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BP 1171, Sfax 3000, Tunisie

e-mail: sana
−
driss@yahoo.fr

Abstract

Let Fq be a finite field and A(Y ) ∈ Fq(X,Y ). The aim of this paper is
to prove that the length of the continued fraction expansion of A(P );P ∈
Fq[X ], is bounded.
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1. Introduction

Let x be a rational number. It is known that we can write the continued fraction
expansion of x in a unique finite way as follows:

x = a0 +
1

a1 +
1

. . . +
1

an

,

where a0 ∈ Z, ai ∈ N∗, ∀1 ≤ i ≤ n− 1 and an ≥ 1.

Denote n = Ψ(x) the length of the continued fraction of x such that Ψ takes
on values in N. This function appears in several papers [6, 9, 10].

In 1971, Mendès France [8] asked in the real case, whether it was indeed true
that

lim
n→+∞

Ψ
((a

b

)n)

= +∞?
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without any other assumptions as 1 < b < a, gcd(a, b) = 1. This problem was
solved by Pourchet in private letter to Mendès France in 1972 and by Choquet
in a series of Comptes Rendus [3].

In 1997, this problem was solved by Grisel [2] on rational fractions with coef-
ficients in a finite field and he investigates the behavior of the Ψ((A

B
)n) as n goes

to infinity.
In 1972, Mendès France [7] studied the length Ψ of continued fractions of

rational functions with rational coefficients and he proved the following theorem
which is based on the Euclidean algorithm.

Theorem 1.1. Let F be a rational function with rational coefficients (F (x) ∈
Q(x)). The sequence (Ψ(F (n))) is ultimately periodic.

In this work, we are interested to generalize the last result for a special field with
characteristic p > 0 which is the field of formal power series over the finite field
Fq (q = ps; s ≥ 1). The present paper is organized as follows: In Section 2, we
start by introducing the field of formal power series and the continued fraction
expansion over this field. In Section 3, we state the main theorem where we
prove that the length of the continued fraction expansion of A(P );P ∈ Fq[X] is
bounded and we present some definitions and lemmas that we will use to prove
our result and we close this section with the proof of our main theorem (see
Theorem 3.1).

2. Field of formal power series Fq((X
−1))

Let Fq be the finite field with q elements, Fq[X] the ring of polynomials with
coefficient in Fq and Fq(X) the field of rational functions. Let Fq((X

−1)) be the
field of formal power series

Fq((X
−1)) =

{

f =
∑

n≥n0

bnX
−n; bn ∈ Fq;n0 ∈ Z

}

.

Define the absolute value

|f | =

{

qdeg f for f 6= 0;

0 for f = 0.

Where, deg f = sup{−n : bn 6= 0}, for f =
∑

n≥n0
bnX

−n. Thus, | . | is a not an

archimedean absolute value over Fq((X
−1)), that is:

|f + g| ≤ max (|f |, |g|) and

|f + g| = max (|f |, |g|) if |f | 6= |g|.
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By analogy with the real case, we have a continued fraction algorithm in Fq((X
−1)).

A formal power series f =
∑

n≥n0
bnX

−n has a unique decomposition as f =
[f ] + {f} with [f ] ∈ Fq[X] and |{f}| < 1. The polynomial [f ] is called the poly-
nomial part of f and {f} is called the fractional part of f . We can write for any
f ∈ Fq((X

−1))

f = a0 +
1

a1 +
1

.. . +
1

an +
1

.. .

= [a0, a1, . . . , an, . . .],

where a0 = [f ] and ai = [fi] ∈ Fq[X] with deg(ai) ≥ 1 for any i ≥ 1 and
fi =

1
{fi−1}

. The sequence (ai)i≥0 is called the sequence of partial quotients of f

and we denote by fn = [an, an+1, . . .] the nth complete quotient of f .
Now, we define two sequences of polynomials (Pn)n≥0 and (Qn)n≥0 as follows:

P0 = a0, Q0 = 1, P1 = a0a1 + 1, Q1 = a1

and
Pn = anPn−1 + Pn−2, Qn = anQn−1 +Qn−2, for any n ≥ 2.

We easily check that

PnQn−1 − Pn−1Qn = (−1)n−1, for any n ≥ 1

and
Pn

Qn
= [a0, a1, a2....., an], for any n ≥ 0

Pn

Qn

is called the nthconvergent of f and it satisfies the following:

lim
n→∞

Pn

Qn
= f = [a0, a1, . . . , an, . . .].

Similar to the real case, we have the following two theorems:

Theorem 2.1. Let f ∈ Fq((X
−1)). The sequence of partial quotients of the

continued fraction of f is finite if and only if f ∈ Fq(X).

Theorem 2.2. Let f ∈ Fq((X
−1)). The sequence of partial quotients of the

continued fraction of f is ultimately periodic (periodic from a certain rank) if

and only if f is quadratic over Fq(X).

For more information on the theory of continued fractions in the field of formal
power series over a finite field, see [1, 4, 5, 11] et [12].
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3. Results

We will start by giving the main theorem:

Theorem 3.1. Let F (Y ) ∈ Fq(X,Y ) and

A = {Ψ(F (P )) ; P ∈ Fq[X]}.

Then A is finite.

Before giving the proof of this theorem, we will introduce some definitions and
lemmas that we will need.

Definition 3.2. Let P (Y ) = AmY m +Am−1Y
m−1 + · · ·+A0 where Ai ∈ Fq[X]

and Am is not equal to zero. Then σ(P ) = Am.

Definition 3.3. Let A(Y ) and B(Y ) in Fq[X][Y ].

A(Y ) ≺ B(Y ) if and only if







degA < degB,
or

degA = degB and |σ(A)| < |σ(B)|.

Lemma 3.4. Let A(Y ) and B(Y ) in Fq[X][Y ]. If A(Y ) ≺ B(Y ) and P ∈ Fq[X]

such that |P | is sufficiently large, then

∣
∣
∣
A(P )
B(P )

∣
∣
∣ < 1.

Proof. We denote by d (resp. s) the degree of A(P ) (resp. B(P )) such that
d ≤ s. We have:

A(P ) =

d∑

i=0

aiP
i; ai ∈ Fq[X] and B(P ) =

s∑

i=0

biP
i; bi ∈ Fq[X].

For |P | > sup0≤i≤d(|ai|), we have |A(P )| = |adP
d|, similarly, for |P | > sup0≤i≤s(|bi|),

we have |B(P )| = |bsP
s|.

Then, for |P | > sup
(
sup0≤i≤d(|ai|), sup0≤i≤s(|bi|)

)
,

∣
∣
∣
∣

A(P )

B(P )

∣
∣
∣
∣
=

|adP
d|

|bsP s|
=

∣
∣
∣
∣

ad
bs

∣
∣
∣
∣
P d−s < 1.

Lemma 3.5. Let A(Y ) and B(Y ) be two polynomials with coefficient in Fq[X].
Then there exists a polynomial G in Fq[X] such that, for all H ∈ Fq[X]; |H| < |G|,
there exist Q1, R1 ∈ Fq[X,Y ] with

{

A(GY +H) = B(GY +H)Q1(Y ) +R1(Y ),

R1 ≺ B.
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Proof. By the Euclidean division of A(Y ) by B(Y ) in Fq(X,Y ), we obtain







A(Y ) = B(Y )Q(Y ) +R(Y ),

Q ∈ Fq(X)[Y ],

R ∈ Fq(X)[Y ],

degR < degB.

Let s = (degA − degB) then Q(Y ) =
∑s

i=0
ai(X)
bi(X)Y

i. We denote by G =

lcm(bi)1≤i≤s. Thus, we obtain

A(GY +H) = B(GY +H)Q(GY +H) +R(GY +H)

= B(GY +H) (Q(GY +H)− {Q(H)}) +R(GY +H)

+ B(GY +H){Q(H)}.

Hence

A(GY +H) = B(GY +H)Q1(Y ) +R1(Y )

with 





Q1(Y ) = Q(GY +H)− {Q(H)} ∈ Fq[X][Y ],

R1(Y ) = R(GY +H) +B(GY +H){Q(H)} ∈ Fq[X][Y ],

R1 ≺ B.

Proof of Theorem 3.1. Put F (Y ) = A(Y )
B(Y ) with A(Y ) and B(Y ) be two poly-

nomials with coefficient in Fq[X] such that B(Y ) ≺ A(Y ). Then, from by
Lemma 3.5, there exists a polynomial G1 ∈ Fq[X] such that |G1| > 1 and for
all H1 ∈ Fq[X]; |H1| < |G1|, we have







A(G1Y +H1) = B(G1Y +H1)Q1(Y ) +R1(Y ),

Q1 ∈ Fq[X][Y ],

R1 ∈ Fq[X][Y ],

R1 ≺ B.

We set B1(Y ) = B(G1Y +H1), the same lemma shows that there exists a poly-
nomial G2 ∈ Fq[X] such that |G2| > 1 and for all |H2| < |G2|, we obtain







B1(G2Y +H2) = R1(G2Y +H2)Q2(Y ) +R2(Y ),

Q2 ∈ Fq[X][Y ],

R2 ∈ Fq[X][Y ],

R2 ≺ R1.
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This procedure is repeated infinitely many and then we obtain a sequence of
polynomials in Fq[X][Y ], R1(Y ) ≺ R2(Y ) ≺ · · · ≺ Rs(Y ) ≺ · · · . It is clear that
the sequence of the degree of Rn in Y is decreasing.

Let G =
∏s

k=1Gk. For |H| < |G|, we have

A(GY +H)

B(GY +H)
=

A(G1G2 . . . GsY +H)

B(G1G2 . . . GsY +H)
; H = K1G1 +H1 with |H1| < |G1|

=
A(G1(G2 . . . GsY +K1) +H1)

B(G1(G2 . . . GsY +K1) +H1)

= Q1(Y ) +
R1(G2 . . . GsY +K1)

B1(G2 . . . GsY +K1)

= Q1(Y ) +
1

B1(G2G3 . . . GsY +K2G2 +H2)

R1(G2G3 . . . GsY +K2G2 +H2)

; |H2| < |G2|

= Q1(Y ) +
1

B1(G2(G3 . . . GsY +K2) +H2)

R1(G2(G3 . . . GsY +K2) +H2)

= Q1(Y ) +
1

Q2(Y ) +
R2(G3 . . . GsY +K2)

R1(G3 . . . GsY +K2)

...

= Q1(Y ) +
1

Q2(Y ) +
1

. . . +
1

Qs(Y )

.

with s depends on H and with (Qi(Y ))1≤i≤s are polynomials with coefficients in
Fq[X] of degree not equal to 0.

Then

A(GY +H)

B(GY +H)
= [Q1(Y ), Q2(Y ), . . . , Qs(Y )

︸ ︷︷ ︸

s

].

This implies that Ψ
(
A(GY+H)
B(GY+H)

)

depends only on H.

Now, let P ∈ Fq[X], then P (X) = G(X)Y (X) +H(X) for a suitable polyno-
mial H(X) with H ≺ G. Since there are only finitely many possibilities for H
one concludes.
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C.R. Acad. Sciences 307 (1988) 631–633.

[2] G. Grisel, Length of the Powers of a Rational Fraction, J. Number Theory 62 (1997)
322–337.
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