive hypothesis, grade p =

L
t − 1.

Now, consider the long exact sequence

H i−1
p (M)→ H i−1

p (E)→ H i−1
p (L)→ H i

p(M).

If t > 1, then H i
p(M) ∼= H i−1

p (L) = 0 for all i < t and Ht
p(M) ∼= Ht−1

p (L) 6= 0.
Thus grade p =

M
t.

Let t = 1. Then Γp(L) 6= 0. By the above exact sequence, it is enough to
show that Γp(E) = 0. On the contrary, assume that Γp(E) 6= 0. Then there
exists a non-zero element x ∈ E and n ∈ N such that pnx = 0. We may assume
that pnx = 0 and pn−1x 6= 0. So, there exists r ∈ pn−1 such that rx 6= 0. Thus
p ⊆ (0 :R rx). On the other hand, by Lemma 2.10,

p ∈ AssR(H1
I,J(M)) ⊆ SuppR(H1

I,J(M)) ⊆
⋃

a∈W̃ (I,J)

SuppR(H1
a (M)).

So that there exists a ∈ W̃ (I, J) such that a ⊆ p. Let m ∈ N with Im ⊆ a + J ⊆
p + J ⊆ (0 :R rx) + J . Hence rx ∈ ΓI,J(M) which contradicts with hypothesis
and the choice of rx. Therefore Γp(E) = 0 and so grade p =

M
1.
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