Discussiones Mathematicae General Algebra and Applications 35 (2015) 139–157 doi:10.7151/dmgaa.1237

ON A PERIODIC PART OF PSEUDO-BCI-ALGEBRAS

Grzegorz Dymek

Institute of Mathematics and Computer Science The John Paul II Catholic University of Lublin Konstantynów 1H, 20–708 Lublin, Poland

e-mail: gdymek@o2.pl

Abstract

In the paper the connections between the set of some maximal elements of a pseudo-BCI-algebra and deductive systems are established. Using these facts, a periodic part of a pseudo-BCI-algebra is studied.

Keywords: pseudo-BCI-algebra, deductive system, periodic part. **2010 Mathematics Subject Classification:** 03G25, 06F35.

1. Introduction

Among many algebras of logic, BCI-algebras, introduced in [8], form an important and interesting class of algebras. They have connections with BCI-logic being the BCI-system in combinatory logic, which has application in the language of functional programming.

The notion of pseudo-BCI-algebras has been introduced in [1] as an extension of BCI-algebras. Pseudo-BCI-algebras are algebraic models of some extension of a non-commutative version of the BCI-logic. These algebras have also connections with other algebras of logic such as pseudo-BCK-algebras, pseudo-BL-algebras and pseudo-MV-algebras. More about those algebras a reader can find in [7].

The paper is devoted to pseudo-BCI-algebras. In Section 2, we give some necessary material needed in the sequel. In Section 3, first we investigate the psemisimple part M(X) of a pseudo-BCI-algebra X and give conditions for M(X) to be a deductive system of X. For $D \subseteq X$, the set $M(D) = \{(x \to 1) \to 1 : x \in D\}$ is also investigated. We end this section by giving some facts about deductive systems of a pseudo-BCI-algebra. Finally, using the results of Section 3, we study a periodic part of a pseudo-BCI-algebra in Section 4.

2. Preliminaries

A pseudo-BCI-algebra is a structure $(X; \leq, \rightarrow, \rightsquigarrow, 1)$, where \leq is a binary relation on a set X, \rightarrow and \rightsquigarrow are binary operations on X and 1 is an element of X such that for all $x, y, z \in X$, we have

(a1)
$$x \to y \le (y \to z) \leadsto (x \to z), \quad x \leadsto y \le (y \leadsto z) \to (x \leadsto z),$$

(a2)
$$x < (x \to y) \leadsto y$$
, $x < (x \leadsto y) \to y$,

- (a3) $x \leq x$,
- (a4) if $x \le y$ and $y \le x$, then x = y,
- (a5) $x \le y \text{ iff } x \to y = 1 \text{ iff } x \leadsto y = 1.$

It is obvious that any pseudo-BCI-algebra $(X; \leq, \rightarrow, \rightsquigarrow, 1)$ can be regarded as an algebra $(X; \rightarrow, \rightsquigarrow, 1)$ of type (2, 2, 0). Note that every pseudo-BCI-algebra satisfying $x \rightarrow y = x \rightsquigarrow y$ for all $x, y \in X$ is a BCI-algebra.

Every pseudo-BCI-algebra satisfying $x \leq 1$ for all $x \in X$ is a pseudo-BCK-algebra. A pseudo-BCI-algebra which is not a pseudo-BCK-algebra will be called *proper*.

Troughout this paper, we will often use X to denote a pseudo-BCI-algebra. Any pseudo-BCI-algebra X satisfies the following, for all $x, y, z \in X$:

- (b1) if $1 \le x$, then x = 1,
- (b2) if $x \le y$, then $y \to z \le x \to z$ and $y \leadsto z \le x \leadsto z$,
- (b3) if x < y and y < z, then x < z,
- (b4) $x \to (y \leadsto z) = y \leadsto (x \to z)$,
- (b5) $x < y \rightarrow z \text{ iff } y < x \rightsquigarrow z$,
- (b6) $x \to y \le (z \to x) \to (z \to y), \quad x \leadsto y \le (z \leadsto x) \leadsto (z \leadsto y),$
- (b7) if $x \le y$, then $z \to x \le z \to y$ and $z \leadsto x \le z \leadsto y$,
- (b8) $1 \rightarrow x = 1 \rightsquigarrow x = x$,
- (b9) $((x \to y) \leadsto y) \to y = x \to y$, $((x \leadsto y) \to y) \leadsto y = x \leadsto y$,
- (b10) $x \to y \le (y \to x) \leadsto 1$, $x \leadsto y \le (y \leadsto x) \to 1$,
- (b11) $(x \to y) \to 1 = (x \to 1) \leadsto (y \leadsto 1), \quad (x \leadsto y) \leadsto 1 = (x \leadsto 1) \to (y \to 1),$
- (b12) $x \to 1 = x \leadsto 1$.

If $(X; \leq, \rightarrow, \rightsquigarrow, 1)$ is a pseudo-BCI-algebra, then, by (a3), (a4), (b3) and (b1), $(X; \leq)$ is a poset with 1 as a maximal element. Note that a pseudo-BCI-algebra has also other maximal elements.

Example 2.1 [3]. Let $X = \{a, b, c, d, 1\}$ and define binary operations \rightarrow and \rightsquigarrow on X by the following tables:

\rightarrow	a	b	c	d	1		~→	a	b	c	d	1
\overline{a}	1	1	1	d	1	-	a	1	1	1	d	1
	b						b	c	1	1	d	1
c	b	b	1	d	1			a				
	d							d				
	a						1	a	b	c	d	1

Then $(X; \to, \leadsto, 1)$ is a (proper) pseudo-BCI-algebra. Observe that it is not a pseudo-BCK-algebra because $d \nleq 1$.

Example 2.2 [9]. Let $Y_1 = (-\infty, 0]$ and let \leq be the usual order on Y_1 . Define binary operations \rightarrow and \rightsquigarrow on Y_1 by

$$x \to y = \begin{cases} 0 & \text{if } x \le y, \\ \frac{2y}{\pi} \arctan(\ln(\frac{y}{x})) & \text{if } y < x, \end{cases}$$
$$x \leadsto y = \begin{cases} 0 & \text{if } x \le y, \\ ye^{-\tan(\frac{\pi x}{2y})} & \text{if } y < x \end{cases}$$

for all $x, y \in Y_1$. Then $(Y_1; \leq, \rightarrow, \rightsquigarrow, 0)$ is a pseudo-BCK-algebra, and hence it is a nonproper pseudo-BCI-algebra.

Example 2.3 [6]. Let $Y_2 = \mathbb{R}^2$ and define binary operations \to and \to and a binary relation \leq on Y_2 by

$$(x_1, y_1) \rightarrow (x_2, y_2) = (x_2 - x_1, (y_2 - y_1)e^{-x_1}),$$

 $(x_1, y_1) \rightsquigarrow (x_2, y_2) = (x_2 - x_1, y_2 - y_1e^{x_2 - x_1}),$

$$(x_1, y_1) \le (x_2, y_2) \Leftrightarrow (x_1, y_1) \to (x_2, y_2) = (0, 0) = (x_1, y_1) \leadsto (x_2, y_2)$$

for all $(x_1, y_1), (x_2, y_2) \in Y_2$. Then $(Y_2; \leq, \rightarrow, \rightsquigarrow, (0, 0))$ is a proper pseudo-BCI-algebra. Notice that Y_2 is not a pseudo-BCK-algebra because there exists $(x, y) = (1, 1) \in Y_2$ such that $(x, y) \nleq (0, 0)$.

Example 2.4 [6]. Let Y be the direct product of pseudo-BCI-algebras Y_1 and Y_2 from Examples 2.2 and 2.3, respectively. Then Y is a proper pseudo-BCI-algebra,

where $Y = (-\infty, 0] \times \mathbb{R}^2$ and binary operations \to and \leadsto and binary relation \le are defined on Y by

$$(x_1, y_1, z_1) \to (x_2, y_2, z_2) =$$

$$\begin{cases} (0, y_2 - y_1, (z_2 - z_1)e^{-y_1}) & \text{if } x_1 \le x_2, \\ (\frac{2x_2}{\pi}\arctan(\ln(\frac{x_2}{x_1})), y_2 - y_1, (z_2 - z_1)e^{-y_1}) & \text{if } x_2 < x_1, \end{cases}$$

$$(x_1, y_1, z_1) \rightsquigarrow (x_2, y_2, z_2) = \begin{cases} (0, y_2 - y_1, z_2 - z_1 e^{y_2 - y_1}) & \text{if } x_1 \le x_2, \\ (x_2 e^{-\tan(\frac{\pi x_1}{2x_2})}, y_2 - y_1, z_2 - z_1 e^{y_2 - y_1}) & \text{if } x_2 < x_1, \end{cases}$$

$$(x_1, y_1, z_1) \le (x_2, y_2, z_2) \Leftrightarrow x_1 \le x_2 \text{ and } y_1 = y_2 \text{ and } z_1 = z_2.$$

Notice that Y is not a pseudo-BCK-algebra because there exists $(x, y, z) = (0, 1, 1) \in Y$ such that $(x, y, z) \nleq (0, 0, 0)$.

For any pseudo-BCI-algebra $(X; \rightarrow, \rightsquigarrow, 1)$, the set

$$K(X)=\{x\in X:x\leq 1\}$$

is a subalgebra of X (called pseudo-BCK-part of X). Then $(K(X); \to, \leadsto, 1)$ is a pseudo-BCK-algebra. Note that a pseudo-BCI-algebra X is a pseudo-BCK-algebra if and only if X = K(X).

It is easily seen that for the pseudo-BCI-algebras X, Y_1 , Y_2 and Y from Examples 2.1, 2.2, 2.3 and 2.4 we have $K(X) = \{a, b, c, 1\}$, $K(Y_1) = Y_1$, $K(Y_2) = \{(0,0)\}$ and $K(Y) = \{(x,0,0) : x \leq 0\}$, respectively.

We will denote by M(X) the set of all maximal elements of X and call it the p-semisimple part of X. Obviously, $1 \in M(X)$. Notice that $M(X) \cap K(X) = \{1\}$. Indeed, if $a \in M(X) \cap K(X)$, then $a \leq 1$ and a is a maximal element of X, which means that a = 1. Moreover, observe that 1 is the only maximal element of a pseudo-BCK-algebra. Therefore, for a pseudo-BCK-algebra X, $M(X) = \{1\}$. In [2] and [6] there is shown that $M(X) = \{x \in X : x = (x \to 1) \to 1\}$ and it is a subalgebra of X.

Observe that for the pseudo-BCI-algebras X, Y_1 , Y_2 and Y from Examples 2.1, 2.2, 2.3 and 2.4 we have $M(X) = \{d, 1\}$, $M(Y_1) = \{0\}$, $M(Y_2) = Y_2$ and $M(Y) = \{(0, y, z) : y, z \in \mathbb{R}\}$, respectively.

Let X be a pseudo-BCI-algebra. For any $a \in X$, we define a subset V(a) of X as follows

$$V(a) = \{x \in X : x \le a\}.$$

Note that V(a) is non-empty, because $a \leq a$ gives $a \in V(a)$. Notice also that $V(a) \subseteq V(b)$ for any $a, b \in X$ such that $a \leq b$.

If $a \in M(X)$, then the set V(a) is called a *branch* of X determined by element a. The following facts are proved in [6]: (1) branches determined by different elements are disjoint, (2) a pseudo-BCI-algebra is a set-theoretic union of branches, (3) comparable elements are in the same branch.

The pseudo-BCI-algebra Y_1 from Example 2.2 has only one branch (as the pseudo-BCK-algebra) and the pseudo-BCI-algebra X from Example 2.1 has two branches: $V(d) = \{d\}$ and $V(1) = \{a,b,c,1\}$. Every $\{(x,y)\}$ is a branch of the pseudo-BCI-algebra Y_2 from Example 2.3, where $(x,y) \in Y_2$. For the pseudo-BCI-algebra Y from Example 2.4, the sets $V((0,a_1,a_2)) = \{(x,a_1,a_2) \in Y : x \leq 0\}$, where $(0,a_1,a_2) \in M(X)$, are branches of Y.

Proposition 2.5 [2]. Let X be a pseudo-BCI-algebra. For all $a, x, y \in X$, the following are equivalent:

- (i) $a \in M(X)$,
- (ii) $(a \to x) \rightsquigarrow x = a = (a \leadsto x) \to x$.

Proposition 2.6 [2]. Let X be a pseudo-BCI-algebra and let $x \in X$ and $a, b \in M(X)$. If $x \in V(a)$, then $x \to b = a \to b$ and $x \leadsto b = a \leadsto b$.

Proposition 2.7 [2]. Let X be a pseudo-BCI-algebra and let $x, y \in X$ and $a, b \in M(X)$. If $x \in V(a)$ and $y \in V(b)$, then $x \to y \in V(a \to b)$ and $x \leadsto y \in V(a \leadsto b)$.

Proposition 2.8 [5]. Let X be a pseudo-BCI-algebra and let $x, y \in X$. The following are equivalent:

- (i) x and y belong to the same branch of X,
- (ii) $x \to y \in K(X)$,
- (iii) $x \rightsquigarrow y \in K(X)$,
- (iv) $x \to 1 = x \rightsquigarrow 1 = y \to 1 = y \rightsquigarrow 1$.

Let $(X; \to, \leadsto, 1)$ be a pseudo-BCI-algebra. Then X is *p-semisimple* if it satisfies for all $x \in X$,

if
$$x \leq 1$$
, then $x = 1$.

Note that if X is a p-semisimple pseudo-BCI-algebra, then $K(X) = \{1\}$. Hence, if X is a p-semisimple pseudo-BCK-algebra, then $X = \{1\}$. Moreover, as it is proved in [6], M(X) is a p-semisimple pseudo-BCI-subalgebra of X and X is p-semisimple if and only if X = M(X).

It is not difficult to see that the pseudo-BCI-algebras X, Y_1 and Y from Examples 2.1, 2.2 and 2.4, respectively, are not p-semisimple, and the pseudo-BCI-algebra Y_2 from Example 2.3 is a p-semisimple algebra.

Proposition 2.9 [6]. Let X be a pseudo-BCI-algebra. Then, for all $a, b, x, y \in X$, the following are equivalent:

- (i) X is p-semisimple,
- (ii) $(x \to y) \leadsto y = x = (x \leadsto y) \to y$,
- (iii) $(x \to 1) \leadsto 1 = x = (x \leadsto 1) \to 1$,
- (iv) $(x \to 1) \rightsquigarrow y = (y \leadsto 1) \to x$.

Proposition 2.10 [6]. A pseudo-BCI-algebra $(X; \to, \leadsto, 1)$ is p-semisimple if and only if $(X; \cdot, ^{-1}, 1)$ is a group, where, for any $x, y \in X$, $x \cdot y = (x \to 1) \leadsto y = (y \leadsto 1) \to x$, $x^{-1} = x \to 1 = x \leadsto 1$, $x \to y = y \cdot x^{-1}$ and $x \leadsto y = x^{-1} \cdot y$.

3. Deductive systems

We say that a subset D of a pseudo-BCI-algebra X is a deductive system of X if it satisfies: (i) $1 \in D$, (ii) for all $x, y \in X$, if $x \in D$ and $x \to y \in D$, then $y \in D$. Under this definition, $\{1\}$ and X are the simplest examples of deductive systems. Note that the condition (ii) can be replaced by (ii') for all $x, y \in X$, if $x \in D$ and $x \leadsto y \in D$, then $y \in D$. It can be easily proved that for any $x, y \in X$, if $x \in D$ and $x \le y$, then $y \in D$.

A deductive system D of a pseudo-BCI-algebra X is called: (1) proper if $D \neq X$ and (2) closed if D is closed under operations \rightarrow and \rightsquigarrow , that is, if D is a subalgebra of X. It is not difficult to show (see [2]) that a deductive system D of a pseudo-BCI-algebra X is closed if and only if for any $x \in D$, $x \to 1 = x \rightsquigarrow 1 \in D$. Obviously, the pseudo-BCK-part K(X) is a closed deductive system of X.

A deductive system D of a pseudo-BCI-algebra X is called *compatible* if for all $x, y \in X$,

$$x \to y \in D \text{ iff } x \leadsto y \in D.$$

Further, if D is a compatible deductive system of X, then the relation θ_D defined by

$$(x,y) \in \theta_D \text{ iff } x \to y \in D \text{ and } y \to x \in D$$
 (1)

is a congruence, where $[1]_{\theta_D} \subseteq D$ is a closed compatible deductive system of X. Moreover, $[1]_{\theta_D} = D$ if and only if D is closed.

We say that $\theta \in \text{Con}(X)$ is a relative congruence of X if the quotient algebra $(X/\theta; \to, \leadsto, [1]_{\theta})$ is a pseudo-BCI-algebra. It is proved in [3] that relative congruences of X correspond one-to-one to closed compatible deductive systems of X, that is, every relative congruence of X is given by (1) for some closed compatible deductive system D. For every relative congruence θ_D , the quotient algebra

 $(X/\theta_D; \to, \leadsto, [1]_{\theta_D})$ will be usually denoted by $(X/D; \to, \leadsto, [1]_D)$ and then we will write $[x]_D$ instead of $[x]_{\theta_D}$.

Remark. Although the set M(X) is a subalgebra of a pseudo-BCI-algebra X, it does not have to be a deductive system of X. Let X be the pseudo-BCI-algebra from Example 2.1. It is easy to see that $M(X) = \{d, 1\}$ is not a deductive system of X.

From [2] we have the following.

Proposition 3.1. Let X be a pseudo-BCI-algebra. The following are equivalent:

- (i) M(X) is a deductive system of X,
- (ii) for all $x, y \in X$ and $a \in M(X)$, $a \to x = a \to y$ implies x = y,
- (iii) for all $x, y \in X$ and $a \in M(X)$, $a \leadsto x = a \leadsto y$ implies x = y.

Here we have the following theorem.

Theorem 3.2. Let X be a pseudo-BCI-algebra. The following are equivalent:

- (i) M(X) is a deductive system of X,
- (ii) $x = (a \to 1) \to (a \to x)$ for all $x \in X$ and $a \in M(X)$,
- (iii) $x = (a \leadsto 1) \leadsto (a \leadsto x)$ for all $x \in X$ and $a \in M(X)$.

Proof. (i) \Rightarrow (ii): Assume that M(X) is a deductive system of X. Let $x \in X$ and $a \in M(X)$. Then, by (b4) and Proposition 2.5, we have

$$a \to (((a \to 1) \to (a \to x)) \leadsto x) = ((a \to 1) \to (a \to x)) \leadsto (a \to x) = a \to 1.$$

Hence, by Proposition 3.1, $((a \to 1) \to (a \to x)) \leadsto x = 1$, that is,

$$(a \to 1) \to (a \to x) \le x$$
.

On the other hand, again by (b4),

$$x \rightsquigarrow ((a \rightarrow 1) \rightarrow (a \rightarrow x)) = (a \rightarrow 1) \rightarrow (a \rightarrow (x \rightsquigarrow x))$$
$$= (a \rightarrow 1) \rightarrow (a \rightarrow 1)$$
$$= 1.$$

that is,

$$x \le (a \to 1) \to (a \to x).$$

Hence, $x = (a \to 1) \to (a \to x)$ and (ii) is satisfied.

(ii) \Rightarrow (i): Assume that (ii) is satisfied. We use Proposition 3.1. Let $x, y \in X$ and $a \in M(X)$. Suppose that $a \to x = a \to y$. Then, by (ii), we get

$$x = (a \rightarrow 1) \rightarrow (a \rightarrow x) = (a \rightarrow 1) \rightarrow (a \rightarrow y) = y$$

Therefore, by Proposition 3.1, M(X) is a deductive system of X.

$$(i) \Leftrightarrow (iii)$$
: Analogous.

Remark. From [3] we know that K(X) is a closed compatible deductive system of a pseudo-BCI-algebra X and $X/K(X) \cong M(X)$. We also have the following proposition.

Proposition 3.3. Let X be a pseudo-BCI-algebra. If M(X) is a compatible deductive system of X, then $X/M(X) \cong K(X)$. Moreover, $[x]_{M(X)} \neq [y]_{M(X)}$ for all $x, y \in V(a)$ such that $x \neq y$, where $a \in M(X)$.

Proof. Since M(X) is a (closed) compatible deductive system of X, we have X/M(X) is a pseudo-BCI-algebra. Define a function $f:K(X)\to X/M(X)$ as follows:

$$f(x) = [x]_{M(X)}$$
 for all $x \in K(X)$.

Since

$$f(x \to y) = [x \to y]_{M(X)} = [x]_{M(X)} \to [y]_{M(X)} = f(x) \to f(y)$$

and

$$f(x\leadsto y)=[x\leadsto y]_{M(X)}=[x]_{M(X)}\leadsto [y]_{M(X)}=f(x)\leadsto f(y),$$

so f is a homomorphism. Take $x, y \in K(X)$ such that $x \neq y$. Then $x \to y \neq 1$ or $y \to x \neq 1$. Hence, $x \to y \notin M(X)$ or $y \to x \notin M(X)$, that is, $[x]_{M(X)} \neq [y]_{M(X)}$. Thus, f is injective. Now, take $x \in X$ and $a = (x \to 1) \to 1$. Then $a \in M(X)$ and $x \in V(a)$. Hence, by Proposition 2.8, $a \to x \in K(X)$. Thus, since $[a]_{M(X)} = [1]_{M(X)}$, we have

$$\begin{split} f(a \to x) &= [a \to x]_{M(X)} \\ &= [a]_{M(X)} \to [x]_{M(X)} \\ &= [1]_{M(X)} \to [x]_{M(X)} \\ &= [x]_{M(X)}. \end{split}$$

Hence f is also surjective. Therefore f is an isomorphism, that is, $X/M(X) \cong K(X)$.

Finally, let $a \in M(X)$, $x, y \in V(a)$ and $x \neq y$. Then, $x \to y, y \to x \in K(X)$. If $[x]_{M(X)} = [y]_{M(X)}$, then $x \to y \in M(X)$ and $y \to x \in M(X)$. Hence, $x \to y = 1$ and $y \to x = 1$, that is, x = y and we get a contradiction. Thus, $[x]_{M(X)} \neq [y]_{M(X)}$.

Theorem 3.4. Let X be a pseudo-BCI-algebra. Then $X \cong K(X) \times M(X)$ if and only if M(X) is a compatible deductive system of X.

Proof. Assume that $X \cong K(X) \times M(X)$. Let $f: X \to K(X) \times M(X)$ be an isomorphism. Let π_K and π_M be projection maps onto K(X) and M(X), respectively. Denote

$$f_K = \pi_K \circ f : X \to K(X)$$

and

$$f_M = \pi_M \circ f : X \to M(X).$$

Obviously, f_K and f_M are both homomorphisms. The following are easy to show:

- (i) $f(x) = (f_K(x), f_M(x))$ for all $x \in X$,
- (ii) $f_K(x) = 1$ for all $x \in M(X)$,
- (iii) $f_M(x) = 1$ for all $x \in K(X)$,
- (iv) if x and y are in the same branch V(a), then $f_M(x) = f_M(y) = a$,
- (v) if x and y are in the same branch and $x \neq y$, then $f_K(x) \neq f_K(y)$.

Now, by (ii) and (v), it follows that $M(X) = \ker(f_K)$, that is, it is a (closed) compatible deductive system of X.

Conversely, assume that M(X) is a compatible deductive system of X. Obviously, it is closed. Hence X/M(X) is a pseudo-BCI-algebra. From Proposition 3.3, we know that $X/M(X) \cong K(X)$. Since also $X/K(X) \cong M(X)$, it suffices to show that $X \cong X/M(X) \times X/K(X)$. Define a function $g: X \to X/M(X) \times X/K(X)$ as follows:

$$g(x) = ([x]_{M(X)}, [x]_{K(X)})$$
 for all $x \in X$.

Obviously, g is a homomorphism. First, we prove that it is injective. Let $x,y\in X$ and g(x)=g(y). Then, $([x]_{M(X)},[x]_{K(X)})=([y]_{M(X)},[y]_{K(X)})$, whence $[x]_{M(X)}=[y]_{M(X)}$ and $[x]_{K(X)}=[y]_{K(X)}$. Hence, $x\to y,y\to x\in M(X)$ and $x\to y,y\to x\in K(X)$. These are possible only in case $x\to y=y\to x=1$. Thus, x=y and g is injective.

Next, we show that g is surjective. Let $([x]_{M(X)}, [y]_{K(X)}) \in X/M(X) \times X/K(X)$. Denote $a = (x \to 1) \to 1$ and $b = (y \to 1) \to 1$. Then, $a, b \in M(X)$. Since $(a \to x) \leadsto x = a \in M(X)$ and $x \leadsto (a \to x) = a \to 1 \in M(X)$, we have $[x]_{M(X)} = [a \to x]_{M(X)}$. Moreover, since $y \in V(b)$, by Proposition 2.8, $b \to y, y \to b \in K(X)$. Hence, $[y]_{K(X)} = [b]_{K(X)}$. Thus,

$$([x]_{M(X)}, [y]_{K(X)}) = ([a \to x]_{M(X)}, [b]_{K(X)}).$$

Let $z = (b \to 1) \to (a \to x)$. We have $a \to x \in K(X)$ by Proposition 2.8, and $z \in V((b \to 1) \to 1) = V(b)$ by Proposition 2.7, whence $[z]_{K(X)} = [b]_{K(X)}$. Moreover, by (b4) and Proposition 2.5, we have

$$(a \to x) \rightsquigarrow z = (a \to x) \rightsquigarrow ((b \to 1) \to (a \to x)) = (b \to 1) \to 1 = b \in M(X)$$

and

$$z \leadsto (a \to x) = ((b \to 1) \to (a \to x)) \leadsto (a \to x) = b \to 1 \in M(X).$$

Hence, $[z]_{M(X)} = [a \rightarrow x]_{M(X)}$. Thus,

$$g(z) = ([z]_{M(X)}, [z]_{K(X)}) = ([a \to x]_{M(X)}, [b]_{K(X)}) = ([x]_{M(X)}, [y]_{K(X)}).$$

Hence, g is surjective.

Therefore, g is an isomorphism, that is, $X \cong X/M(X) \times X/K(X) \cong K(X) \times M(X)$.

Remark. It is easy to see that for the pseudo-BCI-algebra X from Example 2.1, M(X) is not a (compatible) deductive system of X and $X \ncong K(X) \times M(X)$, and for the pseudo-BCI-algebra Y from Example 2.4, M(Y) is a compatible deductive system of Y and $Y \cong K(Y) \times M(Y)$.

For any non-empty subset A of a pseudo-BCI-algebra X, denote

$$M(A) = \{(x \to 1) \to 1 : x \in A\}.$$

Obviously, $M(A) \subseteq M(X)$ and $A \cap M(X) \subseteq M(A)$.

Proposition 3.5. Let X be a pseudo-BCI-algebra and D be a deductive system of X. Then

- (i) $M(D) = D \cap M(X)$,
- (ii) M(D) is a deductive system of M(X).

Proof. (i) It suffices to prove that $M(D) \subseteq D \cap M(X)$. Let $x \in D$. Then, by (a2), $(x \to 1) \to 1 \in D$. Thus, $(x \to 1) \to 1 \in D \cap M(X)$, that is, $M(D) = D \cap M(X)$.

(ii) Obviously, $1 \in M(D)$. Let $x, y \in M(X)$ be such that $x \in M(D)$ and $x \to y \in M(D)$. Then, we have $x, x \to y \in D$ and $x, x \to y \in M(X)$. Hence, since D is a deductive system of $X, y \in D \cap M(X) = M(D)$. Therefore, M(D) is a deductive system of X.

Remark. If M(D) is a deductive system of M(X), then D does not have to be a deductive system of X. Let X be the pseudo-BCI-algebra from Example 2.1. Then, for $D = \{a, 1\}$, $M(D) = \{1\}$ is a deductive system of M(X), but D is not a deductive system of X.

From [2] we have the following fact.

Proposition 3.6. Let X be a pseudo-BCI-algebra. If D is a subalgebra of X, then M(D) is a closed deductive system of M(X).

Remark. If M(D) is a closed deductive system of M(X), then D does not have to be a subalgebra of X. Let X be the pseudo-BCI-algebra from Example 2.1. Then for $D = \{a, b, 1\}$ we have $M(D) = \{1\}$ is a closed deductive system of M(X), but D is not a subalgebra of X.

Proposition 3.7. Let X be a pseudo-BCI-algebra. A deductive system D of X is closed if and only if a deductive system M(D) is closed in M(X).

Proof. By Proposition 3.6, it suffices to prove that if M(D) is closed in M(X), then D is closed in X. Assume that a deductive system M(D) is closed in M(X). Let $x \in D$. Then, $(x \to 1) \to 1 \in M(D)$. Hence, using (b9) and (b12), $x \to 1 = ((x \to 1) \to 1) \to 1 \in M(D)$. By Proposition 3.5(i), $x \to 1 \in D$, that is, D is closed.

Moreover, it is not difficult to show the following.

Proposition 3.8. Let X be a pseudo-BCI-algebra. If D is a compatible deductive system of X, then M(D) is a compatible deductive system of M(X).

Remark. The converse of Proposition 3.8 does not hold. Let X be the pseudo-BCI-algebra from Example 2.1. Then, for $D = \{c, 1\}$, $M(D) = \{1\}$ is a compatible deductive system of M(X), but D is a deductive system of X which is not compatible.

Theorem 3.9. Let X be a pseudo-BCI-algebra and $A \subseteq M(X)$. Then, $D = \bigcup_{a \in A} V(a)$ is a subalgebra of X if and only if A is a subalgebra of M(X).

Proof. Assume that D is a subalgebra of X. Let $a,b \in A$. Then, $V(a),V(b)\subseteq D$, that is, $a\to b, a\leadsto b\in D$. Since $a\to b$ and $a\leadsto b$ are maximal elements of X, $V(a\to b),V(a\leadsto b)\subseteq D$, that is, $a\to b, a\leadsto b\in A$. Therefore, A is a subalgebra of M(X).

Conversely, assume that A is a subalgebra of M(X). Let $x,y \in D$. Then, there are $a,b \in A$ such that $x \in V(a), y \in V(b)$ and $a \to b, a \leadsto b \in A$. By Proposition 2.7, $x \to y \in V(a \to b) \subseteq D$ and $x \leadsto y \in V(a \leadsto b) \subseteq D$. Therefore, D is a subalgebra of X.

Theorem 3.10. Let X be a pseudo-BCI-algebra and $A \subseteq M(X)$. Then, $D = \bigcup_{a \in A} V(a)$ is a deductive system of X if and only if A is a deductive system of M(X).

Proof. If D is a deductive system of X, then by Proposition 3.5, $M(D) = D \cap M(X) = A$ is a deductive system of M(X).

Conversely, assume that A is a deductive system of M(X). Obviously, $1 \in D$. Let $x,y \in X$ be such that $x,x \to y \in D$. Denote $a=(x \to 1) \to 1$, $b=((x \to y) \to 1) \to 1$ and $c=(y \to 1) \to 1$. It is clear that $a,b,c \in M(X), x \in V(a), x \to y \in V(b)$ and $y \in V(c)$. Moreover, by Proposition 2.7, $x \to y \in V(a \to c)$. Hence, $a \to c = b \in A$. Since $a \in A$ and A is a deductive system of M(X), we get $c \in A$. Thus, $y \in V(c) \subseteq D$. Therefore, D is a deductive system of X.

The following fact is proved in [2].

Proposition 3.11. Let X be a p-semisimple pseudo-BCI-algebra and $D \subseteq X$. Then, D is a closed deductive system of X if and only if it is a subalgebra of X.

Theorem 3.12. Let $(X; \rightarrow, \rightsquigarrow, 1)$ be a p-semisimple pseudo-BCI-algebra. Then the following are equivalent:

- (i) D is a closed deductive system of $(X; \rightarrow, \rightsquigarrow, 1)$,
- (ii) D is a subalgebra of $(X; \rightarrow, \rightsquigarrow, 1)$,
- (iii) D is a subgroup of $(X;\cdot,^{-1},1)$.

Proof. (i)⇔(ii): Follows by Proposition 3.11.

(i) \Rightarrow (iii): Assume that D is a closed deductive system. Let $x,y\in D$. Then, $x\rightsquigarrow (x\cdot y)=x^{-1}\cdot (x\cdot y)=y\in D$. Hence, $x\cdot y\in D$. Moreover, since D is closed, $x^{-1}=x\to 1\in D$ for any $x\in D$. Thus, D is a subgroup.

(iii) \Rightarrow (i): Assume that D is a subgroup. Obviously, $1 \in D$. Let $x, x \to y \in D$. Then, $y \cdot x^{-1} \in D$ and so $y = (y \cdot x^{-1}) \cdot x \in D$. Thus, D is a deductive system. Moreover, $x \to 1 = x^{-1} \in D$ for any $x \in X$, that is, D is closed.

Moreover, we have the following simple proposition.

Proposition 3.13. Let $(X; \rightarrow, \rightsquigarrow, 1)$ be a p-semisimple pseudo-BCI-algebra. The following are equivalent:

- (i) D is a closed compatible deductive system of $(X; \rightarrow, \rightsquigarrow, 1)$,
- (ii) D is a normal subgroup of $(X;\cdot,^{-1},1)$.

Combining Theorems 3.9, 3.10 and 3.12 we have the following theorem.

Theorem 3.14. Let $(X; \to, \leadsto, 1)$ be a pseudo-BCI-algebra, $A \subseteq M(X)$ and $D = \bigcup_{a \in A} V(a)$. Then the following are equivalent:

- (i) D is a subalgebra of $(X; \rightarrow, \rightsquigarrow, 1)$,
- (ii) A is a subalgebra of $(M(X); \rightarrow, \rightsquigarrow, 1)$,

- (iii) A is a subgroup of $(M(X);\cdot,^{-1},1)$
- (iv) A is a closed deductive system of $(M(X); \rightarrow, \rightsquigarrow, 1)$,
- (v) D is a closed deductive system of $(X; \rightarrow, \rightsquigarrow, 1)$.

4. Periodic part

Troughout this section, we recall some facts from [4] needed in the sequel. Let X be a pseudo-BCI-algebra. Define

$$x \to^0 y = y,$$

 $x \to^n y = x \to (x \to^{n-1} y),$

where $x,y\in X$ and $n=1,2,\ldots$ Similarly, we define $x\leadsto^n y$ for any $n=0,1,2,\ldots$

Proposition 4.1 [4]. Let X be a pseudo-BCI-algebra. The following hold for any $x, y, z \in X$ and m, n = 0, 1, 2, ...:

- (i) $x \to^n 1 = x \leadsto^n 1$,
- (ii) $x \rightarrow^n x = x \rightarrow^{n-1} 1$. $x \rightsquigarrow^n x = x \rightsquigarrow^{n-1} 1$.
- (iii) $(x \to 1) \to^n 1 = (x \to^n 1) \to 1$, $(x \leadsto 1) \leadsto^n 1 = (x \leadsto^n 1) \leadsto 1$,
- (iv) $x \to (y \leadsto^n z) = y \leadsto^n (x \to z), \quad x \leadsto (y \to^n z) = y \to^n (x \leadsto z),$
- (v) $x \to^m (y \leadsto^n z) = y \leadsto^n (x \to^m z)$,
- (vi) $x \to^n 1 = ((x \to 1) \to 1) \to^n 1$, $x \rightsquigarrow^n 1 = ((x \rightsquigarrow 1) \rightsquigarrow 1) \rightsquigarrow^n 1$.

Lemma 4.2. Let X be a pseudo-BCI-algebra. The following hold for any $x, y \in X$:

- (i) $x \to^{m+n} y = x \to^m (x \to^n y)$ for any m, n = 0, 1, 2, ...,
- (ii) $x \to^{mn} y = x \to^m (\dots \to^m (x \to^m y) \dots)$ (n times) for any $m = 0, 1, 2, \dots$ and $n = 1, 2, \dots$

Proof. Routine.

Lemma 4.3. Let X be a pseudo-BCI-algebra. The following hold for any $x \in X$ and m, n = 0, 1, 2, ...:

(i)
$$(x \to^m 1) \to^n 1 = (x \to 1) \to^{mn} 1$$
,

(ii)
$$(x \rightsquigarrow^m 1) \rightsquigarrow^n 1 = (x \rightsquigarrow 1) \rightsquigarrow^{mn} 1.$$

Proof. (i) We prove it by induction under n. For n=0 it is obvious. Assume it for n=k:

$$(x \to^m 1) \to^k 1 = (x \to 1) \to^{mk} 1.$$

We have, by assumption and Proposition 4.1(i,iii,v),

$$(x \to^{m} 1) \to^{k+1} 1 = (x \to^{m} 1) \to ((x \to^{m} 1) \to^{k} 1)$$

$$= (x \to^{m} 1) \to ((x \to 1) \to^{mk} 1)$$

$$= (x \to^{m} 1) \to ((x \to 1) \to^{mk} 1)$$

$$= (x \to 1) \to^{mk} ((x \to^{m} 1) \to 1)$$

$$= (x \to 1) \to^{mk} ((x \to 1) \to^{m} 1)$$

$$= (x \to 1) \to^{m} ((x \to 1) \to^{mk} 1)$$

$$= (x \to 1) \to^{m} ((x \to 1) \to^{mk} 1)$$

$$= (x \to 1) \to^{m(k+1)} 1.$$

So, the equation (i) holds for any $n = 0, 1, 2, \ldots$

(ii) Follows from (i) and Proposition 4.1(i).

Let X be a pseudo-BCI-algebra. For any $x \in X$, if there exists the least natural number n such that $x \to^n 1 = 1$, then n is called a *period* of x denoted p(x). If, for any natural number $n, x \to^n 1 \neq 1$, then a period of x is called to be infinite and denoted $p(x) = \infty$. Obviously, p(1) = 1.

Proposition 4.4 [4]. Let X be a pseudo-BCI-algebra. Then the following hold for any $x, y \in X$,

(i)
$$p(x) = p(x \to 1) = p(x \leadsto 1)$$
,

- (ii) if $x \le y$, then p(x) = p(y),
- (iii) $p(x \to y) = p(y \to x)$, $p(x \leadsto y) = p(y \leadsto x)$,
- (iv) $p(x \to y) = p(x \leadsto y)$.

Proposition 4.5 [4]. Let $(X; \to, \leadsto, 1)$ be a p-semisimple pseudo-BCI-algebra and $(X; \cdot, ^{-1}, 1)$ be a group related with X. Then p(x) = o(x) for any $x \in X$, where o(x) means an order of an element x in a group $(X; \cdot, ^{-1}, 1)$.

Proposition 4.6 [4]. Let X be a pseudo-BCI-algebra. Then

- (i) X is a pseudo-BCK-algebra if and only if p(x) = 1 for any $x \in X$,
- (ii) X is p-semisimple if and only if p(x) > 1 for any $x \in X \setminus \{1\}$.

Proposition 4.7. Let X be a pseudo-BCI-algebra and $a \in M(X)$. If $x \in V(a)$, then p(x) = p(a).

Proof. Assume that $a \in M(X)$ and $x \in V(a)$. By Proposition 2.6, $x \to 1 = a \to 1$. Hence, by Proposition 4.4(i), we have $p(x) = p(x \to 1) = p(a \to 1) = p(a)$.

Corollary 4.8. In any pseudo-BCI-algebra, all elements in the same branch have the same period.

Remark. By Proposition 4.7 we can reduce the study of periods of elements of a pseudo-BCI-algebra to the study of periods of maximal elements.

Proposition 4.9. Let X be a pseudo-BCI-algebra. If x and y are in the same branch, then $p(x \to y) = p(x \leadsto y) = 1$.

Proof. Follows from Propositions 4.4(iv) and 2.8.

Proposition 4.10. Let X be a pseudo-BCI-algebra, $x \in X$, $m, n \in \mathbb{N}$ and p(x) = m. Then, $x \to^n 1 = 1$ if and only if $m \mid n$.

Proof. Let $x \in X$ and p(x) = m for some $m \in \mathbb{N}$. Assume that $x \to^n 1 = 1$ for some $n \in \mathbb{N}$. Suppose that n = mp + r, for some $p, r \in \mathbb{N}$ and $1 \le r < m$. Then, by Lemma 4.2,

$$1 = x \to^{n} 1 = x \to^{mp+r} 1 = x \to^{r} (x \to^{mp} 1)$$

= $x \to^{r} (x \to^{m} (\dots \to^{m} (x \to^{m} 1) \dots)) (p \text{ times})$
= $x \to^{r} 1$.

But, r < m = p(x) which is impossible. Therefore, m|n.

Conversely, assume that m|n, that is, n=mp for some $p\in\mathbb{N}$. Then, by Lemma 4.2(ii), we get $x\to^n 1=x\to^{mp} 1=x\to^m (\ldots\to^m (x\to^m 1)\ldots)$ (p times)=1.

Let X be a pseudo-BCI-algebra. The set

$$P(X) = \{x \in X : p(x) < \infty\}$$

is called a *periodic part* of X. Moreover, denote

$$P_M(X) = \{x \in M(X) : p(x) < \infty\}.$$

Obviously, $P_M(X) \subseteq P(X)$.

Proposition 4.11. Let X be a pseudo-BCI-algebra. Then the following hold:

- (i) $K(X) \subseteq P(X)$,
- (ii) $P(X) = \bigcup_{a \in P_M(X)} V(a)$.

Proof. (i) Obvious.

(ii) Follows from Proposition 4.7.

Remark. Note that for the pseudo-BCI-algebra X from Example 2.1, $P_M(X) = M(X)$ and P(X) = X, and for the pseudo-BCI-algebra Y from Example 2.4, $P_M(Y) = \{(0,0,0)\}$ and P(Y) = K(Y).

Remark. It is well known that a torsion part of a non-abelian group does not have to be a subgroup. Hence, by Theorem 3.12 and Proposition 4.5, $P_M(X)$ does not have to be a closed deductive system of a p-semisimple pseudo-BCI-algebra X. Thus, by Theorem 3.14 and Proposition 4.11(ii), P(X) does not have to be a closed deductive system of a pseudo-BCI-algebra X.

The following facts follow from Theorem 3.14 and Propositions 4.4(iv) and 4.11.

Proposition 4.12. Let X be a pseudo-BCI-algebra and let $P_M(X)$ be a subalgebra of M(X). Then

- (i) $P_M(X)$ is a closed compatible deductive system of M(X),
- (ii) P(X) is a closed compatible deductive system of X.

Let X be a pseudo-BCI-algebra. Denote by D(a) a deductive system of X generated by $\{a\}$, where $a \in X$. From [3] we know that, for any $a \in X$,

$$D(a) = \{1\} \cup \{x \in X : a \to^n x = 1 \text{ for some } n \in \mathbb{N}\}$$
$$= \{1\} \cup \{x \in X : a \to^n x = 1 \text{ for some } n \in \mathbb{N}\}.$$

Proposition 4.13. Let X be a pseudo-BCI-algebra. Then a deductive system D(a) is closed for any $a \in P(X)$.

Proof. If $a \in P(X)$, then there exists $k \in \mathbb{N}$ such that p(a) = k. Hence, $a \to^k 1 = 1 \in D(a)$. Moreover, it is not difficult to show that also $a \to 1, a \to^2 1, \ldots, a \to^{k-1} 1 \in D(a)$. Now, let $x \in D(a)$. We show that $x \to 1 \in D(a)$, that is, D(a) is closed. If x = 1, then the thesis is obvious. Assume that $x \neq 1$. Then there exists $n \in \mathbb{N}$ such that $a \to^n x = 1$. Thus, by (b12) and Proposition 4.1(iv),

$$x \to 1 = x \leadsto 1 = x \leadsto (a \to^n x) = a \to^n (x \leadsto x) = a \to^n 1.$$

Further, remark that there is $l \in \mathbb{N}$ such that $0 \le l \le k-1$ and n = kp + l for some $p \in \mathbb{N}$. Hence, by Lemma 4.2 and the equation $a \to^k 1 = 1$ we get

$$a \to^n 1 = a \to^{kp+l} 1 = a \to^l (a \to^{kp} 1)$$
$$= a \to^l (a \to^k (\dots \to^k (a \to^k 1) \dots)) (p \text{ times})$$
$$= a \to^l 1.$$

Thus,

$$x \to 1 = a \to^n 1 = a \to^l 1 \in D(a).$$

Therefore, a deductive system D(a) is closed.

A pseudo-BCI-algebra X is called: (1) *periodic* if P(X) = X, and (2) *aperiodic* if $p(x) = \infty$ for any $x \notin K(X)$. Obviously, every pseudo-BCK-algebra is periodic as well as aperiodic.

Remark. It is not difficult to see that the pseudo-BCI-algebra X from Example 2.1 is periodic, and the pseudo-BCI-algebra Y from Example 2.4 is aperiodic.

Theorem 4.14. Let X be a pseudo-BCI-algebra and let $P_M(X)$ be a subalgebra of M(X). Then X/P(X) is an aperiodic p-semisimple pseudo-BCI-algebra and $X/P(X) \cong M(X)/P_M(X)$.

Proof. Note that by Proposition 4.12, $P_M(X)$ is a closed compatible deductive system of M(X) and P(X) is a closed compatible deductive system of X. Hence, $M(X)/P_M(X)$ and X/P(X) are both pseudo-BCI-algebras.

First, we show that $M(X)/P_M(X)$ is p-semisimple. We will denote by $[x]_{P_M(X)}^M$ for $x \in M(X)$ elements of $M(X)/P_M(X)$. Assume that $[x]_{P_M(X)}^M \to [1]_{P_M(X)}^M = [1]_{P_M(X)}^M$ for some $x \in M(X)$. Then, $[x \to 1]_{P_M(X)}^M = [1]_{P_M(X)}^M$, that is, $x \to 1 \in P_M(X)$. Hence, by Proposition 4.4(i), $p(x) = p(x \to 1) < \infty$, that is, $x \in P_M(X)$. Thus, $[x]_{P_M(X)}^M = [1]_{P_M(X)}^M$. Therefore, a pseudo-BCI-algebra $M(X)/P_M(X)$ is p-semisimple.

Next, we show that X/P(X) and $M(X)/P_M(X)$ are isomorphic. Define a function $f: X/P(X) \to M(X)/P_M(X)$ as follows:

$$f([x]_{P(X)}) = [(x \to 1) \to 1]_{P_M(X)}^M$$

for any $x \in X$. Obviously, f is well-defined. We show that it is an isomorphism. Let $x, y \in X$. By (b11) and (b12), we have

$$\begin{split} f([x]_{P(X)} \to [y]_{P(X)}) &= f([x \to y]_{P(X)}) \\ &= [((x \to y) \to 1) \to 1]_{P_M(X)}^M \\ &= [((x \to 1) \leadsto (y \to 1)) \to 1]_{P_M(X)}^M \\ &= [((x \to 1) \to 1) \to ((y \to 1) \to 1)]_{P_M(X)}^M \\ &= [(x \to 1) \to 1]_{P_M(X)}^M \to [(y \to 1) \to 1]_{P_M(X)}^M \\ &= f([x]_{P(X)}) \to f([y]_{P(X)}). \end{split}$$

Similarly, $f([x]_{P(X)} \leadsto [y]_{P(X)}) = f([x]_{P(X)}) \leadsto f([y]_{P(X)})$. Hence, f is a homomorphism. Moreover, since $M(X)/P_M(X)$ is p-semisimple, it is easy to see that f is surjective. Now, let $x,y \in X$ be such that $[x]_{P(X)} \neq [y]_{P(X)}$. Then, $x \to y \notin P(X)$ or $y \to x \notin P(X)$. Assume, for example, that $x \to y \notin P(X)$. Proof of the case $y \to x \notin P(X)$ is analogous. Since $x \to y \notin P(X)$, by (b11), (b12) and Proposition 4.4, we have

$$((x \to 1) \to 1) \to ((y \to 1) \to 1) = ((x \to y) \to 1) \to 1 \notin P_M(X),$$

that is,

$$f([x]_{P(X)}) = [(x \to 1) \to 1]_{P_M(X)}^M \neq [(y \to 1) \to 1]_{P_M(X)}^M = f([y]_{P(X)}).$$

Hence, f is injective and so an isomorphism. Thus, we immediately have that X/P(X) is p-semisimple.

Finally, to prove that X/P(X) is aperiodic, it is sufficient to prove that $M(X)/P_M(X)$ is aperiodic. Since $M(X)/P_M(X)$ is p-semisimple, we have to show that for any $x \in M(X)$, $[x]_{P_M(X)}^M \neq [1]_{P_M(X)}^M$ implies $p([x]_{P_M(X)}^M) = \infty$. Assume that there is $x \in M(X)$ such that $[x]_{P_M(X)}^M \neq [1]_{P_M(X)}^M$ and $p([x]_{P_M(X)}^M) = n$ for some $n \in \mathbb{N}$. Then,

$$[x \to^n 1]_{P_M(X)}^M = [x]_{P_M(X)}^M \to^n [1]_{P_M(X)}^M = [1]_{P_M(X)}^M.$$

Hence, $x \to^n 1 \in P_M(X)$, that is, there exists $m \in \mathbb{N}$ such that $p(x \to^n 1) = m$. Thus, $(x \to^n 1) \to^m 1 = 1$. Hence, by Lemma 4.3(i), $(x \to 1) \to^{mn} 1 = 1$, so $p(x \to 1) \le mn$. By Proposition 4.4(i), $p(x) \le mn$, whence $x \in P_M(X)$. Thus, $[x]_{P_M(X)}^M = [1]_{P_M(X)}^M$ and we get a contradiction. Therefore, $M(X)/P_M(X)$ is aperiodic, whence also X/P(X) is aperiodic.

Example 4.15. Let Z be the set of all bijections $f: \mathbb{N} \to \mathbb{N}$. Define binary operations \to and \leadsto on Z by

$$f \to g = g \circ f^{-1},$$

 $f \leadsto g = f^{-1} \circ g$

for all $f, g \in Z$. Then the algebra $(Z; \to, \leadsto, id_{\mathbb{N}})$ is a p-semisimple pseudo-BCI-algebra which is neither periodic nor aperiodic. Moreover, it is not difficult to see that

$$P(Z) = P_M(Z) = \{ f \in Z : \exists_{k \in \mathbb{N}} \ \forall_{n \ge k} \ f(n) = n \}$$

is a closed compatible deductive system of Z. Hence, by Theorem 4.14, Z/P(Z) is an aperiodic p-semisimple pseudo-BCI-algebra.

Acknowledgements

The author thanks the reviewer for remarks which were incorporated into this revised version.

References

- W.A. Dudek and Y.B. Jun, *Pseudo-BCI algebras*, East Asian Math. J. **24** (2008), 187–190.
- [2] G. Dymek, Atoms and ideals of pseudo-BCI-algebras, Comment. Math. 52 (2012), 73–90.
- [3] G. Dymek, On compatible deductive systems of pseudo-BCI-algebras, J. Mult.-Valued Logic Soft Comput. 22 (2014), 167–187.
- [4] G. Dymek, On a period of an element of pseudo-BCI-algebras, Discuss. Math. Gen. Algebra Appl., to appear.
- [5] G. Dymek, On pseudo-BCI-algebras, Ann. Univ. Mariae Curie-Skłodowska Sect. A, to appear.
- [6] G. Dymek, p-semisimple pseudo-BCI-algebras, J. Mult.-Valued Logic Soft Comput. 19 (2012), 461–474.
- [7] A. Iorgulescu, Algebras of logic as BCK algebras, Editura ASE, Bucharest, 2008.
- [8] K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad. 42 (1966), 26–29. doi:10.3792/pja/1195522171
- [9] Y.B. Jun, H.S. Kim and J. Neggers, On pseudo-BCI ideals of pseudo BCI-algebras, Mat. Vesnik **58** (2006), 39–46.

Received 15 January 2015 Revised 1 April 2015