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Abstract

An ordered semigroup S is said to be principally ordered if, for every
x € S there exists ¥ = max{y € S | zyx < x}. Here we investigate those
principally ordered regular semigroups that are pointed in the sense that the
classes modulo Green’s relations £, R, D have biggest elements which are
idempotent. Such a semigroup is necessarily a semiband. In particular we
describe the subalgebra of (S;*) generated by a pair of comparable idem-
potents that are D-related. We also prove that those D-classes which are

subsemigroups are ordered rectangular bands.
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An ordered regular semigroup S is said to be principally ordered [3] if, for
every x € S there exists z* = max {y € S | zyx < x}. The basic properties of the
unary operation z — z* in such a semigroup were established in [3] and are listed
in [1, Theorem 13.26]. In particular, we recall for the reader’s convenience that
in such a semigroup the following properties hold and will be used throughout

what follows:
(P1) (Vz € 5) & = xa*x;
(P») every L-class [x]z contains a biggest idempotent, namely z*z;
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(P3) every R-class [z]g contains a biggest idempotent, namely xz*;
(Py) (Vo € S)x*™* = z*;

(P5) every x € S has a biggest inverse, namely z° = z*zz*;

(Ps) (Vo € S)z® < x*;

(Pr) Yz € §) o < o™ =z =a*°.

The point of departure for our investigation here is the following observation.

Theorem 1. If S is a principally ordered regular semigroup then the following
statements are equivalent:

(1) every L-class has a biggest element which is idempotent;
(2) (Vz € S)z*r = max [z]z;
(3) every R-class has a biggest element which is idempotent;
(4) (Vz € S)zx* = max [z]R;
(5) (Vz € S)2? < 23

(6) (Vz € S)z* € E(S).
Moreover, if S satisfies any of the above conditions then

(7) (Vx € S) max[z*]g = 2* = 2™ = max [z*];

(8) S is a semiband and Green’s relation H is equality;

(9) x € S is completely reqular if and only if © € E(S).

Proof. (1) < (2): If (1) holds and e = e¢? = max [z]. then, by (P), e = e*e =
x*z whence (2) holds. The converse is clear.

(3) < (4): This is dual to (1) < (2).

(2) = (5): If (2) holds then = < z*z gives, by (P1), 2> < za*z = .

(5) = (2): If (5) holds then z* < 2% < z, so 2 < z*. Then za* < z*% < 2*
and consequently x = xz*z < z*z for every z € S. Every y € [z], is then such
that y < y*y = 2*x, whence it follows that z*z = max [z|..

(4) < (5): This is dual to (2) < (5).

(5) = (6): Suppose that (5) holds. Then by the above so do (2) and (4).
Now if y R « then, by (4), we have y < za* whence yx < zz*x = z. It follows by
(5) that xyz < 2% < z and so y < z*. In particular, on taking y = z2* we obtain
zx* < z* for every x € S. Replacing = by z** in this, we obtain z**z* < z* and
it follows by (2) that * = 2**z* € E(S5).

(6) = (2): Clearly, every e € E(S) is such that e < e*. Thus, if (6) holds
then x* < o and z** < o = z*. Consequently x* = z** for every xz € S.

We now observe that
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Indeed, if y = z(R) then, by (6), zz*y*z = yy*y*z = yy*=r = xa*x = x whence
z*y* < 2*. Then z*y*2* < 22 = z* and consequently y* < z** = z*. Inter-
changing x and y produces the reverse inequality and therefore y* = z*.

Taking in particular y = zz* we then have xa* < (zz*)* = 2* whence x =
za*z < x*x for every x € S. If now z € [z] then it follows that z < 2%z = 2™z
and therefore x*z = max [z]z, which is (2).

Suppose now that the above conditions are satisfied.

(7) As shown in (6) = (2), 2* = z* € E(S5), and therefore z* = z**z*.
Then, by (4) and (Py), * = max [z**|g = max [z*]g. Dually, we see that also
* = max [x*] .

(8) Since, by (6), each x* is idempotent, we have x = zo*x = z* - z*x and so
every x € S is a product of two idempotents, whence S is a semiband. Moreover,
if t Hy then x = xo*r = za* - 2*x = yy* - y*y = yy*y = y whence H reduces to
equality.

(9) If z € S is completely regular then there exists 2’ € V(x) such that
zx’ = 2'z. Then, by (5), 2/ = 2/za’ = 2’*z < 2’z from which it follows that
r = x2'r < r2’rz = 2% and consequently x € FE(S). The converse is clear. |

Definition. We shall say that a principally ordered regular semigroup is pointed
whenever it satisfies any of the six equivalent properties of Theorem 1.

By way of providing a source of examples, we recall that the natural order
<, on the idempotents of a regular semigroup is defined by

ey f <= e=cef = fe,

and that an ordered regular semigroup (7'; <) is said to be naturally ordered if
the order < extends the natural order, in the sense that if e <,, f then e < f. In
this case, a fundamental property is that if e < f then e = efe; see, for example,
[1, Theorem 13.11].

Theorem 2. If T is a naturally ordered reqular semigroup with a biggest idem-
potent & then the semiband (E(T)) is a pointed principally ordered regular semi-
group.

Proof. If e = e;---e, € (E(T)) then, since £ is the biggest element of (E(T)),
we have that e€e = e for every e € E(T'), and consequently

ee=cer--epfer--ep <erer-re,=e1-ey = e

It follows that the regular subsemigroup (F(T)) is principally ordered with e* = ¢
for every @ € (E(T)). Furthermore, €2 = eeje < e£e < € and it follows by
Theorem 1(5) that (E(T)) is pointed. |
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To avoid unnecessary repetition throughout what follows, S will always de-
note a pointed principally ordered reqular semigroup.

As we have seen above, a characteristic property of S is that the classes
modulo Green’s relations R and £ have biggest elements which are idempotent.
We now show that the same is true for Green’s relation D.

Theorem 3. Green’s relation D on S is given by
(x,y) €D <= z° =y°.

Moreover, every D-class has a biggest element which is idempotent. Specifically,

(Vo € S) 2° =2 = max[z*z]g = max [z2*|, = max [z]p € E(S).
Proof. As observed in the proof of Theorem 1, we have (zz*)* = 2* and there-
fore, by Theorem 1(4),

x° = x*xx* = 2*x(2*r)* = max [z z]g € E(S),

and dually for £. Moreover, by (P7) and Theorem 1(6,7),

xOO — $0*$O$O* — x**x*ww*x** — x*$x* — :BO‘

If now z Dy then there exists z € § such that x L2zRy. Then z*z = z*z
and zz* = yy*. It follows from the above that 2° = 2° = y°. On the other
hand, = Lz*x R x° gives x Dx°. Consequently t Dy <= x° = y°. Finally,
by Theorem 1(2,4) we see that = < xa* < z*za* = x° whence it follows that
x° = max [z]p € E(S). |

Theorem 4. (1) x € S is a maximal idempotent if and only if it is a mazimal
element;

(2) S contains at most one mazimal element.

Proof. (1) Suppose that e is a maximal idempotent of S. If x € S is such that
e < x then we have e < x < 2* € E(S), whence the hypothesis that e is maximal
in E(S) gives e = . Thus e is a maximal element of S. Conversely, if z € S is a
maximal element then z < x* gives x = * whence, by Theorem 1(6), = € E(S).

(2) Let e and f be maximal elements of S. By (1), each is then idempotent.
Now, by Theorem 1(5), ef-e-ef = (ef)? < ef and gives e < (ef)*. It follows that
e = (ef)* and likewise e = (fe)*. Similarly, f = (fe)* = (ef)* and consequently
e=f. [ |

By [4, Theorem 3.3|, a principally ordered regular semigroup is naturally
ordered if and only if the assignment x +— 2* is antitone. In this case, as shown
in [1, Theorem 13.29], each (zx*)* is a maximal idempotent. Using this fact in
the case where S is pointed, we obtain the following characterisation.



POINTED PRINCIPALLY ORDERED REGULAR SEMIGROUPS 105

Theorem 5. The following statements are equivalent:
(1) S is naturally ordered,;
(2) S has a biggest element & and x* = & for every x € S.
Proof. (1) = (2): If (1) holds then each (zz*)* = z* is a maximal idempotent

and x < z*. Then property (2) follows immediately from Theorem 4.
(2) = (1): Suppose conversely that (2) holds and let e, f € E(S) be such that

e<p f. By (2),e* =& = f*and consequently e = ef = fef < fe*f = ff*f=f.
Thus S is naturally ordered. [

Corollary. If S is naturally ordered then Green’s relations D and J coincide.

Proof. By Theorem 5, (z2)* = ¢ = z*. Consequently, 22> = z2(2?)*2? =
r?2*x? = 23. Then 22 € E(S) and so S is group bound. It follows by [6,
Theorem 1.2.20] that D and J coincide. ]

Consider now the subset S* = {a* | z € S}. This is related to the subset S°
and to the set C = {x € S | 2* = z°} of compact elements as follows.

Theorem 6. S* = C N S°.

Proof. The identity £** = z*° shows that S* C C. Similarly, x* = 2™ = 2**° =
2*°° shows that S* C S§°. Thus §* C C N S°. Conversely, if x € C N S° then
* = z° and = = 2°°, whence r = 2°° = 2*° = 2™ € S*. [ |

As the following example shows, S* is not in general a subsemigroup of S.

Example 1. Let L be a lattice and consider the cartesian ordered set
L ={(z,y) e LxL|y<ax}
With respect to the multiplication defined by
(z,9)(a,b) = (xVa,y \b),

it is clear that L2 is an ordered band. It is readily verified that L2 is principally
ordered with (z,y)* = (z,z). By Theorem 1(5), LIZ is pointed with (LIZ)* =
{(z,z) | z € L}. Now (L?)* is not a subsemigroup, for clearly (z,y)*(a,b)* =
(zV a,z A a) and this belongs to (LP)* if and only if 2 = a. The particular case
of NP is illustrated as follows:

(3,3)9— - -+

(2,2)

(1,1)
(0,0)e
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However, in the presence of an identity element 1 the subset S* has a partic-
ular description.

Theorem 7. If S has an identity element 1, then S* ={z € S |1 <z} and is a
join semilattice in which x Vy = zy.

Proof. If x € S, then since zlx = 2% < x we have 1 < z*. Conversely, let 1 < .
Then
lx*
=
{ x*1

Hence z*Hx and so 2* = x by Theorem 1(8). Thus we see that S* = {x €
(E(S)) | 1 < z} and is a sub-band. Now if z,y € S* then z = z1 < xy and
y = ly < zy, so that zy is an upper bound for {z,y}. Furthermore, if z € S
is any upper bound for {z,y} then necessarily z € S* whence zy < 2% = 2.

Consequently, S* is a join semilattice in which x Vy = xy. ]

CC*

*x

r*r* = x* whence x* = rz*;
T ="

NN

ZT
T

NN

whence z* = z*x.

Example 2. Let 3 denote the 3-element chain 0 < 1 < 2 and consider the
ordered regular semigroup consisting of those isotone mappings f on 3 which
are such that f(0) = 0. Equivalently, this is the semigroup Res 3 of residuated
mappings on 3 [2]. It has the following Hasse diagram and Cayley table, in which
[0 ab] denotes the mapping f such that f(0) =0, f(1) =a, f(2) =b.

U022 uefgao

ulu uugg?o

elo12] elue fgalo

g o2 fro1n fIf ffaad
a0o01] glug 0g00

a|lf a0a00

0000 0/0 00000

This semiband is principally ordered and pointed, with identity element e. Here
we have 2% = u for x # e and e* = e, so that S* = {e, u}.

Example 3. Consider, for n > 2, the ordered semigroup B,, of n X n matrices
with entries in a boolean algebra B. For the basic operations in B we use the
notation a + b (for a Vv b) and ab (for a A b).

As shown in [1], this semigroup is regular if and only if n = 2. Moreover, as
is established in [5], B is principally ordered with

a bl [+ +dd+d+b
cdl ~|ld+d+ct+c +al’
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The set of idempotents is
ab
E(By) = {[c d} |b+c<a+d, bcgad},

and the regular subsemigroup they generate is

(E(B,)) = {[‘; Z] | be < ad}.

The semiband (E(Bs)) is also principally ordered and pointed. This follows
from Theorem 1 and the observation that bc < ad gives b/ + ¢ > a/ + d’ whence

a bl* 1 o +d +b
[c d} - [a’+d’+c 1 } € E(By).

Since By has an identity element it follows from Theorem 7 that (E(Bg))* is
the join semilattice

(E(By))* = {X € By | 12<X}={B ﬂ |x,y€B}.

We can also identify the compact elements of (F(Bg2)). For this we recall

from (Ps) that every X = [a b] in By has a biggest inverse, namely

cd

X° — X*XX* — Vie+e)+d(a+b)+d d(c+d)+d(a+c)+D
N Cldb+d)+d(a+b)+c V(ic+d) +(b+d)+a|”

In particular, if X € (F(Bg2)) then the inequality bc < ad gives d = d + be and

a = a + be, so that we obtain

o — a+b+c+d dc+d)+d(a+e)+Dd
Cldb+d)+d(a+b)+c a+b+c+d ’

Thus, if X € (E(B3)) is compact then necessarily a + b+ ¢+ d = 1. Conversely,
if the property a + b+ c+ d =1 holds then

dc+d)+d(a+c)+b>d(a+d) +dOb+d)+0b
=ab +Vd +0
=ad +d+b.
Clearly, the reverse inequality holds, so that a’(c+d)+d'(a+c¢)+b=da'+d +0.

Likewise, we see that a’(b+ d) + d'(a +b) + ¢ = a’ + d' + ¢ and consequently
X° = X*. Hence the set of compact elements of (E(By)) is

C:{[CCL Z] € (E(By)) |a+b+c+d:1}.
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We now turn attention to the D-classes of S. For idempotents e, f with e < f
and (e, f) € D we first focus on the structure of the subalgebra of (S;*) generated
by {e, f}. In this connection the following observation is important.

Theorem 8. Any two comparable D-related idempotents of S are mutually in-
verse.

Proof. Let e, f € E(S) be such that e < f and eD f. Then, by Theorem 3,
e® = f°. Consequently, by Theorem 1(7) and (Py), e* = e = e°* = fo* = f** =
f*. Moreover, the idempotents e° and e* are such that e®e* = e° = e*e°, whence
e’ <, er.

We first observe that e = ece < efe < ef*e = ee*e = e so that e = efe.

Consider now fee*. That fee* € E(S) follows from the inequalities
fee* = fee*eee* < fee* - fee* < fff*fee® = fee”.

Now fee* - e° = fee® = fee* and

o *{ S foffe =t =rrrr=rr=e
e’ fee S

e’ee* = eee® = e°,

so that e - fee* = e°. Consequently fee* L e° = f° L ff*.

Furthermore, fee* - ff* = fef*ff* = fef° = fee® = fee* and ff*- fee* =
fee* show that fee* <,, ff*. Since these idempotents are also L-equivalent it
follows that fee* = ff*.

Using the above observations, we see that fef - ff* = feff* = fefee* =
fee* = ff* whence fef R ff* R f. Since fef € E(S) with fef <, f it follows
that f = fef.

Thus e and f are mutually inverse. [ |

Corollary. The following statements are equivalent:
(1) S is completely simple;

(2) S is compact and naturally ordered.

Proof. (1) = (2): If S is completely simple then, since <,, reduces to equality,
S is trivially naturally ordered. Since the idempotents x°, z* are such that z° <,
x*, it follows that x° = 2* and therefore S is compact.

(2) = (1): Suppose that (2) holds and that e, f € E(S) are such that e <,, f.
By Theorem 5, S has a biggest element £ and f* = £ = e*. Compactness now
gives f° = e° whence, by Theorem 3, (e, f) € D. Since also the natural order
implies that e < f, it follows by Theorem 8 that the idempotents e and f are
mutually inverse. Consequently, f = fef = e. Thus <, reduces to equality and
S is completely simple. [ |
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Theorem 9. Let e, f be idempotents of S such that e < f and eD f. If T is
the subalgebra of (S;*) generated by {e, f} then T is a band having at most 10
elements. In the case where T' has precisely 10 elements it is represented by the
Hasse diagram

e*
eO

in which elements joined by lines of positive gradient are R-related, those joined
by lines of negative gradient are L-related, and the vertical line also indicates <.

Proof. Since eD f it follows from Theorem 3 that e° = f° whence e* = f*.
The elements of T' are then finite products of the elements e, f and e*[= f*].
Moreover, since e < f, every x € T is such that e < x < e*. By Theorem 8§, e
and f are mutually inverse, so for every x € T' we have

f=rfef<faf<fef=fff=f
whence f = fT'f. In a similar way we see that e = eT'e and likewise
ee* =ele’, ere=eTe, ff*=fTf% f*f=[fTf ef=elf, fe=fTe.

For example, ee* = eee* < exe* < ee*e* = ee* gives ee* = eTe*. It follows
from this that ee* = efe* = eff* whence ee*f = ef and then ef = eef <
exf < ee*f =ef and consequently ef = eT'f. Finally, it is readily seen from the
above that e*Te* = {e°,e*}. It now follows from these observations that T is a
band which consists of at most 10 elements, has precisely two D-classes, and is
as described in the above Hasse diagram. [ |

Example 4. In the semigroup (E(B2)) of Example 3, let |B| > 8 and consider
the idempotents

a0 ab
e—[o 0], f—[b b} where 0 < b < a < 1.

Simple calculations which use the expressions for X* and X° given in Example 3

reveal that e* = B ﬂ = f*, and that e® = [Z ﬂ = f° whence eD f with e < f.
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Furthermore,

x_ laa «  |aa x _|la0 e lab ) _|la 0
S TR I 4 e o R R

Consequently we have a copy of the band depicted in Theorem 9.

We now proceed to describe the structure of those D-classes that are sub-
semigroups of S (which is the case for D, in Theorem 9, but not so for D, in
Example 2 since gf = 0).

Theorem 10. Given e € E(S), suppose that D, is a subsemigroup of S. Then
Leo s a left zero semigroup, Reo is a Tight zero semigroup, and D. is isomorphic
to the ordered rectangular band Leo X Reo.

Proof. We observe first that, since ° = €° for every = € D,

T € Leo < 2°z=¢€° < x=1z2° € D¢;

T € Reo < x2°=¢€° <= =2 € D,.
If therefore xz,y € Lo we have xy = xx°y = xe®y = xy°y = xe® = xz2° = x and
consequently Lo is a left zero semigroup. Likewise, Reo is a right zero semigroup.

Then
Leo X Reo = {(xe®, €°y) | z,y € D}

is a rectangular band. Consider therefore the mapping 9 : D, — Leo X Reo given
by the prescription ¥(x) = (xe®, e°x), which is clearly isotone.
Now if (a,b) € Leo X Reo then, since ab € D, by the hypothesis with

V(ab) = (abe®,eab) = (abb®, a’ab) = (ae, e’b) = (a,b),
we see that ¢ is surjective. Moreover,
I(z) <I(y) <= we® <ye°, e°x < e’y
— x =zxe’r <yey =y.
It follows from these observations that ¢ is an order isomorphism.

We now observe that if e, f are D-equivalent idempotents such that e <,, f
then e = ef = fe < fe® = ff° and consequently e = ef < ff°f = f. Thus
D, is a naturally ordered regular semigroup with a biggest idempotent e°. Since
(zy)°® = e® = y°z° for all z,y € D, it follows by [1, Theorem 13.18] that e° is a
middle unit of D.. Using this fact, we see that

Ha)d(y) = (ze®, e®x)(ye®, ey) = (zeye®, e*xe’y) = (zye®, e"xy) = I(zy),

whence we conclude that ¥ defines an ordered semigroup isomorphism D, =~
Leo X ReO. | |
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