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Abstract

In this paper, we define a new graph for a ring with unity by extending
the definition of the usual ‘zero-divisor graph’. For a ring R with unity, Γ1(R)
is defined to be the simple undirected graph having all non-zero elements
of R as its vertices and two distinct vertices x, y are adjacent if and only
if either xy = 0 or yx = 0 or x + y is a unit. We consider the conditions
of connectedness and show that for a finite commutative ring R with unity,
Γ1(R) is connected if and only if R is not isomorphic to Z3 or Zk

2 (for any
k ∈ N − {1}). Then we characterize the rings R for which Γ1(R) realizes
some well-known classes of graphs, viz., complete graphs, star graphs, paths
(i.e., Pn), or cycles (i.e., Cn). We then look at different graph-theoretical
properties of the graph Γ1(F ), where F is a finite field. We also find all
possible Γ1(R) graphs with at most 6 vertices.
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1. Introduction

The study of zero-divisor graphs, which involves the association of a ring to a
graph, helps in gaining insight about the algebraic properties of rings, especially
the structure of the set of zero-divisors. The idea of zero-divisor graphs was first
given by Beck [8], and was continued by D.D. Anderson and Naseer [1]. They
related a commutative ring R to a graph by defining a graph which has as its
vertices all elements of R and two distinct vertices x, y are adjacent if and only
if xy = 0. Later on, D.F. Anderson and Livingston [3] modified the definition in
order to get a more complete illustration of the zero-divisors and defined zero-
divisor graphs as we know it today. They defined zero-divisor graphs in the
following way: Let R be a commutative ring with 1. Then the zero-divisor graph
of R, denoted by Γ(R), is the simple undirected graph with all non-zero zero-
divisors of R as vertices, and two distinct vertices x, y are adjacent if and only
if xy = 0. The interrelation between the ring-theoretic structure of R and the
graph-theoretic structure of Γ(R) has brought out interesting results from the
perspective of both algebra and graph theory (cf. [2, 3, 4, 6, 9], for example).

Zero-divisor graphs were initially defined for a commutative ring only. Later
on, Redmond [11] generalized the concept of zero-divisor graphs to a non-commu-
tative ring in the following way: Let R be a ring. Then the undirected zero-divisor
graph of R, denoted by Γ(R), is the graph whose vertices are the non-zero zero-
divisors of R, and there is an edge between two distinct vertices a and b if and
only if either ab = 0 or ba = 0.

The following result, proved by Anderson and Livingston, will be used for
deriving several results in this paper.

Theorem 1.1 (3, Theorem 2.3). Let R be a commutative ring with unity. Then
Γ(R) is connected with diam(Γ(R)) ≤ 3.

A similar result, which takes into account the non-commutative case, was given
by Redmond:

Theorem 1.2 (11, Theorem 3.2). Let R be a ring with unity. Then Γ(R) is
connected with diam(Γ(R)) ≤ 3.

The study of the set of zero-divisors of a ring often gets complicated due to a
lack of nice algebraic structure (it need not be closed under addition).

Here we introduce a new type of graph Γ1(R) (cf. Definition 2.1) for a ring R,
taking all non-zero elements of the ring as vertices and adding a new condition
to the adjacency condition of a zero-divisor graph. Consequently, Γ(R) (or Γ(R),
in the non-commutative case) is a subgraph of Γ1(R) for any ring R.

In 2010, Ashrafi et al [5] defined unit graphs over a ring with unity in the
following way: Let R be a ring. Then the unit graph G(R) associated with the
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ring R is the simple undirected graph which has as its vertices all elements of R
and distinct vertices x, y are adjacent if and only if x+ y is a unit in R.

Clearly, the vertex set of Γ1(R) is a subset of the vertex set of G(R). Also,
the second part of the adjacency condition of Γ1(R) (cf. Definition 2.1) is same
with the adjacency condition of G(R). However, Γ1(R) need not be a subgraph
of G(R). For example, Γ1(Z2 × Z4) is not a subgraph of G(Z2 × Z4) (cf. Figure
1, 2). It is also worth noting that Γ1(Z2 × Z4) is connected whereas G(Z2 × Z4)
is not. However, Γ1(D) is a subgraph of G(D) for a division ring D. In fact,
Γ1(D) is obtained by removing the vertex 0 (along with all the edges incident on
it) from G(D).

90, 3=

91, 2=

90, 2=

90, 1=

91, 0=

91, 1=

91, 3=

Figure 1. Γ1(Z2 × Z4)

90, 0= 91, 1=

91, 3= 90, 2=

90, 1= 91, 2=

91, 0= 90, 3=

Figure 2. Unit graph G(Z2 × Z4)

In this paper, we first consider the connectedness of Γ1(R). We first have several
lemmas, ultimately leading to the main result which completely characterizes
the finite commutative rings R (with unity) for which Γ1(R) is connected. For
instance, the first lemma shows that for a commutative ring R with unity, if the
number of zero-divisors is less than a number depending on the characteristic of
R, then the graph Γ1(R) is connected. Another lemma shows that for a finite
commutative ring R with unity, if the characteristic of R is not equal to 2 and
R 6∼= Z3, then Γ1(R) will be connected. In fact, if the characteristic of R is non-
prime, then Γ1(R) is connected even when the ring is non-commutative. The main
result in this section is that for a commutative ring R with unity 1 (6= 0), Γ1(R)
is connected if and only if R is not isomorphic to Z3 or Zk

2 for any k ∈ N− {1}.
Note that by Z

k
2 , we denote the ring Z2 × Z2 × · · · × Z2

︸ ︷︷ ︸

k times

.

Then, we characterize the rings R for which Γ1(R) realizes some important
classes of graphs, viz., complete graphs, star graphs, paths (i.e., Pn), and cycles
(i.e., Cn). We also obtain some results regarding the existence of a cycle in Γ1(R).
In the next section, we move to finite fields and observe that for a finite field F ,
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the Γ1(F ) graph is regular, connected (if the number of elements in F is greater
than 3), and Eulerian. We then obtain a result showing that if Γ1(R) is regular
with certain degree sequences, then R has to be a finite field. In the appendix,
we give all possible Γ1(R) graphs with at most 6 vertices.

In this paper, Char(R) denotes the characteristic of a ring R, Fn is the finite
field of order n, deg(v) denotes the degree of a vertex v, φ(n) is the Euler-phi
function with argument n, and a ↔ b denotes “a is adjacent to b” for two distinct
vertices a, b. All the rings discussed in this paper have a unity 1 (6= 0). For usual
algebraic terms, we refer to any standard book on ring theory, and we refer to
[12] for graph-theoretic terms and definitions.

2. The graph Γ1(R)

Definition 2.1. Let R be a ring with unity. Let G = (V,E) be a simple undi-
rected graph in which V = R − {0} and for any a, b ∈ V , ab ∈ E if and only if
a 6= b and either a · b = 0 or b · a = 0 or a + b is a unit. We denote this simple
undirected graph G by Γ1(R).

Note that for a finite ring, an element is either a zero-divisor or a unit. So in the
case of a finite ring R, Γ1(R) = (V,E), where V = R− {0} and for any a, b ∈ V ,
ab ∈ E if and only if a 6= b and either ab = 0 or ba = 0 or a + b 6∈ Z(R), where
Z(R) is the set of zero-divisors of R including 0.

Remark 2.2. In general, the graph Γ(R) is a subgraph of Γ1(R). If R is com-
mutative, then the zero-divisor graph Γ(R) is a subgraph of Γ1(R). It follows
from Theorem 1.1 and Theorem 1.2 that the non-zero zero-divisors of R lie in the
same component of Γ1(R), i.e., any two non-zero zero-divisors of R are connected
by a path in Γ1(R).

We note that the unit graph G(F ) is connected for any finite field F (since all
units are adjacent to the vertex 0), and Γ1(F ) is a subgraph of G(F ). Now a
subgraph of a connected graph need not be connected. In fact, G(Z3) is connected
whereas Γ1(Z3) is not (cf. Figure 4 in the Appendix). However, the following
proposition shows that Γ1(F ) is connected for any finite field F other than Z3.

Proposition 2.3. Let F be a finite field such that F 6∼= Z3. Then Γ1(F ) is
connected.

Proof. Since Γ1(Z2) is a single vertex graph, it is connected. Suppose |F | > 3.
We first note that for each a ∈ F − {0}, a is adjacent to b for all b ∈ F − {a, 0}
unless a+ b = 0 (i.e., b = −a). Thus, if the characteristic of F is 2, then Γ1(F )
is complete. If the characteristic of F is p > 2 (p is a prime), then 1 6= −1. Since
|F | > 3, we have an element a ∈ F − {0, 1,−1}. Then a+ 1 6= 0 and a− 1 6= 0.
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So a + 1 and a − 1 are both units. Thus a is adjacent to both 1 and −1. This
happens for any a ∈ F − {0, 1,−1}. Thus, Γ1(F ) is connected.

In Section 4, we will completely characterize Γ1(F ). Next, we consider the con-
nectedness problem for Γ1(R) graphs in general. The main result in this regard
is the following:

Main Theorem for connectedness. Let R be a finite commutative ring with
unity. Then Γ1(R) is connected if and only if R is not isomorphic to Z3 or Z

k
2

(for any k ∈ N− {1}).

We now give a series of lemmas which ultimately lead towards proving the main
theorem stated above.

Lemma 2.4. Let R be a finite commutative ring (with unity) with more than
three elements and Char(R) = n. If the number of non-zero zero-divisors in R
is less than (n− 1), then Γ1(R) is connected.

Proof. By Remark 2.2, there is a path between any two non-zero zero-divisors
in Γ1(R).

Case I. Suppose there are no zero-divisors of R other than 0. Then R is a finite
integral domain and hence, a field. Thus, by Proposition 2.3, Γ1(R) is connected.

Case II. Suppose that there are non-zero zero-divisors in R. We first show
that there exists a non-zero zero-divisor which is adjacent to 1 in Γ1(R). Let a
be a non-zero zero-divisor. Let m be the least positive integer for which ma = 0.
Clearly, m ≤ n. Now define Si = {i · 1 + ka | k = 1, 2, . . . ,m − 1} for each
i = 1, 2, . . . , n− 1. First, we note that for each i, the elements of Si are distinct,
for if i · 1 + k1a = i · 1 + k2a for some k1, k2 ∈ 1, 2, . . . ,m− 1 with k1 > k2, then
(k1 − k2)a = 0. But 1 ≤ k1 − k2 < m, which contradicts the minimality of m.
Thus, |Si| = m−1 for all i = 1, 2, . . . , n−1. Now suppose that in S1, at least one
element is a unit. Then 1 is adjacent to some ra, which is a non-zero zero-divisor
(ka is a zero-divisor for any integer k). If there is no unit in S1, we consider S2.
If S2 contains a unit, say 2 · 1 + sa, then 1 is adjacent to 1 + sa, the latter being
a non-zero zero-divisor, since we have assumed that there are no units in S1. If
S2 contains no units, we move to S3 (where finding a unit will ensure that 1 is
adjacent to a non-zero zero-divisor of the form 2 + ka) and continue this upto
Sn−1, until and unless we find a non-zero zero-divisor adjacent to 1 (i.e., unless
we get a unit in some St).

Now we show that if we reach Sn−1 in this process, then the sets S1, S2, . . . , Sn−1

are disjoint. First we note that 0 6∈ S1. Now if S1 does not contain a unit, then
0 6∈ S2, for if 2 · 1+ ka = 0 for some k (clearly k 6= 0), then 1 + (1 + ka) = 0, i.e.,
1 + ka is a unit, which contradicts that S1 does not contain a unit. The same
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argument (that 0 ∈ Si implies existence of a unit in Si−1) shows that if we reach
Sn−1 in the above process, then 0 6∈ St for all t = 1, 2, . . . , n − 1. Now if Sp and
Sq contain a common element for some 1 ≤ p < q ≤ n−1, then p+k1a = q+k2a
for some 1 ≤ k1, k2 ≤ m − 1. This gives (q − p) + (k2 − k1)a = 0, which im-
plies that 0 ∈ Sq−p (since q − p < n − 1). So it contradicts that none of Si for
i = 1, 2, . . . , n− 1 contains 0. Hence, S1, S2, . . . , Sn−1 are all disjoint.

So if we reach {(n − 1) + ka | k ∈ N} in this process, then we have at least
(n−1)(m−1) non-zero zero-divisors. Now since m ≥ 2, we have (n−1)(m−1) ≥
(n−1). Thus we have at least n−1 non-zero zero-divisors, which is a contradiction
to our assumption. Hence, there exists at least one non-zero zero-divisor r to
which 1 is adjacent. Let 1 + r = u1, where u1 is a unit. Let v and t be any two
units in R. So v+ vr = vu1 and t+ tr = tu1. Note that vr, tr 6= 0. Also, vu1, tu1
are units, each being products of two units. So v ↔ vr and t ↔ tr. Now vr, tr
being non-zero zero-divisors in R, there is a path between them, say P , in Γ1(R).
Thus we have a path v − vr − P − tr − t between v and t.

So we see that in Γ1(R), there is a path between any two non-zero zero-divisors,
there is a path between any two units, and we also have a path v − vr − P1 − z
between any non-zero zero-divisor z and any unit v (where P1 is a path between
the non-zero zero-divisors vr and z). Hence, the graph Γ1(R) is connected.

Corollary 2.5. Γ1(Zn) is connected for all n ≥ 4.

Proof. This follows directly from Lemma 2.4 since Zn is a commutative ring
with unity, its characteristic is n, and the number of non-zero zero-divisors is
n− 1− φ(n), which is less than n− 1.

Now the condition mentioned in Lemma 2.4 is not a necessary one. For exam-
ple, the characteristic of Z3 × Z3 is 3, and it has 4 non-zero zero-divisors, viz.,
(1̄, 0̄), (2̄, 0̄), (0̄, 1̄), (0̄, 2̄). Therefore it does not satisfy the condition stated in
Lemma 2.4. However, Γ1(Z3 × Z3) is connected (cf. Lemma 2.9).

Next, we have the following result:

Lemma 2.6. Let R be a finite commutative ring (with unity) with at least one
non-zero nilpotent element. Then Γ1(R) is connected.

Proof. Let a (6= 0) be a nilpotent element in R. Now in Γ1(R), there is a path
between any two non-zero zero-divisors. Note that since the ring R is finite, an
element is either a zero-divisor or a unit. Now the sum of a nilpotent element
and a unit in R is also a unit. So in Γ1(R), all the units will be adjacent to a.
Thus, between any two units, there is a path in Γ1(R). Now a being a non-zero
zero-divisor, there is a path between a and any non-zero zero-divisor. So there is a
path between any arbitrary non-zero zero-divisor and any arbitrary unit (through
a). Hence, the graph is connected.
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We now give two more results.

Lemma 2.7. Let R be ring with unity. Then in Γ1(R), x ↔ y if and only if
−x ↔ −y.

Proof. It is sufficient to prove that x ↔ y implies −x ↔ −y. Now x ↔ y if and
only if either xy = 0 or yx = 0 or x+ y = u for some unit u. So in first two cases
(−x)(−y) = 0 or (−y)(−x) = 0, and in the third case (−x)+(−y) = −x−y = −u,
which is also a unit. Hence, x ↔ y if and only if −x ↔ −y.

Lemma 2.8. Let R be a finite ring with unity. Then in Γ1(R), there is a path
between any two units.

Proof. Note that R being a finite ring, any non-zero element in R is either a
zero-divisor or a unit. Let a be a unit in R other than 1 and −1. We show that
there is a path between a and 1. Now 1 + (a − 1) = a. So 1 ↔ a − 1. Again
(1 − a) + a = 1. So a ↔ 1 − a. Now if a − 1 is a non-zero zero-divisor, then
so is 1 − a. Hence there is a path between 1 − a and a − 1, say P . So we have
a path a ↔ (1 − a) − P − (a − 1) ↔ 1 between a and 1. Now let a − 1 be a
unit. So a ↔ −1. Now we find a path between 1 and −1, which will then give
a path between a and 1. If Char(R) = 2, then 1 = −1, and we are done. So let
Char(R) 6= 2. Now if 2 · 1 is a zero-divisor, then so is −2 · 1, and hence there is
a path between 2 · 1 and −2 · 1, say P1. Now 2 · 1 + (−1) = 1, so 2 · 1 ↔ −1, and
hence by Lemma 2.7, −2 · 1 ↔ 1. So we have a path 1 ↔ −2 · 1−P1 − 2 · 1 ↔ −1
between 1 and −1. Again, if 2 · 1 is a unit, then so is 2a, being the product of
two units. So 1 ↔ a− 1 ↔ a+ 1 ↔ −1 is a path between 1 and −1. Thus, in all
cases, there is a path between a and 1. This clearly shows that there is a path
between any two units, through 1.

Now we come to the following result, which is, in a way, stronger than Lemma
2.4.

Lemma 2.9. Let R be finite commutative ring with unity and Char(R) 6= 2.
Then Γ1(R) is connected unless R ∼= Z3.

Proof. Case I. Let the characteristic of the ring R be a composite number n.
Then R has non-zero zero-divisors, and there is a path between any two non-zero
zero-divisors in Γ1(R). Now by Lemma 2.8, there is a path between any two
units. Since the ring R is finite, any non-zero element is either a zero-divisor or
a unit. So if we can show that at least one non-zero zero-divisor is adjacent to
a unit, then we will get a path between any two vertices, i.e., the graph will be
connected. Now we consider the set S = {m · 1 | m = 0, 1, 2, . . . , n − 1}. Then
S is clearly a subring of R, and also S is isomorphic to Zn. Now a non-zero
zero-divisor in S is a non-zero zero-divisor in R. Also, since 1 ∈ S, a unit in S is
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a unit in R. Consequently, two vertices in Γ1(S) are adjacent if and only if they
are adjacent in Γ1(R), i.e., Γ1(S) is an induced subgraph of Γ1(R). Now Γ1(S) is
isomorphic to Γ1(Zn). By Corollary 2.5, Γ1(Zn) is connected. Moreover, n being
composite, Zn has non-zero zero-divisors. So in Γ1(Zn), at least one non-zero
zero-divisor is connected to a unit. Thus, from the graph isomorphism, at least
one non-zero zero-divisor is adjacent to a unit in Γ1(S), and hence, the same is
true in Γ1(R). So Γ1(R) is connected.

Case II. Let the characteristic of R be p, where p is an odd prime. Then R
contains a subring isomorphic to Zp, but we cannot proceed like we did in Case
I because Zp does not have non-zero zero-divisors. Now if R has no non-zero
zero-divisors, then it is a finite integral domain, and hence a finite field. In this
case, Γ1(R) is connected by Proposition 2.3, unless R ∼= Z3. So assume that R
contains a non-zero zero-divisor x. Now since R is finite, all of {xn | n ∈ N}
cannot be distinct. So we must have xr = xs for some positive integers r, s.
Let m be the least natural number such that xm = xn for some 0 < n < m.
First, we consider the case when n > 1. In this case, let g = xm−1 − xn−1.
Clearly, g 6= 0, otherwise the minimality of m would be contradicted. Now
g2 = (xm−1 − xn−1)2 = (x(xm−2 − xn−2))2 = x2(xm−2 − xn−2)(xm−2 − xn−2) =
(xm − xn)(xm−2 − xn−2) = 0. So we have a nonzero nilpotent element g in R.
Hence, by Theorem 2.6, Γ1(R) is connected. Now let n = 1, i.e., xm = x. In this
case, we observe that (xm−1)2 = x2m−2 = xm ·xm−2 = x·xm−2 = xm−1, i.e., xm−1

is an idempotent element. So (xm−1+ p−1
2 ·1)2 = xm−1+(p−1)xm−1+ p2−2p+1

4 ·1 =
p2−2p+1

4 ·1, as the characteristic of R is p. Now p2−2p+1
4 cannot be a multiple of p.

Hence p2−2p+1
4 ·1 is a non-zero element belonging to a subring of R isomorphic to

Zp. So it is a unit in R. Now (xm−1 + p−1
2 · 1)2 being a unit, xm−1 + p−1

2 · 1 must
also be a unit. So we have an edge between a non-zero zero-divisor xm−1 and a
unit p−1

2 · 1. Now we already have that there is a path between any two non-zero
zero-divisors, and also, there is a path between any two units. So the existence of
an edge between a non-zero zero-divisor and a unit clearly shows that the graph
Γ1(R) is connected.

Note that when the characteristic of a finite ring R is composite, we can proceed
exactly as in Case I of Lemma 2.9 even if R is non-commutative, because Case I
does not require the commutativity of R. So we have the following result.

Corollary 2.10. Let R be a finite ring with unity and with non-prime charac-
teristic. Then Γ1(R) is connected.

Next, we have the following result.

Lemma 2.11. Let F1, F2, . . . , Fk be finite fields, k ≥ 2. Then Γ1(F1 ×F2× · · ·×
Fk) is connected if and only if at least one of the fields is not isomorphic to Z2.
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Proof. Since there is always a path between any two non-zero zero-divisors by
Theorem 1.1, we proceed by trying to find an adjacent zero-divisor for any arbi-
trary unit (a1, a2, . . . , ak) in F1 ×F2 × · · · ×Fk. Note that here (a1, a2, . . . , ak) is
a unit if and only if ai 6= 0 for all i = 1, 2, . . . , k.

Case I. Assume at least one of the fields has characteristic not equal to 2.
Then F1 × F2 × · · · × Fk is a commutative ring with characteristic > 2. Hence,
by Lemma 2.9, the graph Γ1(F1 × F2 × · · · × Fk) is connected.

Case II. Assume all the fields have Characteristics 2 and at least one of the
fields has more than 2 elements (i.e., is not isomorphic to Z2). Let F1 not be
isomorphic to Z2 (without loss of generality). Then F1 will have at least one unit
x different from 1. Consider a unit (a1, a2, . . . , ak).

Now we have

(a1, a2, . . . , ak) ↔

{

(1− a1, 0, 0, . . . , 0) if a1 6= 1;

(x+ 1, 0, 0, . . . , 0) if a1 = 1.

So any unit is adjacent to some non-zero zero-divisor, and hence the graph is
connected.

Case III. Assume F1, F2, . . . , Fk are all isomorphic to Z2. Here, the element
(1̄, 1̄, 1̄, . . . , 1̄) is the only unit, and it has no adjacent zero-divisors in Γ1(F1 ×
F2 × · · · × Fk). So the graph cannot be connected.

Thus Γ1(F1×F2×· · ·×Fk) is connected if and only if at least one of the fields
is not isomorphic to Z2.

Now, we finally proceed to prove the main theorem for connectedness with the
help of the lemmas given so far. The main theorem, which we prove below,
completely characterizes the finite commutative rings R with unity for which
Γ1(R) is connected.

Theorem 2.12. Let R be a finite commutative ring with unity. Then Γ1(R) is
connected if and only if R is not isomorphic to Z3 or Z

k
2 (for any k ∈ N− {1}).

Proof. It is sufficient to show that Γ1(R) is disconnected if and only if R ∼= Z3

or Zk
2 (for any k ∈ N − {1}). We have already seen that Γ1(Z3) is disconnected.

Also, if R ∼= Z2 × Z2 × · · · × Z2, then the vertex (1̄, 1̄, . . . , 1̄) is isolated in Γ1(R).
So Γ1(R) is disconnected. Conversely, let Γ1(R) be disconnected. By Lemma 2.9,
either R ∼= Z3 or Char(R) = 2. Let R 6∼= Z3. Now if R has a non-zero nilpotent
element, then Γ1(R) is connected by Lemma 2.6. So R must be a reduced ring,
i.e., a ring with no non-zero nilpotent elements. Since R is finite and reduced,
R is a direct product of finite fields. Now in this case, we have by Lemma 2.11
that Γ1(R) is disconnected if and only if R is isomorphic to the ring Z

k
2 for some

k ∈ N− {1}. Hence the result.
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3. Characterization of rings with respect to the graph Γ1(R)

We now aim to characterize the rings for which Γ1(R) realizes some well-known
classes of graphs. Clearly, this also helps us to classify the particular graphs from
those classes which are realizable as Γ1(R). We start with the following result.

Theorem 3.1. Let R be a finite ring with unity. Then Γ1(R) is a complete graph
if and only if R is a field of characteristic 2.

Proof. If R is a field of characteristic 2, then a + b 6= 0 for any two distinct
non-zero elements a, b in F . So a + b is a unit. This shows that a ↔ b in
Γ1(R) for any two distinct vertices a, b. So Γ1(R) is a complete graph (in fact,
Γ1(F2n) ∼= K2n−1, as shown in Corollary 4.2). Alternatively, the unit graph G(R)
in this case is complete by [5, Theorem 3.4], and hence Γ1(R) is also complete
(since Γ1(R) is the subgraph of G(R) induced by the non-zero vertices if R is a
division ring). Conversely, let Γ1(R) be complete. If possible, let 1 6= −1. Now
1 is not adjacent to the vertex −1, which contradicts that Γ1(R) is complete. So
we must have 1 = −1, i.e., Char(R) = 2. If possible, let R not be a field. Since
R is a finite ring, this implies that R has a non-zero zero-divisor, say z. Now
z + 1 6= 0. We have that 1 + (z + 1) = z and 1 · (z + 1) 6= 0. So 1 is not adjacent
to z + 1. This contradicts that Γ1(R) is complete. So R must be a field. Hence
the result.

Next, we consider the existence of cycles in Γ1(R). This, as we will see after-
wards, helps significantly in the classification of Γ1(R) graphs. First, we have the
following lemma.

Lemma 3.2. Γ1(Zn) is acyclic if and only if n = 2, 3, 4, 6.

Proof. It is easy to see that Γ1(Zn) is acyclic for n = 2, 3, 4, 6 (cf. Figure 3, 4,
6, 9 in the Appendix). Also, as shown in Figure 8, Γ1(Z5) ∼= C4. Let us consider
n > 6. We look for cycles in Γ1(Zn) for different values of n. If n = p, where
p is any odd prime, then we have the 3-cycle 1̄ − 2̄ − 3̄ − 1̄. If n = 2p, where
p is any odd prime, then we have the 4-cycle 1̄ − 2̄ − p̄ − (−2) − 1̄. If n = pq,
where p, q are distinct odd primes, we have the 3-cycle 1̄− 3̄− (−2)− 1̄. Again,
if n = p1p2 · · · pk, where the pi’s are distinct primes and k > 2, then we have the
3-cycle n

p1
− n

p2
− n

p3
− n

p1
. Now consider the case when n is not square-free, i.e.,

when Zn contains a non-zero nilpotent. First, let n be odd. It is easy to see that
there exists a non-zero nilpotent x̄ such that x̄2 = 0̄. Now noting that the sum of
a unit and a nilpotent is a unit in Zn, we have the 3-cycle 1̄− x̄−2x− 1̄ in Γ1(Zn).
Again, let n be even. If n

2 is nilpotent, we have the 3-cycle 1̄ − (−2)− n
2 − 1̄. If

n
2 is not nilpotent, then n = 2lpk for some odd prime p, odd l and k > 2. In this

case we have the 3-cycle 1̄ − 2lpk−1 − 4lpk−1 − 1̄. So, having considered all the
cases, we have that Γ1(Zn) is acyclic if and only if n = 2, 3, 4, 6.
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Next, we have the following result.

Lemma 3.3. Let R be a finite commutative ring (with unity) distinct from
Z3,Z4,Z6 such that Char(R) = 3, 4 or 6. Then Γ1(R) contains a cycle.

Proof. First, let Char(R) = 3. If R contains a unit u distinct from 1,−1, then
we have the 3-cycle u+1 ↔ u+2 ↔ −u ↔ u+1 in Γ1(R). Again, let all elements
of R− {0,−1, 1} be non-zero zero-divisors. If there is a non-zero nilpotent, then
there is a non-zero element z such that z2 = 0, and then we have the 3-cycle
1 ↔ z ↔ 2z ↔ 1. If there is no non-zero nilpotent, then for any non-zero zero-
divisor z, there is a non-zero t (6= z) such that zt = 0. In this case, we have the
cycle z ↔ 2t ↔ 2z ↔ t ↔ z (note that 2t 6= z and 2z 6= t as otherwise we would
have z2 = 0).

Next, let Char(R) = 4. If R has a unit u distinct from 1,−1, then we have
the cycle 1 ↔ 2 ↔ 2u ↔ 1 (as 2, 2u are non-zero nilpotents). Suppose R has
no such units. Then all elements of R − R1 are non-zero zero-divisors, where
R1 = {m · 1 | m = 1, 2, 3, 4}. We show that there exists a non-zero zero-divisor
z ∈ R−R1 such that 2z 6= 0. If possible, let 2x = 0 for some x ∈ R−R1. Clearly,
|R − R1| > 1, as |R| is a multiple of 4. Let z1 ∈ R − R1. Now z1 + 1 6∈ R1. So
2(z1 + 1) = 0, which gives 2 = −2z1 = 0, which is not possible. Hence, we have
some z ∈ R − R1 such that 2z 6= 0. Noting that 2z is a non-zero nilpotent, we
have the 3-cycle 1 ↔ 2 ↔ 2z ↔ 1.

Lastly, let Char(R) = 6. Let R1 = {m · 1 | m = 1, 2, . . . , 6}. If R − R1 has a
unit u, then we have the cycle 2 ↔ 3u ↔ 4 ↔ 3 ↔ 2. Suppose R − R1 contains
non-zero zero-divisors only. If R − R1 has a non-zero zero-divisor z such that
z2 = 0 then we have the 3-cycle 1 ↔ 5z ↔ z ↔ 1. Now suppose there exists no
such non-zero zero-divisor in R−R1. We know that the subgraph Γ(R) of Γ1(R)
is a connected graph. So we have some z ∈ R−R1 such that z is adjacent to at
least one of 2, 3, 4, i.e., tz = 0 for some t ∈ {2, 3, 4}. If 2z = 0, then 3z 6= 0. So
we have the cycle z ↔ z + 1 ↔ z + 4 ↔ z + 3 ↔ 2 ↔ z. Again, if 3z = 0, then
2z, 4z 6= 0, and we have the cycle 2z ↔ z+1 ↔ 2z+4 ↔ z+3 ↔ 2z+2 ↔ 3 ↔ 2z
(note that 2z 6= 3 as otherwise z = −3). Finally, if 4z = 0, we have the cycle
2z ↔ 2z + 1 ↔ 2z + 4 ↔ 2z + 3 ↔ 2 ↔ 2z (note that 2z 6= ±2 as otherwise
4 = 0).

So in all three cases, Γ1(R) contains a cycle.

With the help of the previous two lemmas, we obtain the following.

Proposition 3.4. Let R be a finite commutative ring with unity such that
Char(R) 6= 2 and R 6∼= Z3,Z4,Z6. Then Γ1(R) contains a cycle.

Proof. If R ∼= Zn for some n 6∈ {2, 3, 4, 6}, then by Lemma 3.2, Γ1(R) contains
a cycle. It is easy to see that if S is a ring which contains a subring isomorphic
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to Zn for any n 6∈ {2, 3, 4, 6}, then any cycle in Γ1(Zn) (for corresponding value
of n) is present in Γ1(S) as well. Hence, if Char(R) 6∈ {2, 3, 4, 6}, then Γ1(R)
contains a cycle. Again, let R 6∼= Z3,Z4,Z6 and Char(R) ∈ {3, 4, 6}. Then by
Lemma 3.3, we have that Γ1(R) contains a cycle. Hence the result.

Remark 3.5. Note that Γ1(R) can contain cycles even when Char(R) = 2. For
example, if R ∼= F2n , then Γ1(R) ∼= K2n−1. Also, if R is a boolean ring distinct
from Z2 × Z2, then R ∼= Z2 × Z2 × · · · × Z2, and hence Γ1(R) contains a 3-
cycle formed by the vertices {(1̄, 0̄, . . . , 0̄), (0̄, 1̄, . . . , 0̄), (0̄, 0̄, 1̄, . . . , 0̄)}. However,
Γ1(Z2 × Z2) is acyclic.

Next, we completely characterize the finite commutative rings R for which Γ1(R)
is a star graph. A star graph is a simple undirected graph where there is one
vertex (called the central vertex) which is adjacent to all other vertices and the
remaining vertices are not adjacent to each other.

Theorem 3.6. Let R be a finite commutative ring with unity. Then Γ1(R) is a

star graph having at least three vertices if and only if R ∼= Z4 or R ∼=
Z2[x]
<x2>

. In
both the cases, Γ1(R) ∼= P3.

Proof. It is easy to see that if R ∼= Z4 or Z2[x]
<x2>

, then Γ1(R) ∼= P3. Conversely,
let Γ1(R) be a star graph having at least 3 vertices. So we have that |R| > 3.
Since Γ1(R) is acyclic, by Proposition 3.4 we have that either R is isomorphic to
Z4 or Z6 or Char(R) = 2. Now Γ1(Z4) is a star graph, but Γ1(Z6) is not. Now let
Char(R) = 2. As we have seen in Remark 3.5, Γ1(R) is not acyclic if R is a field
with |R| > 2 and Char(R) = 2. So R contains non-zero zero-divisors. If possible,
let the central vertex be a unit element. Then if we have more than one non-zero
zero-divisor, the subgraph Γ(R) is disconnected, which is not possible. So we can
have only one non-zero zero-divisor, say z1. But in this case, z21 = 0, and hence all
units will be adjacent to z1, which is a contradiction since Γ1(R) is a star graph
having at least 3 vertices. So the central vertex has to be a non-zero zero-divisor,
say z. First, let z be the only non-zero zero-divisor in R. Then by [10, Theorem
I], we have that |R| ≤ 4. Since we also have that |R| > 3, this gives |R| = 4.
Hence, keeping in mind that Char(R) = 2, we have that R is isomorphic to one

of Z2 × Z2,
Z2[x]
<x2>

, or F4. Among them, Γ1(R) is a star graph only for R ∼=
Z2[x]
<x2>

.
Again, let R have non-zero zero-divisors other than z. Then the subgraph Γ(R)
is also a star graph (note that Γ(R) cannot have isolated vertices). If Γ(R) ∼= K2,
then by [3, Theorem 2.10] we have that R ∼= Z2 × Z2 (since Char(R) = 2). But
we have seen that Γ1(Z2 × Z2) is not a star graph. So Γ(R) is a star graph with
at least 3 vertices. If there is no non-zero t such that t2 = 0, then by [7, Corollary
4.6] we have that R is a direct product of fields. Clearly, here the fields are of
characteristic 2. If R is a product of more than 2 fields then Γ1(R) has a 3-cycle
formed by the vertices (1̄, 0̄, . . . , 0̄), (0̄, 1̄, 0̄, . . . , 0̄), (0̄, 0̄, 1̄, . . . , 0̄). So R is of the
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form F1 × F2. Now as we have already considered Z2 × Z2, we may assume that
(without loss of generality) F1 has a unit distinct from 1. Then we have the
4-cycle (1, 0) ↔ (0, 1) ↔ (u, 0) ↔ (1 + u, 1) ↔ (1, 0). So now we assume that
there is a non-zero t such that t2 = 0. It is easy to see that t is the central vertex
as any unit is adjacent to t. So by [7, Lemma 2.6], we have that R is isomorphic

to Z2[x]
<x2>

or Z2[x]
<x3>

. Now in the latter case, we have a 3-cycle formed by the vertices

1+ < x3 >,x+ < x3 >,x2+ < x3 >. So having considered all these, Γ1(R) is a

star graph if and only if R ∼= Z4 or Z2[x]
<x2>

.

We now observe an interesting property of acyclic Γ1(R) graphs when
Char(R) = 2.

Proposition 3.7. Let R be a finite commutative ring with unity such that
Char(R) = 2 and Γ1(R) is acyclic. Then no two units of R are adjacent to
each other in Γ1(R).

Proof. Let u, v be two unit vertices adjacent to each other in Γ1(R). Then u+ v
is a unit which is distinct from both u and v. Hence we have a 3-cycle formed by
the vertices u, v, u+ v, which is a contradiction. Thus, no two units are adjacent
to each other.

Corollary 3.8. If Γ1(R) is a tree, then no two units are adjacent to each other.

Proof. Let Γ1(R) be a tree. Then Γ1(R) is acyclic and connected. Thus, by
Proposition 3.4, R ∼= Z4 or Z6 or we have Char(R) = 2 (note that Γ1(Z3) is
disconnected). Now in Z4 and Z6, the only units are 1 and −1, so they cannot
be adjacent. Again, if Char(R) = 2, then two units cannot be adjacent to each
other by Proposition 3.7.

Proposition 3.4 and Corollary 3.8 help us to characterize the rings for which
Γ1(R) is a path graph or a cycle, as we show next.

Theorem 3.9. Let R be a finite commutative ring with unity. Then Γ1(R) ∼= Pn

(for some n ∈ N− {1, 2}) if and only if R is isomorphic to Z4,Z6, or
Z2[x]
<x2>

.

Proof. It is easy to see that Γ1(Z6) ∼= P5 and Γ1(Z4) ∼= Γ1(
Z2[x]
<x2>

) ∼= P3. Con-
versely, let Γ1(R) be a path with at least 3 vertices. So by Proposition 3.4,
R ∼= Z4 or R ∼= Z6 or Char(R) = 2. Now having already considered Z6 and Z4,
we may assume that Char(R) = 2. By Corollary 3.8, units cannot be adjacent
to each other. Suppose there exists a unit vertex which is not a pendant (i.e.,
having degree 1) vertex. If R has more than one non-zero zero-divisor, then Γ(R)
becomes disconnected as there is a non-pendant unit vertex and two units cannot
be adjacent to each other. So either there is only one non-zero zero-divisor or
units are only of degree one. In the first case, |R| ≤ 4 (by [10, Theorem I]. This
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gives |R| = 4 as Γ1(R) has at least three vertices. It is easily seen that among

such rings, Γ1(R) is a path (with at least 3 vertices) only for R ∼=
Z2[x]
<x2>

. Now
consider the case when all units are of degree 1. Clearly, 1 is a terminal vertex.
So 1 is adjacent to some zero-divisor z, i.e., 1 + z is a unit. Hence, 1 + z is the
other terminal vertex and we also note that z ↔ 1+ z. This implies Γ1(R) ∼= P3.

So by Theorem 3.6, R is isomorphic to Z2[x]
<x2>

.

Theorem 3.10. Let R be a finite commutative ring with unity. Then Γ1(R) ∼= Cn

(for some n ∈ N− {1, 2}) if and only if R ∼= F4 or R ∼= Z5.

Proof. It is easy to see that Γ1(F4) ∼= C3 and Γ1(Z5) ∼= C4. Conversely, let
Γ1(R) be a cycle. We know that Γ1(R) is acyclic for R ∼= Z2,Z3,Z4,Z6. From
the proof of Lemma 3.2 and Proposition 3.4, we can see that for a ring R distinct
from Z2,Z3,Z4,Z6 and with Char(R) 6= 2, 6, the graph Γ1(R) contains a 3-cycle
or 4-cycle. So if Γ1(R) is a cycle for a ring R distinct from Z2,Z3,Z4,Z6 and
with Char(R) 6= 2, 6, then 4 ≤ |R| ≤ 5. Among the finite commutative rings of
said orders, Γ1(R) is a cycle only for R ∼= F4 and R ∼= Z5. Now for Char(R) = 6
(where R 6∼= Z6), Γ1(R) contains a cycle of length at most 6 (from the proof of
Lemma 3.3). Since we have already considered 3-cycles and 4-cycles, we assume
6 ≤ |R| ≤ 7. Now the only finite commutative ring of order 7 with unity is Z7, and
Char(Z7) 6= 6. So |R| = 6. Since R is a commutative ring with unity, this gives
R ∼= Z6, which is a contradiction as Γ1(Z6) is acyclic. Finally, let Char(R) = 2.

If Γ1(R) ∼= C3, then |R| = 4. We have studied the cases F4,
Z2[x]
<x2>

,Z2 × Z2,Z4

before. So we may assume that Γ1(R) ∼= Cn for some n > 3. In this case no two
units can be adjacent to each other (as their sum would then be another unit,
and we would have a 3-cycle). So if there exists at least two units in R, then
the subgraph Γ(R) is disconnected (note that then R has at least two non-zero
zero-divisors as otherwise we would have an adjacent pair of unit vertices since
Γ1(R) is assumed to be cycle), which is not possible. Consequently, R has only
one unit 1. Thus 1 is adjacent to some non-zero zero-divisor z, and hence 1 + z
is unit. This contradicts that 1 is the only unit. Thus, if Γ1(R) is a cycle, then
R is isomorphic to F4 or Z5.

Remark 3.11. It is interesting to note that Γ1(R) ∼= Γ1(S) does not imply

R ∼= S. For example, Γ1(Z4) ∼= Γ1(
Z2[x]
<x2>

).

4. Γ1(F ) where F is a finite field

Now we consider the graph Γ1(F ) for a finite field F . We know that a finite field
is of order pn, where p is a prime and n ∈ N, and also that the characteristic of
a field of order pn is p. We start with the following result:
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Theorem 4.1. Let F be a finite field. Then Γ1(F ) is a regular graph.

Proof. Let |F | = pn for some prime p and n ∈ N. Now in a field, there are no
non-zero zero-divisors. Hence, the product of two non-zero elements cannot be
0, and the sum of two elements is a unit unless they are additive inverses of each
other.

Case I. Let p = 2. Then Char(F ) = 2, and hence each element is its own
additive inverse. Thus each vertex is adjacent to all other vertices. So deg(v) =
2n − 2 for every vertex v.

Case II. Let p be an odd prime. The additive inverse of a is p − a, and an
element cannot be its own inverse since p is odd. Thus each vertex is adjacent to
all other vertices except its additive inverse. So deg(v) = pn − 3 for all vertex v.
Hence the result.

Corollary 4.2. Let F be a finite field with |F | = pn. If p = 2, then Γ1(F ) ∼=

K2n−1 , and if p is odd, then Γ1(F ) ∼=
(pn−1)

2 copies of K2, where Γ1(F ) is the
complement of the graph Γ1(F ).

Proof. For p = 2, Γ1(F ) is a complete graph by Theorem 3.1. Let p be odd.
Since each vertex v is adjacent to all other vertices except its unique additive
inverse −v, the complement of the graph consists of (pn − 1)/2 copies of K2.

Corollary 4.3. Let F be a finite field with |F | > 3. Then Γ1(F ) is connected
and Eulerian.

Proof. This readily follows from Theorem 4.1 or Corollary 4.2.

We are interested if the converse of Theorem 4.1 holds to some extent, i.e., if for
a finite commutative ring R, Γ1(R) is k-regular for some particular value of k,
then whether R will be a field or not. As we show in the following result, it does
hold true for certain values of k.

Theorem 4.4. Let R be a commutative ring of order n with unity. If n is odd
and Γ1(R) is (n − 3)-regular, then R is a field of characteristic p, where p is
an odd prime. If n is even and Γ1(R) is (n − 2)-regular, then R is a field of
characteristic 2.

Proof. If R has no non-zero zero-divisors, then R, being a finite integral domain,
is a field. If possible, let R have non-zero zero-divisors.

(i) Let n be odd and the graph Γ1(R) be (n− 3)-regular. Since the character-
istic of a finite ring divides the order of the ring, the characteristic must be odd
in this case. Suppose Char(R) = 2k+1. Now we write 2k ·1 as 2k. Clearly, 2k is
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not adjacent to 1. Let z be a non-zero zero-divisor. If 2k+z is a zero-divisor, then
2k 6↔ z, because 2kz = 0 would imply z = z + 2kz = (2k + 1)z = 0. Note that z
is neither 1 nor 2k (we know that there is a z1 6= 0 such that zz1 = 0; so z = 2k
would imply z1 = 0 as before). Hence deg(2k) ≤ n− 4, which is a contradiction.
So suppose 2k + z = u for some unit u. Then 2k − u = −z, and also 2ku 6= 0
since u is a unit. So 2k 6↔ −u. Now −u 6= 1 (as −u = 1 would imply z = 0).
If possible, let −u = 2k. Then 2k − u = −z implies 4k = −z. Hence 4kz2 = 0
for some zero-divisor z2 (6= 0). This gives 2z2 = 4kz2 + 2z2 = 2(2k + 1)z2 = 0,
and consequently 2kz2 = 0. Hence, z2 = 2kz2 + z2 = (2k + 1)z2 = 0. This
is a contradiction; so −u 6= 2k. Hence, 2k is not adjacent to 1, 2k,−u. This
implies deg(2k) ≤ n − 4. Hence our initial assumption that there are non-zero
zero-divisors in R is wrong. So R is a finite integral domain, and hence a field.
The order of R being odd, Char(R) must be an odd prime p.

(ii) Let n be even and Γ1(R) be (n− 2)-regular. Suppose that Char(R) = 2k.
Let l = −1. Now l is not adjacent to 1. Let z be a non-zero zero-divisor. If l+z is
a zero-divisor, then l is not adjacent to z. Consequently, deg(l) is at most n− 3,
which is a contradiction. Again, let l+ z = u for some unit u. Then l− u = −z,
and hence l 6↔ −u. Note that if l = −u, then z = 2u, which is imposssible since
u is a unit. So l 6= −u. Since −u 6= 1 (as −u = 1 would imply l − u = 0, i.e.,
z = 0), we again have that deg(l) is at most n − 3. So our initial assumption,
that there are non-zero zero-divisors in R is wrong. Hence R is a finite integral
domain, i.e., a field. Moreover, n being even, the characteristic of R must be 2.
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Appendix: All possible Γ1(R) graphs with at most 6 vertices

We here give all possible Γ1(R) graphs with at most 6 vertices, where R is a
finite commutative ring with unity. We also mention the rings R for which the
respective graphs are realized as Γ1(R).

Figure 3. Γ1(Z2) Figure 4. Γ1(Z3)
Figure 5. Γ1(Z2 × Z2)

Figure 6. Γ1(Z4) ∼=

Γ1(
Z2[x]
<x2>

)
Figure 7. Γ1(F4) Figure 8. Γ1(Z5)

Figure 9. Γ1(Z6)

Figure 10. Γ1(Z7)

The single vertex graph will correspond to a ring of two elements with unity; so it
is realized as Γ1(Z2). In fact, if p is a prime, then any Γ1(R) graph with exactly
p − 1 vertices corresponds to a ring of order p. Noting that Zp is the only finite
commutative ring of order p with unity, we have that the only Γ1(R) graphs of
(exactly) 2 vertices, 4 vertices, and 6 vertices are Γ1(Z3), Γ1(Z5), and Γ1(Z7),
respectively (shown in Figure 4, Figure 8, and Figure 10, respectively). Now for
graphs with exactly 3 vertices, we need to consider finite commutative rings of
order 4 with unity. We have 4 such rings viz., Z2 × Z2,Z4,

Z2[x]
<x2>

, and F4. So the
only graphs of 4 vertices realizable as Γ1(R) in this case are those shown in figures

5, 6, 7. Note that Γ1(Z4) ∼= Γ1(
Z2[x]
<x2>

). Finally, for Γ1(R) graphs of exactly 5
vertices, we need to consider rings of order 6. The only finite commutative ring of
order 6 with unity 1 (6= 0) is Z6. Hence, the graph shown in Figure 9 is the only
graph of 6 vertices realizable as Γ1(R). So figures 3-10 give all possible Γ1(R)
graphs with at most 6 vertices.
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