Discussiones Mathematicae General Algebra and Applications 36 (2016) 101–111 doi:10.7151/dmgaa.1243

POINTED PRINCIPALLY ORDERED REGULAR SEMIGROUPS

T.S. Blyth

Mathematical Institute
University of St Andrews, Scotland
e-mail: tsb@st-and.ac.uk

AND

G.A. PINTO

School of Mathematics, Physics and Technology College of The Bahamas, Freeport, Commonwealth of The Bahamas e-mail: gcapinto@gmail.com

Abstract

An ordered semigroup S is said to be *principally ordered* if, for every $x \in S$ there exists $x^* = \max\{y \in S \mid xyx \leqslant x\}$. Here we investigate those principally ordered regular semigroups that are *pointed* in the sense that the classes modulo Green's relations $\mathcal{L}, \mathcal{R}, \mathcal{D}$ have biggest elements which are idempotent. Such a semigroup is necessarily a semiband. In particular we describe the subalgebra of $(S; ^*)$ generated by a pair of comparable idempotents that are \mathcal{D} -related. We also prove that those \mathcal{D} -classes which are subsemigroups are ordered rectangular bands.

Keywords: regular semigroup, principally ordered, naturally ordered, Green's relations.

2010 Mathematics Subject Classification: 06F05, 20M17.

An ordered regular semigroup S is said to be *principally ordered* [3] if, for every $x \in S$ there exists $x^* = \max\{y \in S \mid xyx \leqslant x\}$. The basic properties of the unary operation $x \mapsto x^*$ in such a semigroup were established in [3] and are listed in [1, Theorem 13.26]. In particular, we recall for the reader's convenience that in such a semigroup the following properties hold and will be used throughout what follows:

- $(P_1) \ (\forall x \in S) \ x = xx^*x;$
- (P_2) every \mathcal{L} -class $[x]_{\mathcal{L}}$ contains a biggest idempotent, namely x^*x ;

- (P_3) every \mathcal{R} -class $[x]_{\mathcal{R}}$ contains a biggest idempotent, namely xx^* ;
- $(P_4) \ (\forall x \in S) x^{\star\star\star} = x^{\star};$
- (P_5) every $x \in S$ has a biggest inverse, namely $x^{\circ} = x^{\star}xx^{\star}$;
- $(P_6) \ (\forall x \in S) x^{\circ} \leqslant x^{\star};$
- $(P_7) \ (\forall x \in S) \ x \leqslant x^{\star\star} = x^{\circ\star} = x^{\star\circ}.$

The point of departure for our investigation here is the following observation.

Theorem 1. If S is a principally ordered regular semigroup then the following statements are equivalent:

- (1) every \mathcal{L} -class has a biggest element which is idempotent;
- (2) $(\forall x \in S)x^*x = \max[x]_{\mathcal{L}};$
- (3) every R-class has a biggest element which is idempotent;
- (4) $(\forall x \in S)xx^* = \max[x]_{\mathcal{R}};$
- (5) $(\forall x \in S)x^2 \leqslant x$;
- (6) $(\forall x \in S)x^* \in E(S)$.

Moreover, if S satisfies any of the above conditions then

- (7) $(\forall x \in S) \quad \max[x^*]_{\mathcal{R}} = x^* = x^{**} = \max[x^*]_{\mathcal{L}};$
- (8) S is a semiband and Green's relation \mathcal{H} is equality;
- (9) $x \in S$ is completely regular if and only if $x \in E(S)$.

Proof. (1) \Leftrightarrow (2): If (1) holds and $e = e^2 = \max[x]_{\mathcal{L}}$ then, by (P_2) , $e = e^*e = x^*x$ whence (2) holds. The converse is clear.

- $(3) \Leftrightarrow (4)$: This is dual to $(1) \Leftrightarrow (2)$.
- $(2) \Rightarrow (5)$: If (2) holds then $x \leqslant x^*x$ gives, by $(P_1), x^2 \leqslant xx^*x = x$.
- (5) \Rightarrow (2): If (5) holds then $x^3 \leqslant x^2 \leqslant x$, so $x \leqslant x^*$. Then $xx^* \leqslant x^{*2} \leqslant x^*$ and consequently $x = xx^*x \leqslant x^*x$ for every $x \in S$. Every $y \in [x]_{\mathcal{L}}$ is then such that $y \leqslant y^*y = x^*x$, whence it follows that $x^*x = \max[x]_{\mathcal{L}}$.
 - $(4) \Leftrightarrow (5)$: This is dual to $(2) \Leftrightarrow (5)$.
- (5) \Rightarrow (6): Suppose that (5) holds. Then by the above so do (2) and (4). Now if $y \mathcal{R} x$ then, by (4), we have $y \leqslant xx^*$ whence $yx \leqslant xx^*x = x$. It follows by (5) that $xyx \leqslant x^2 \leqslant x$ and so $y \leqslant x^*$. In particular, on taking $y = xx^*$ we obtain $xx^* \leqslant x^*$ for every $x \in S$. Replacing x by x^{**} in this, we obtain $x^{**}x^* \leqslant x^*$ and it follows by (2) that $x^* = x^{**}x^* \in E(S)$.
- (6) \Rightarrow (2): Clearly, every $e \in E(S)$ is such that $e \leqslant e^*$. Thus, if (6) holds then $x^* \leqslant x^{**}$ and $x^{**} \leqslant x^{***} = x^*$. Consequently $x^* = x^{**}$ for every $x \in S$.

We now observe that

$$y \equiv x(\mathcal{R}) \implies y^* = x^*.$$

Indeed, if $y \equiv x(\mathcal{R})$ then, by (6), $xx^*y^*x = yy^*y^*x = yy^*x = xx^*x = x$ whence $x^*y^* \leqslant x^*$. Then $x^*y^*x^* \leqslant x^{*2} = x^*$ and consequently $y^* \leqslant x^{**} = x^*$. Interchanging x and y produces the reverse inequality and therefore $y^* = x^*$.

Taking in particular $y = xx^*$ we then have $xx^* \leq (xx^*)^* = x^*$ whence $x = xx^*x \leq x^*x$ for every $x \in S$. If now $z \in [x]_{\mathcal{L}}$ then it follows that $z \leq z^*z = x^*x$ and therefore $x^*x = \max[x]_{\mathcal{L}}$, which is (2).

Suppose now that the above conditions are satisfied.

- (7) As shown in (6) \Rightarrow (2), $x^* = x^{**} \in E(S)$, and therefore $x^* = x^{**}x^*$. Then, by (4) and (P_4) , $x^* = \max[x^{**}]_{\mathcal{R}} = \max[x^*]_{\mathcal{R}}$. Dually, we see that also $x^* = \max[x^*]_{\mathcal{L}}$.
- (8) Since, by (6), each x^* is idempotent, we have $x = xx^*x = xx^* \cdot x^*x$ and so every $x \in S$ is a product of two idempotents, whence S is a semiband. Moreover, if $x \mathcal{H} y$ then $x = xx^*x = xx^* \cdot x^*x = yy^* \cdot y^*y = yy^*y = y$ whence \mathcal{H} reduces to equality.
- (9) If $x \in S$ is completely regular then there exists $x' \in V(x)$ such that xx' = x'x. Then, by (5), $x' = x'xx' = x'^2x \le x'x$ from which it follows that $x = xx'x \le xx'xx = x^2$ and consequently $x \in E(S)$. The converse is clear.

Definition. We shall say that a principally ordered regular semigroup is *pointed* whenever it satisfies any of the six equivalent properties of Theorem 1.

By way of providing a source of examples, we recall that the *natural order* \leq_n on the idempotents of a regular semigroup is defined by

$$e \leqslant_n f \iff e = ef = fe$$
,

and that an ordered regular semigroup $(T; \leq)$ is said to be *naturally ordered* if the order \leq extends the natural order, in the sense that if $e \leq_n f$ then $e \leq f$. In this case, a fundamental property is that if $e \leq f$ then e = efe; see, for example, [1, Theorem 13.11].

Theorem 2. If T is a naturally ordered regular semigroup with a biggest idempotent ξ then the semiband $\langle E(T) \rangle$ is a pointed principally ordered regular semigroup.

Proof. If $\overline{e} = e_1 \cdots e_n \in \langle E(T) \rangle$ then, since ξ is the biggest element of $\langle E(T) \rangle$, we have that $e\xi e = e$ for every $e \in E(T)$, and consequently

$$\overline{e} \xi \overline{e} = e_1 \cdots e_n \xi e_1 \cdots e_n \leqslant e_1 \xi e_1 \cdots e_n = e_1 \cdots e_n = \overline{e}.$$

It follows that the regular subsemigroup $\langle E(T) \rangle$ is principally ordered with $\overline{e}^* = \xi$ for every $\overline{e} \in \langle E(T) \rangle$. Furthermore, $\overline{e}^2 = \overline{e}e_1\overline{e} \leqslant \overline{e}\xi\overline{e} \leqslant \overline{e}$ and it follows by Theorem 1(5) that $\langle E(T) \rangle$ is pointed.

To avoid unnecessary repetition throughout what follows, S will always denote a pointed principally ordered regular semigroup.

As we have seen above, a characteristic property of S is that the classes modulo Green's relations \mathcal{R} and \mathcal{L} have biggest elements which are idempotent. We now show that the same is true for Green's relation \mathcal{D} .

Theorem 3. Green's relation \mathcal{D} on S is given by

$$(x,y) \in \mathcal{D} \iff x^{\circ} = y^{\circ}.$$

Moreover, every D-class has a biggest element which is idempotent. Specifically,

$$(\forall x \in S) \quad x^{\circ} = x^{\circ \circ} = \max[x^{\star}x]_{\mathcal{R}} = \max[xx^{\star}]_{\mathcal{L}} = \max[x]_{\mathcal{D}} \in E(S).$$

Proof. As observed in the proof of Theorem 1, we have $(xx^*)^* = x^*$ and therefore, by Theorem 1(4),

$$x^{\circ} = x^{\star}xx^{\star} = x^{\star}x(x^{\star}x)^{\star} = \max[x^{\star}x]_{\mathcal{R}} \in E(S),$$

and dually for \mathcal{L} . Moreover, by (P_7) and Theorem 1(6,7),

$$x^{\circ \circ} = x^{\circ \star} x^{\circ} x^{\circ \star} = x^{\star \star} x^{\star} x x^{\star} x^{\star \star} = x^{\star} x x^{\star} = x^{\circ}.$$

If now $x \mathcal{D} y$ then there exists $z \in S$ such that $x \mathcal{L} z \mathcal{R} y$. Then $x^*x = z^*z$ and $zz^* = yy^*$. It follows from the above that $x^\circ = z^\circ = y^\circ$. On the other hand, $x \mathcal{L} x^*x \mathcal{R} x^\circ$ gives $x \mathcal{D} x^\circ$. Consequently $x \mathcal{D} y \iff x^\circ = y^\circ$. Finally, by Theorem 1(2,4) we see that $x \leqslant xx^* \leqslant x^*xx^* = x^\circ$ whence it follows that $x^\circ = \max[x]_{\mathcal{D}} \in E(S)$.

Theorem 4. (1) $x \in S$ is a maximal idempotent if and only if it is a maximal element;

- (2) S contains at most one maximal element.
- **Proof.** (1) Suppose that e is a maximal idempotent of S. If $x \in S$ is such that $e \leq x$ then we have $e \leq x \leq x^* \in E(S)$, whence the hypothesis that e is maximal in E(S) gives e = x. Thus e is a maximal element of S. Conversely, if $x \in S$ is a maximal element then $x \leq x^*$ gives $x = x^*$ whence, by Theorem 1(6), $x \in E(S)$.
- (2) Let e and f be maximal elements of S. By (1), each is then idempotent. Now, by Theorem 1(5), $ef \cdot e \cdot ef = (ef)^2 \leqslant ef$ and gives $e \leqslant (ef)^*$. It follows that $e = (ef)^*$ and likewise $e = (fe)^*$. Similarly, $f = (fe)^* = (ef)^*$ and consequently e = f.
- By [4, Theorem 3.3], a principally ordered regular semigroup is naturally ordered if and only if the assignment $x \mapsto x^*$ is antitone. In this case, as shown in [1, Theorem 13.29], each $(xx^*)^*$ is a maximal idempotent. Using this fact in the case where S is pointed, we obtain the following characterisation.

Theorem 5. The following statements are equivalent:

- (1) S is naturally ordered;
- (2) S has a biggest element ξ and $x^* = \xi$ for every $x \in S$.

Proof. (1) \Rightarrow (2): If (1) holds then each $(xx^*)^* = x^*$ is a maximal idempotent and $x \leq x^*$. Then property (2) follows immediately from Theorem 4.

 $(2) \Rightarrow (1)$: Suppose conversely that (2) holds and let $e, f \in E(S)$ be such that $e \leq_n f$. By (2), $e^* = \xi = f^*$ and consequently $e = ef = fef \leq fe^*f = ff^*f = f$. Thus S is naturally ordered.

Corollary. If S is naturally ordered then Green's relations \mathcal{D} and \mathcal{J} coincide.

Proof. By Theorem 5, $(x^2)^* = \xi = x^*$. Consequently, $x^2 = x^2(x^2)^*x^2 = x^2x^*x^2 = x^3$. Then $x^2 \in E(S)$ and so S is group bound. It follows by [6, Theorem 1.2.20] that \mathcal{D} and \mathcal{J} coincide.

Consider now the subset $S^* = \{x^* \mid x \in S\}$. This is related to the subset S° and to the set $C = \{x \in S \mid x^* = x^\circ\}$ of *compact elements* as follows.

Theorem 6. $S^* = C \cap S^\circ$.

Proof. The identity $x^{\star\star} = x^{\star\circ}$ shows that $S^{\star} \subseteq C$. Similarly, $x^{\star} = x^{\star\star\star} = x^{\star\star\circ} = x^{\star\circ\circ}$ shows that $S^{\star} \subseteq S^{\circ}$. Thus $S^{\star} \subseteq C \cap S^{\circ}$. Conversely, if $x \in C \cap S^{\circ}$ then $x^{\star} = x^{\circ}$ and $x = x^{\circ\circ}$, whence $x = x^{\circ\circ} = x^{\star\circ} = x^{\star\star} \in S^{\star}$.

As the following example shows, S^* is not in general a subsemigroup of S.

Example 1. Let L be a lattice and consider the cartesian ordered set

$$L^{[2]} = \{(x,y) \in L \times L \mid y \leqslant x\}.$$

With respect to the multiplication defined by

$$(x,y)(a,b) = (x \lor a, y \land b),$$

it is clear that $L^{[2]}$ is an ordered band. It is readily verified that $L^{[2]}$ is principally ordered with $(x,y)^*=(x,x)$. By Theorem 1(5), $L^{[2]}$ is pointed with $(L^{[2]})^*=\{(x,x)\mid x\in L\}$. Now $(L^{[2]})^*$ is not a subsemigroup, for clearly $(x,y)^*(a,b)^*=(x\vee a,x\wedge a)$ and this belongs to $(L^{[2]})^*$ if and only if x=a. The particular case of $\mathbb{N}^{[2]}$ is illustrated as follows:

However, in the presence of an identity element 1 the subset S^* has a particular description.

Theorem 7. If S has an identity element 1, then $S^* = \{x \in S \mid 1 \leq x\}$ and is a join semilattice in which $x \vee y = xy$.

Proof. If $x \in S$, then since $x1x = x^2 \le x$ we have $1 \le x^*$. Conversely, let $1 \le x$. Then

$$x^* = \begin{cases} 1x^* \leqslant xx^* \leqslant x^*x^* = x^* & \text{whence } x^* = xx^*; \\ x^*1 \leqslant x^*x \leqslant x^*x^* = x^* & \text{whence } x^* = x^*x. \end{cases}$$

Hence $x^* \mathcal{H} x$ and so $x^* = x$ by Theorem 1(8). Thus we see that $S^* = \{x \in \langle E(S) \rangle \mid 1 \leqslant x\}$ and is a sub-band. Now if $x, y \in S^*$ then $x = x1 \leqslant xy$ and $y = 1y \leqslant xy$, so that xy is an upper bound for $\{x, y\}$. Furthermore, if $z \in S$ is any upper bound for $\{x, y\}$ then necessarily $z \in S^*$ whence $xy \leqslant z^2 = z$. Consequently, S^* is a join semilattice in which $x \lor y = xy$.

Example 2. Let **3** denote the 3-element chain 0 < 1 < 2 and consider the ordered regular semigroup consisting of those isotone mappings f on **3** which are such that f(0) = 0. Equivalently, this is the semigroup Res **3** of residuated mappings on **3** [2]. It has the following Hasse diagram and Cayley table, in which $[0 \ a \ b]$ denotes the mapping f such that f(0) = 0, f(1) = a, f(2) = b.

This semiband is principally ordered and pointed, with identity element e. Here we have $x^* = u$ for $x \neq e$ and $e^* = e$, so that $S^* = \{e, u\}$.

Example 3. Consider, for $n \ge 2$, the ordered semigroup \mathbf{B}_n of $n \times n$ matrices with entries in a boolean algebra \mathbf{B} . For the basic operations in \mathbf{B} we use the notation a+b (for $a \vee b$) and ab (for $a \wedge b$).

As shown in [1], this semigroup is regular if and only if n = 2. Moreover, as is established in [5], \mathbf{B}_2 is principally ordered with

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^* = \begin{bmatrix} b' + c' + d & a' + d' + b \\ a' + d' + c & b' + c' + a \end{bmatrix}.$$

The set of idempotents is

$$E(\mathbf{B}_2) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mid b + c \leqslant a + d, \ bc \leqslant ad \right\},\,$$

and the regular subsemigroup they generate is

$$\langle E(\mathbf{B}_2) \rangle = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mid bc \leqslant ad \right\}.$$

The semiband $\langle E(\mathbf{B}_2) \rangle$ is also principally ordered and pointed. This follows from Theorem 1 and the observation that $bc \leq ad$ gives $b' + c' \geq a' + d'$ whence

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^* = \begin{bmatrix} 1 & a' + d' + b \\ a' + d' + c & 1 \end{bmatrix} \in E(\mathbf{B}_2).$$

Since \mathbf{B}_2 has an identity element it follows from Theorem 7 that $\langle E(\mathbf{B}_2) \rangle^*$ is the join semilattice

$$\langle E(\mathbf{B}_2) \rangle^{\star} = \{ X \in \mathbf{B}_2 \mid I_2 \leqslant X \} = \left\{ \begin{bmatrix} 1 & x \\ y & 1 \end{bmatrix} \mid x, y \in \mathbf{B} \right\}.$$

We can also identify the compact elements of $\langle E(\mathbf{B}_2) \rangle$. For this we recall from (P_5) that every $X = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ in \mathbf{B}_2 has a biggest inverse, namely

$$X^{\circ} = X^{\star}XX^{\star} = \begin{bmatrix} b'(a+c) + c'(a+b) + d & a'(c+d) + d'(a+c) + b \\ a'(b+d) + d'(a+b) + c & b'(c+d) + c'(b+d) + a \end{bmatrix}$$

In particular, if $X \in \langle E(\mathbf{B}_2) \rangle$ then the inequality $bc \leq ad$ gives d = d + bc and a = a + bc, so that we obtain

$$X^{\circ} = \begin{bmatrix} a+b+c+d & a'(c+d)+d'(a+c)+b \\ a'(b+d)+d'(a+b)+c & a+b+c+d \end{bmatrix}.$$

Thus, if $X \in \langle E(\mathbf{B}_2) \rangle$ is compact then necessarily a+b+c+d=1. Conversely, if the property a+b+c+d=1 holds then

$$a'(c+d) + d'(a+c) + b \ge a'(a+b)' + d'(b+d)' + b$$

= $a'b' + b'd' + b$
= $a' + d' + b$.

Clearly, the reverse inequality holds, so that a'(c+d) + d'(a+c) + b = a' + d' + b. Likewise, we see that a'(b+d) + d'(a+b) + c = a' + d' + c and consequently $X^{\circ} = X^{\star}$. Hence the set of compact elements of $\langle E(\mathbf{B}_2) \rangle$ is

$$C = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \langle E(\mathbf{B}_2) \rangle \mid a+b+c+d = 1 \right\}.$$

We now turn attention to the \mathcal{D} -classes of S. For idempotents e, f with $e \leq f$ and $(e, f) \in \mathcal{D}$ we first focus on the structure of the subalgebra of $(S; ^*)$ generated by $\{e, f\}$. In this connection the following observation is important.

Theorem 8. Any two comparable \mathcal{D} -related idempotents of S are mutually inverse.

Proof. Let $e, f \in E(S)$ be such that $e \leq f$ and $e \mathcal{D} f$. Then, by Theorem 3, $e^{\circ} = f^{\circ}$. Consequently, by Theorem 1(7) and (P_7) , $e^{\star} = e^{\star \star} = e^{\circ \star} = f^{\circ \star} = f^{\star \star} = f^{\star}$. Moreover, the idempotents e° and e^{\star} are such that $e^{\circ}e^{\star} = e^{\circ} = e^{\star}e^{\circ}$, whence $e^{\circ} \leq_n e^{\star}$.

We first observe that $e = eee \leqslant efe \leqslant ef^*e = ee^*e = e$ so that e = efe.

Consider now fee^* . That $fee^* \in E(S)$ follows from the inequalities

$$fee^* = fee^* eee^* \leq fee^* \cdot fee^* \leq fff^* fee^* = fee^*.$$

Now $fee^* \cdot e^\circ = fee^\circ = fee^*$ and

$$e^{\circ} \cdot fee^{\star} \begin{cases} \leqslant f^{\circ}ffe^{\star} = f^{\circ}ff^{\star} = f^{\circ}ff^{\circ} = f^{\circ} = e^{\circ}; \\ \geqslant e^{\circ}ee^{\star} = e^{\circ}ee^{\circ} = e^{\circ}, \end{cases}$$

so that $e^{\circ} \cdot f e e^{\star} = e^{\circ}$. Consequently $f e e^{\star} \mathcal{L} e^{\circ} = f^{\circ} \mathcal{L} f f^{\star}$.

Furthermore, $fee^{\star} \cdot ff^{\star} = fef^{\star}ff^{\star} = fef^{\circ} = fee^{\circ} = fee^{\star}$ and $ff^{\star} \cdot fee^{\star} = fee^{\star}$ show that $fee^{\star} \leq_n ff^{\star}$. Since these idempotents are also \mathcal{L} -equivalent it follows that $fee^{\star} = ff^{\star}$.

Using the above observations, we see that $fef \cdot ff^* = feff^* = fefee^* = fee^* = ff^*$ whence $fef \mathcal{R} ff^* \mathcal{R} f$. Since $fef \in E(S)$ with $fef \leq_n f$ it follows that f = fef.

Thus e and f are mutually inverse.

Corollary. The following statements are equivalent:

- (1) S is completely simple;
- (2) S is compact and naturally ordered.

Proof. (1) \Rightarrow (2): If S is completely simple then, since \leq_n reduces to equality, S is trivially naturally ordered. Since the idempotents x° , x^{\star} are such that $x^{\circ} \leq_n x^{\star}$, it follows that $x^{\circ} = x^{\star}$ and therefore S is compact.

 $(2) \Rightarrow (1)$: Suppose that (2) holds and that $e, f \in E(S)$ are such that $e \leqslant_n f$. By Theorem 5, S has a biggest element ξ and $f^* = \xi = e^*$. Compactness now gives $f^{\circ} = e^{\circ}$ whence, by Theorem 3, $(e, f) \in \mathcal{D}$. Since also the natural order implies that $e \leqslant f$, it follows by Theorem 8 that the idempotents e and f are mutually inverse. Consequently, f = fef = e. Thus \leqslant_n reduces to equality and S is completely simple.

Theorem 9. Let e, f be idempotents of S such that $e \leq f$ and $e \mathcal{D} f$. If T is the subalgebra of $(S;^*)$ generated by $\{e, f\}$ then T is a band having at most 10 elements. In the case where T has precisely 10 elements it is represented by the Hasse diagram

in which elements joined by lines of positive gradient are \mathcal{R} -related, those joined by lines of negative gradient are \mathcal{L} -related, and the vertical line also indicates \leq_n .

Proof. Since $e\mathcal{D}f$ it follows from Theorem 3 that $e^{\circ} = f^{\circ}$ whence $e^{\star} = f^{\star}$. The elements of T are then finite products of the elements e, f and $e^{\star}[=f^{\star}]$. Moreover, since $e \leqslant f$, every $x \in T$ is such that $e \leqslant x \leqslant e^{\star}$. By Theorem 8, e and f are mutually inverse, so for every $x \in T$ we have

$$f = fef \leqslant fxf \leqslant fe^{\star}f = ff^{\star}f = f$$

whence f = fTf. In a similar way we see that e = eTe and likewise

$$ee^* = eTe^*, e^*e = e^*Te, ff^* = fTf^*, f^*f = f^*Tf, ef = eTf, fe = fTe.$$

For example, $ee^* = eee^* \leq exe^* \leq ee^*e^* = ee^*$ gives $ee^* = eTe^*$. It follows from this that $ee^* = efe^* = eff^*$ whence $ee^*f = ef$ and then $ef = eef \leq exf \leq ee^*f = ef$ and consequently ef = eTf. Finally, it is readily seen from the above that $e^*Te^* = \{e^{\circ}, e^*\}$. It now follows from these observations that T is a band which consists of at most 10 elements, has precisely two \mathcal{D} -classes, and is as described in the above Hasse diagram.

Example 4. In the semigroup $\langle E(\mathbf{B}_2) \rangle$ of Example 3, let $|\mathbf{B}| \geqslant 8$ and consider the idempotents

$$e = \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}, \quad f = \begin{bmatrix} a & b \\ b & b \end{bmatrix}$$
 where $0 < b < a < 1$.

Simple calculations which use the expressions for X^* and X° given in Example 3 reveal that $e^* = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = f^*$, and that $e^\circ = \begin{bmatrix} a & a \\ a & a \end{bmatrix} = f^\circ$ whence $e \mathcal{D} f$ with e < f.

Furthermore,

$$ee^{\star} = \begin{bmatrix} a & a \\ 0 & 0 \end{bmatrix}, \ ff^{\star} = \begin{bmatrix} a & a \\ b & b \end{bmatrix}, \ e^{\star}e = \begin{bmatrix} a & 0 \\ a & 0 \end{bmatrix}, \ f^{\star}f = \begin{bmatrix} a & b \\ a & b \end{bmatrix}, \ ef = \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix}, \ fe = \begin{bmatrix} a & 0 \\ b & 0 \end{bmatrix}.$$

Consequently we have a copy of the band depicted in Theorem 9.

We now proceed to describe the structure of those \mathcal{D} -classes that are subsemigroups of S (which is the case for D_e in Theorem 9, but not so for D_u in Example 2 since gf = 0).

Theorem 10. Given $e \in E(S)$, suppose that D_e is a subsemigroup of S. Then $L_{e^{\circ}}$ is a left zero semigroup, $R_{e^{\circ}}$ is a right zero semigroup, and D_e is isomorphic to the ordered rectangular band $L_{e^{\circ}} \times R_{e^{\circ}}$.

Proof. We observe first that, since $x^{\circ} = e^{\circ}$ for every $x \in D_e$,

$$x \in L_{e^{\circ}} \iff x^{\circ}x = e^{\circ} \iff x = xx^{\circ} \in D_e;$$

 $x \in R_{e^{\circ}} \iff xx^{\circ} = e^{\circ} \iff x = x^{\circ}x \in D_e.$

If therefore $x, y \in L_{e^{\circ}}$ we have $xy = xx^{\circ}y = xe^{\circ}y = xy^{\circ}y = xe^{\circ} = xx^{\circ} = x$ and consequently $L_{e^{\circ}}$ is a left zero semigroup. Likewise, $R_{e^{\circ}}$ is a right zero semigroup. Then

$$L_{e^{\circ}} \times R_{e^{\circ}} = \{(xe^{\circ}, e^{\circ}y) \mid x, y \in D_e\}$$

is a rectangular band. Consider therefore the mapping $\vartheta: D_e \to L_{e^{\circ}} \times R_{e^{\circ}}$ given by the prescription $\vartheta(x) = (xe^{\circ}, e^{\circ}x)$, which is clearly isotone.

Now if $(a,b) \in L_{e^{\circ}} \times R_{e^{\circ}}$ then, since $ab \in D_e$ by the hypothesis with

$$\vartheta(ab) = (abe^{\circ}, e^{\circ}ab) = (abb^{\circ}, a^{\circ}ab) = (ae^{\circ}, e^{\circ}b) = (a, b),$$

we see that ϑ is surjective. Moreover,

$$\vartheta(x) \leqslant \vartheta(y) \iff xe^{\circ} \leqslant ye^{\circ}, \ e^{\circ}x \leqslant e^{\circ}y$$
$$\iff x = xe^{\circ}x \leqslant ye^{\circ}y = y.$$

It follows from these observations that ϑ is an order isomorphism.

We now observe that if e, f are \mathcal{D} -equivalent idempotents such that $e \leq_n f$ then $e = ef = fe \leq fe^{\circ} = ff^{\circ}$ and consequently $e = ef \leq ff^{\circ}f = f$. Thus D_e is a naturally ordered regular semigroup with a biggest idempotent e° . Since $(xy)^{\circ} = e^{\circ} = y^{\circ}x^{\circ}$ for all $x, y \in D_e$, it follows by [1, Theorem 13.18] that e° is a middle unit of D_e . Using this fact, we see that

$$\vartheta(x)\vartheta(y) = (xe^{\circ}, e^{\circ}x)(ye^{\circ}, e^{\circ}y) = (xe^{\circ}ye^{\circ}, e^{\circ}xe^{\circ}y) = (xye^{\circ}, e^{\circ}xy) = \vartheta(xy),$$

whence we conclude that ϑ defines an ordered semigroup isomorphism $D_e \simeq L_{e^{\circ}} \times R_{e^{\circ}}$.

References

- T.S. Blyth, Lattices and Ordered Algebraic Structures (Springer, 2005). doi:10.1007/b139095
- [2] T.S. Blyth and M.F. Janowitz, Residuation Theory (Pergamon, 1972).
- [3] T.S. Blyth and G.A. Pinto, Principally ordered regular semigroups, Glasgow Math.
 J. 32 (1990) 349–364. doi:10.1017/S0017089500009435
- [4] T.S. Blyth and G.A. Pinto, Idempotents in principally ordered regular semigroups, Communications in Algebra 19 (1991) 1549–1563. doi:10.1080/00927879108824220
- [5] T.S. Blyth and M.H. Almeida Santos, On weakly multiplicative inverse transversals,
 Proc. Edinburgh Math. Soc. 37 (1993) 93-99. doi:10.1017/S001309150001871X
- [6] P.M. Higgins, Techniques of Semigroup Theory (Oxford Science Publications, 1992). doi:10.1007/BF02573500

Received 11 January 2016 Revised 20 May 2016