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1. Introduction

After Booles axiomatization of two valued propositional calculus as a Boolean
algebra, a number of generalizations both, ring theoretically and lattice theo-
retically have come into being. The concept of an Almost Distributive Lattice
(ADL) was introduced by Swamy and Rao [5] as a common abstraction of many
existing ring theoretic generalizations of a Boolean algebra on one hand and the
class of distributive lattices on the other. In that paper, the concept of an ideal
in an ADL was introduced analogous to that in a distributive lattice and it was
observed that the set PI(L) of all principal ideals of L forms a distributive lattice.
This enables us to extend many existing concepts from the class of distributive
lattices to the class of ADLs. Swamy, G.C. Rao and G.N. Rao introduced the
concept of Stone ADL and characterized it in terms of its ideals. U.M. Swamy,
G.C. Rao and G. Nanaji Rao introduced the concept of a pseudocomplementa-
tion in an ADL [6] and they observed that an ADL L can have more than one
pseudo-complementation. In fact, they proved that there is a one-to-one corre-
spondence between the set of all maximal elements of an ADL L and the set
of all pseudo-complementations on L. Also, they proved that if ∗ is a pseudo-
complementation on an ADL A, then the set A∗ = {a∗ | a ∈ L} is a Boolean
algebra under suitable operations and that the pseudo-complementation ∗ on A
is equationally definable. In [4], Sambasiva Rao and Shum introduced Boolean
filters in Pseudo-complemented distributive lattices and proved their properties.
In this paper we extend the concept of Boolean filters to a Pseudo-complemented
ADL. Some important results are established. We proved that the dense set is
the smallest Boolean filter of ADL. It is also observed that every prime filter
of a relatively complemented ADL is a Boolean filter. Finally, we characterized
the Boolean filters in terms of filter congruences. Throughout this paper ADL L
stands for ADL with zero.

2. Preliminaries

Definition 2.1 [5]. An Almost Distributive Lattice with zero or simply ADL is
an algebra (L,∨,∧, 0) of type (2, 2, 0) satisfying:

1. (x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z)

2. x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

3. (x ∨ y) ∧ y = y

4. (x ∨ y) ∧ x = x

5. x ∨ (x ∧ y) = x



Boolean filters in pseudo-complemented almost ... 121

6. 0 ∧ x = 0

7. x ∨ 0 = x, for all x, y, z ∈ L.

Every non-empty set X can be regarded as an ADL as follows. Let x0 ∈ X.
Define the binary operations ∨,∧ on X by

x ∨ y =

{

x if x 6= x0

y if x = x0
x ∧ y =

{

y if x 6= x0

x0 if x = x0.

Then (X,∨,∧, x0) is an ADL (where x0 is the zero) and is called a discrete ADL.
If (L,∨,∧, 0) is an ADL, for any x, y ∈ L, define x ≤ y if and only if x = x ∧ y
(or equivalently, x ∨ y = y), then ≤ is a partial ordering on L.

Theorem 2.2 [5]. If (L,∨,∧, 0) is an ADL, for any x, y, z ∈ L, we have the

following:

(1) x ∨ y = x⇔ x ∧ y = y

(2) x ∨ y = y ⇔ x ∧ y = x

(3) ∧ is associative in L

(4) x ∧ y ∧ z = y ∧ x ∧ z

(5) (x ∨ y) ∧ z = (y ∨ x) ∧ z

(6) x ∧ y = 0 ⇔ y ∧ x = 0

(7) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

(8) x ∧ (x ∨ y) = x, (x ∧ y) ∨ y = y and x ∨ (y ∧ x) = x

(9) x ≤ x ∨ y and x ∧ y ≤ y

(10) x ∧ x = x and x ∨ x = x

(11) 0 ∨ x = x and x ∧ 0 = 0

(12) If x ≤ z, y ≤ z then x ∧ y = y ∧ x and x ∨ y = y ∨ x

(13) x ∨ y = (x ∨ y) ∨ x.

It can be observed that an ADL L satisfies almost all the properties of a dis-
tributive lattice except the right distributivity of ∨ over ∧, commutativity of ∨,
commutativity of ∧. Any one of these properties make an ADL L a distributive
lattice. That is

Theorem 2.3 [5]. Let (L,∨,∧, 0) be an ADL with 0. Then the following are

equivalent:

1) (L,∨,∧, 0) is a distributive lattice
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2) a ∨ b = b ∨ a, for all a, b ∈ L

3) a ∧ b = b ∧ a, for all a, b ∈ L

4) (a ∧ b) ∨ c = (a ∨ c) ∧ (b ∨ c), for all a, b, c ∈ L.

As usual, an element m ∈ L is called maximal if it is a maximal element in the
partially ordered set (L,≤). That is, for any a ∈ L, m ≤ a⇒ m = a.

Theorem 2.4 [5]. Let L be an ADL and m ∈ L. Then the following are equiva-

lent:

1) m is maximal with respect to ≤

2) m ∨ a = m, for all a ∈ L

3) m ∧ a = a, for all a ∈ L

4) a ∨m is maximal, for all a ∈ L.

Definition 2.5. a non-empty subset I of an ADL L is called an ideal of L if
a ∨ b ∈ I and a ∧ x ∈ I for any a, b ∈ I and x ∈ L. Also, a non-empty subset F
of L is said to be a filter of L if a ∧ b ∈ F and x ∨ a ∈ F for a, b ∈ F and x ∈ L.

The set I(L) of all ideals of L is a bounded distributive lattice with least element
{0} and greatest element L under set inclusion in which, for any I, J ∈ I(L),
I ∩ J is the infimum of I and J while the supremum is given by I ∨ J := {a∨ b |
a ∈ I, b ∈ J}. A proper ideal P of L is called a prime ideal if, for any x, y ∈ L,
x ∧ y ∈ P ⇒ x ∈ P or y ∈ P . A proper ideal M of L is said to be maximal if it
is not properly contained in any proper ideal of L. It can be observed that every
maximal ideal of L is a prime ideal. Every proper ideal of L is contained in a
maximal ideal. For any subset S of L the smallest ideal containing S is given by
(S] := {(

∨

n

i=1
si)∧x | si ∈ S, x ∈ L and n ∈ N}. If S = {s}, we write (s] instead

of (S]. We call (s], the principal ideal of L generated by ‘s‘. Similarly, for any
S ⊆ L, [S) := {x∨ (

∧

n

i=1
si) | si ∈ S, x ∈ L and n ∈ N}. If S = {s}, we write [s)

instead of [S). We call [s), the principal filter of L generated by ‘s‘.

Theorem 2.6 [5]. For any x, y in an ADL L the following are equivalent:

1) (x] ⊆ (y]

2) y ∧ x = x

3) y ∨ x = y

4) [y) ⊆ [x).

For any x, y ∈ L, it can be verified that (x]∨ (y] = (x∨ y] and (x]∧ (y] = (x∧ y].
Hence the set PI(L) of all principal ideals of L is a sublattice of the distributive
lattice I(L) of ideals of L.



Boolean filters in pseudo-complemented almost ... 123

Definition 2.7 [3]. An equivalence relation θ on an ADL L is called a congruence
relation on L if (a ∧ c, b ∧ d), (a ∨ c, b ∨ d) ∈ θ, for all (a, b), (c, d) ∈ θ.

Theorem 2.8 [3]. An equivalence relation θ on an ADL L is a congruence re-

lation if and only if for any (a, b) ∈ θ, x ∈ L, (a ∨ x, b ∨ x), (x ∨ a, x ∨ b), (a ∧ x,
b ∧ x), (x ∧ a, x ∧ b) are all in θ

Definition 2.9 [5]. An ADL L with 0 is called relatively complemented if each
interval [a, b], a ≤ b, in L is a complemented lattice.

Theorem 2.10 [5]. Let L be an ADL with 0. Then L is relatively complemented

if and only if every prime filter of L is maximal.

The following definition was introduced by U.M. Swamy, G.C. Rao and G.N.
Rao.

Definition 2.11 [6]. Let (L,∨,∧, 0) be an ADL. Then a unary operation a −→ a∗

on L is called a pseudo-complementation on L if, for any a, b ∈ L, it satisfies the
following conditions:

(1) a ∧ b = 0 ⇒ a∗ ∧ b = b

(2) a ∧ a∗ = 0

(3) (a ∨ b)∗ = a∗ ∧ b∗.

Then (L,∨,∧,∗ , 0) is called a pseudo-complemented ADL.

Theorem 2.12 [6]. Let L be an ADL and ∗ a pseudo-complementation on L.
Then, for any a, b ∈ L, we have the following:

(1) 0∗∗ = 0

(2) 0∗ ∧ a = a

(3) a∗∗ ∧ a = a

(4) a∗∗∗ = a∗

(5) a ≤ b⇒ b∗ ≤ a∗

(6) a∗ ∧ b∗ = b∗ ∧ a∗

(7) (a ∧ b)∗∗ = a∗∗ ∧ b∗∗

(8) a∗ ∧ b = (a ∧ b)∗ ∧ b∗.

3. Boolean filters in Pseudo-complemented ADLs

In this section, Boolean filters in Pseudo-complemented ADL is introduced with
help of the concept of ADL. Some important properties are studied thoroughly.
Finally, a Boolean filter is characterized in terms of filter congruences.



124 N. Rafi, R.K. Bandaru and G.C. Rao

Now, we begin with the following definition and necessary results.

Definition 3.1. Let L be a pseudo-complemented ADL. A filter F of L is called
a Boolean filter if x ∨ x∗ ∈ F for each x ∈ L.

We derive the following example of Boolean filter.

Example 3.2. Let L = {0, a, b, c}. Define two binary operations ∨ and ∧ on L
as follows

∨ 0 a b c

0 0 a b c

a a a a a

b b b b b

c c a b c

∧ 0 a b c

0 0 0 0 0

a 0 a b c

b 0 a b c

c 0 c c c

Now define x∗ = 0, for all x 6= 0 and 0∗ = a. Then (L,∨,∧, 0) is an ADL and
∗ is a pseudo-complementation on L. But which is not a lattice. Take a filter
F = {a, b, c}, clearly which is a Boolean filter of L. A filter F1 = {a, b}, which is
not a Boolean filter of L because c ∨ c∗ = c /∈ F1.

For any pseudo-complemented ADL L, let us denote the set of all elements of the
form x∗ = 0 by D.

Now we have the following lemma.

Lemma 3.3. Let L be an pseudo-complemented ADL. Then D is the smallest

Boolean filter of L.

Proof. Clearly, D is a Boolean filter of L. Suppose A is any Boolean filter of L.
We prove that D ⊆ A. Let x ∈ D. Then x∗ = 0. Since A is a Boolean filter of L,
we have x ∨ x∗ ∈ A and hence x ∈ A. Therefore D is the smallest Boolean filter
of L.

Lemma 3.4. Every maximal filter of a pseudo-complemented ADL L is a Boolean

filter.

Proof. Let M be a maximal filter of L. We prove that x∨x∗ ∈M, for all x ∈ L.
Suppose x ∨ x∗ /∈ M, for some x ∈ L. Then M ∨ [x ∨ x∗) = L. That implies
0 = a∧b, for some a ∈M and b ∈ [x∨x∗). Now, (a∧x)∨ (a∧x∗) = a∧ (x∨x∗) =
a ∧ b ∧ (x ∨ x∗) = 0 and hence a ∧ x = 0 and a ∧ x∗ = 0. This implies that
a = x∗ ∧ a = 0. Therefore 0 ∈ M, which is a contradiction to proper filter M.
Hence x ∨ x∗ ∈M for all x ∈ L. Therefore, M is a Boolean filter of L.

The following result can be verified easily.
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Lemma 3.5. In a relatively complemented ADL, every prime filter is a Boolean

filter.

Theorem 3.6. A proper filter of a pseudo-complemented ADL L which contains

either x or x∗ for all x ∈ L is a Boolean filter.

Proof. Let F be a proper filter of L such that either x ∈ F or x∗ ∈ F. We show
that F is maximal. Suppose G is a proper filter of L such that F $ G. Choose
a ∈ G \ F. Since a /∈ F, by the condition, we get a∗ ∈ F $ G. Since a ∈ G
and a∗ ∈ G, we get 0 = a ∧ a∗ ∈ G, which is a contradiction. Therefore, F is a
maximal filter. Thus by lemma 3.4, F is a Boolean filter.

The converse of lemma 3.4 is not true in general. For,

Example 3.7. Let L = {0, a, b, c, d, 1} be a distributive lattice whose Hasse
diagram is given in the following figure. Consider the filter F1 = {a, c, d, 1};F2 =
{b, c, d, 1};F3 = {c, d, 1} Then clearly F1, F2 and F3 are Boolean filters, but F3 is
not a maximal filter of L.

A set of equivalent conditions are derived for a Boolean filter to become a maximal
filter.

Theorem 3.8. Let F be a proper filter of a pseudo-complemented ADL L. Then
the following conditions are equivalent:

(1) F is maximal.

(2) x /∈ F implies x∗ ∈ F for all x ∈ L.

(3) F is prime Boolean.
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Proof. (1)⇒(2): Assume that F is a maximal filter of L. Let x /∈ F. Then
F ∨ [x) = L. That implies a ∧ x = 0, for some a ∈ F. Hence x∗ ∧ a = a, which
implies that x∗ ∈ F, since x∗ ∨ a ∈ F.

(2)⇒(3): Assume that condition (2). Let x ∈ L. Suppose x ∨ x∗ /∈ F. Then
it implies that x /∈ F and x∗ /∈ F, which is a contradiction to our assumption.
Therefore x ∨ x∗ ∈ F and hence F is a Boolean filter of L. Let x, y ∈ L with
x ∨ y ∈ F. We prove that either x ∈ F or y ∈ F. Suppose x /∈ F. Then by our
assumption, we get that x∗ ∈ F. Hence x∗∧y = 0∨(x∗∧y) = (x∗∧x)∨(x∗∧y) =
x∗ ∧ (x ∨ y) ∈ F. Since x∗ ∧ y ≤ y, we get that y ∈ F. Therefore, F is a prime
Boolean filter of L.

(3)⇒(1): Assume that F is a prime Boolean filter of L. Suppose F is not
maximal. There exists a proper filter F ′ of L such that F $ F ′. Choose x ∈ F ′\F.
Since F is Boolean, we get x ∨ x∗ ∈ F. Since F is prime and x /∈ F, we get
x∗ ∈ F $ F ′. Since x, x∗ ∈ F we get that 0 = x∧x∗ ∈ F ′, which is a contradiction.
Therefore, F is a maximal filter.

We have the following result.

Theorem 3.9. Let F,G be two filters of a pseudo-complemented ADL such that

F ⊆ G. If F is a Boolean filter then so is G.

Proof. Let F be a Boolean filter of L. Suppose G is any filter of L with F ⊆ G.
We prove that G is a Boolean filter of L. Clearly, we have x ∨ x∗ ∈ F, for all
x ∈ L. Since F ⊆ G, we get that x∨ x∗ ∈ G, for all x ∈ L. Hence G is a Boolean
filter of L.

We now characterize the Boolean filters in the following:

Theorem 3.10. Let F be a proper filter of a pseudo-complemented ADL L. Then
the following conditions are equivalent:

(1) F is a Boolean filter.

(2) x∗∗ ∈ F implies x ∈ F.

(3) For x, y ∈ L, x∗ = y∗ and x ∈ F imply y ∈ F.

Proof. (1)⇒(2): Assume that F is a Boolean filter of L. Suppose x∗∗ ∈ F.
Since F is a Boolean filter, we get x ∨ x∗ ∈ F. Now, x = (x∗∗ ∧ x) ∨ 0 =
(x∗∗ ∧ x) ∨ (x∗∗ ∧ x∗) = x∗∗ ∧ (x ∨ x∗) ∈ F. Therefore x ∈ F.

(2)⇒(3): Let x, y ∈ L and x∗ = y∗. Suppose x ∈ F. Then x∗∗ ∈ F. That
implies y∗∗ ∈ F.

(3)⇒(1): Assume that condition (3). We prove that F is a Boolean filter of
L. For that it is enough to prove that D ⊆ F. Let x ∈ D. Then x∗ = 0 ≤ a∗ for
any a ∈ F. Hence a∗∗ ≤ x∗∗ and a∗∗ ∈ F. Hence x∗∗ ∈ F. Since x∗ = x∗∗∗ and
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x∗∗ ∈ F, by the condition (3), we get x ∈ F. Hence D ⊆ F. Since D is a Boolean
filter, by theorem3.9, we get that F is a Boolean filter of L.

Now, we discuss about the homomorphic images of Boolean filters of pseudo-
complemented ADLs. By a homomorphism f on a pseudo-complemented ADL,
we mean a bounded homomorphism which also preserves the pseudo-complementation,
that is, f(x∗) = f(x)∗ for all x ∈ L.

Theorem 3.11. Let (L,∨,∧,∗ , 0) and (L′,∨,∧,∗ , 0′) be two pseudo-complemented

ADLs and ψ, a homomorphism from L onto L′. Then we have the following con-

ditions:

(1) ψ(F ) is a Boolean filter of L′ whenever F is a Boolean filter of L.

(2) ψ−1(G) is a Boolean filter of L whenever G is a Boolean filter of L′.

Proof. (1) Suppose F is a Boolean filter of L. It is known that ψ(F ) is a filter
of L′. Let y ∈ L′. Since is onto, there exists x ∈ L such that ψ(x) = y. Since
F is a Boolean filter of L, we get x ∨ x∗ ∈ F. Now, y ∨ y∗ = ψ(x) ∨ ψ(x)∗ =
ψ(x) ∨ ψ(x∗) = ψ(x ∨ x∗) ∈ ψ(F ). Therefore, ψ(F ) is a Boolean filter of L′.

(2) Let G be a Boolean filter of L′. Clearly ψ−1(G) is a filter of L. Let x ∈ L.
Then ψ(x ∨ x∗) = ψ(x) ∨ ψ(x∗) = ψ(x) ∨ ψ(x)∗ ∈ G, since ψ(x) ∈ L′. Hence we
get x ∨ x∗ ∈ ψ−1(G). Therefore, ψ−1(G) is a Boolean filter of L.

Let L be an ADL and F a filter in L. Then the relation ψF = {(x, y) ∈ L ×
L | x ∧ t = y ∧ t, for some t ∈ F} is a congruence relation on L. Then the set
L/ψF = {x/ψF | x ∈ L} is an ADL. Let

∏

be the natural homomorphism from
L onto L/ψF defined by

∏

(x) = x/ψF , for all x ∈ L. Note that for any filter F
of L, L/ψF need not be a lattice. For, consider the following example.

Example 3.12. Let D be a discrete ADL. Let F = D\{0}. Then ψ
F
= {(a, b) ∈

D ×D | x ∧ a = x ∧ b for some x 6= 0} = ∆.

Therefore D/ψ
F
(∼= D) which is not a lattice, unless |D| ≤ 2.

Theorem 3.13. Let L be an ADL. For any filter F of L and x ∈ L, we have the

following:

(1) x/ψ
F
is the largest element in L/ψ

F
if and only if x ∈ F .

(2) x/ψ
F
= 0/ψ

F
if and only if (x)∗ ∩ F 6= ∅.

Proof. (1) Let x ∈ L such that x/ψ
F
is the largest element of L/ψ

F
. Since F 6= ∅,

we can choose y ∈ F. Then x/ψ
F
∧ y/ψ

F
= y/ψ

F
. Therefore (x ∧ y, y) ∈ ψ

F
.

Hence, there exists a ∈ F such that x ∧ y ∧ a = y ∧ a ∈ F and hence x ∈ F .
On the other hand, let x ∈ F and y ∈ L. Then (y, y ∧ x) ∈ ψ

F
. Therefore

y/ψ
F
= y/ψ

F
∧ x/ψ

F
. Thus x/ψ

F
is the largest element of L/ψ

F
.
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(2) Let x ∈ L. Suppose x/ψ
F
= 0/ψ

F
. Then (x, 0) ∈ ψ

F
. Therefore x ∧ t =

0∧ t = 0, for some t ∈ F . Hence t ∈ (x)∗ ∩F and hence (x)∗ ∩F 6= ∅. Conversely
suppose (x)∗ ∩ F 6= ∅. Choose y ∈ (x)∗ ∩ F . Then x ∧ y = 0 = 0 ∧ y, y ∈ F .
Therefore (x, 0) ∈ ψ

F
. Hence x/ψ

F
= 0/ψ

F
.

Now, Boolean filters are characterized in terms of congruence ψF .

Theorem 3.14. Let F be a filter of a pseudo-complemented ADL L. Then the

following conditions are equivalent:

(1) F is a Boolean filter.

(2) L/ψF is a Boolean algebra.

Proof. (1)⇒(2): Assume that F is a Boolean filter of L. for any x ∈ L, we have
always x ∧ x∗ = 0 and hence x/ψ

F
∧ x∗/ψ

F
= (x ∧ x∗)/ψ

F
= 0/ψ

F
. Since F is a

Boolean filter, we get that x∨x∗ ∈ F. Hence we have x/ψ
F
∨x∗/ψ

F
= (x∨x∗)/ψ

F

is the largest element of L/ψF . Therefore, L/ψF is a Boolean algebra.
(2)⇒(1): Assume that L/ψF is a Boolean algebra. Let x ∈ L. Then x/ψ

F
∈

L/ψF . Since L/ψF is a Boolean algebra, there exists y ∈ L such that (x∧y)/ψ
F
=

x/ψ
F
∧y/ψ

F
= 0/ψ

F
and (x∨y)/ψ

F
= x/ψ

F
∨y/ψ

F
is the largest element of L/ψF .

Hence it follows that (x∧y, 0) ∈ ψF and x∨y ∈ F. Since (x∧y, 0) ∈ ψF , there exists
f ∈ F such that x∧y∧f = 0 and thus we get y∧f = x∗∧y∧f.Therefore, we get the
following consequence. x∨y ∈ F and f ∈ F ⇒ (x∨y)∧f ∈ F ⇒ (x∧f)∨(y∧f) ∈
F ⇒ (x∧f)∨x∗ ∈ F since y∧f = x∗∧y∧f ⇒ (x∨x∗)∧(f∨x∗) ∈ F ⇒ x∨x∗ ∈ F.
Therefore, F is a Boolean filter of L.

Acknowledgement

We are grateful to the reviewers for their valuable comments and constructive
suggestions on our article. It will help us to enhance the quality of this article.

References

[1] G. Birkhoff, Lattice Theory (Amer. Math. Soc. Colloq. Publ. XXV, Providence,
1967), USA.

[2] G. Gratzer, General Lattice Theory (Academic Press, New York, San Fransisco,
1978).

[3] G.C. Rao, Almost Distributive Lattices (Doctoral Thesis, 1980), Department of
Mathematics, Andhra University, Visakhapatnam.

[4] M. Sambasiva Rao and K.P. Shum, Boolean filters of distributive lattices, In-
ternational Journal of Mathematics and Soft Computing 3 (3) (2013) 41–48.
www.ijmsc.com/index.php/ijmsc/article/download/IJMSC067/pdf

−
27

[5] U.M. Swamy and G.C. Rao, Almost distributive lattices, J. Aust. Math. Soc. (Series
A) 31 (1981) 77–91. doi:10.1017/s1446788700018498

http://dx.doi.org/10.1017/s1446788700018498


Boolean filters in pseudo-complemented almost ... 129

[6] U.M. Swamy, G.C. Rao and G. Nanaji Rao, Pseudo-complementation on almost

distributive lattices, Southeast Asian Bullettin of Mathematics 24 (2000) 95–104.
doi:10.1007/s10012-000-0095-5

Received 19 December 2013
Revised 13 July 2015

Powered by TCPDF (www.tcpdf.org)

http://dx.doi.org/10.1007/s10012-000-0095-5
http://www.tcpdf.org

