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Abstract

An element e of an ordered semigroup S is called an ordered idempotent
if e ≤ e2. Here we characterize the subsemigroup < E≤(S) > generated by
the set of all ordered idempotents of a regular ordered semigroup S. If S
is a regular ordered semigroup then < E≤(S) > is also regular. If S is a
regular ordered semigroup generated by its ordered idempotents then every
ideal of S is generated as a subsemigroup by ordered idempotents.
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1. Introduction

Idempotents play an important role in the theory of semigroups as well as in ring
theory. Particularly, in case of different major subclasses of the regular semi-
groups S, the set E(S) of all idempotents of S is like the nucleous of a cell, that
possesses several properties of S in an encrypted form. Unfortunately, the set of
all idempotents E(S) of a semigroup (without order) does not form a subsemi-
group in general. A regular semigroup S such that E(S) is a subsemigroup is
called orthodox. Hall [3] – [5], Meakin [10, 11], Yamada [13] and many others like
Milles [12], McAlister [9] have studied orthodox semigroups and characterized
such semigroup S by E(S). Another approach, introduced by C. Eberhart, W.
Williams and L. Kinch [2] is to study a semigroup S by the subsemigroup gen-
erated by E(S). They considered the subsemigroup < E >=

⋃∞
n=1

En. (where
E = E(S) is not necessarily a subsemigroup of S) and established a connection
between the regularity of S and < E >. T.E. Hall [5] studied subsemigroups of
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an idempotent generated regular semigroup. He showed that a regular semigroup
is generated by its idempotents if and only if each principal factor is generated
by its own idempotents.

In [1], we introduced the notion of ordered idempotents and characterized or-
dered semigroups S such that every element is an ordered idempotent. If T is a
subsemigroup of S, then the set of ordered regular elements of T is denoted by
Reg≤(T ) [7]. Thus, if T =< E≤(S) > then Reg≤(T ) = T = Reg≤(S) ∩ T , in
general. In [7], Hansda proved several equivalent conditions so that Reg≤(T ) =
T = Reg≤(S) ∩ T for T = (Se], (eS] and (eSf ], where e, f are ordered idem-
potents. It is the purpose of this paper to characterize an ordered semigroup
S by the subsemigroup generated by ordered idempotents of S. We show that
in a regular ordered semigroup S the subsemigroup < E≤(S) > generated by
all ordered idempotents of S is also regular. Similar result holds for completely
regular ordered semigroups.

The article is organized as follows. The basic definitions and properties of
ordered semigroups are presented in Section 2. Section 3 is devoted to characterize
the regular ordered semigroups generated by their ordered idempotents.

2. Preliminaries

In this paper N denotes the set of all natural numbers. An ordered semigroup
S is a partially ordered set, and at the same time a semigroup (S, ·) such that
(∀a, b, x ∈ S) a ≤ b ⇒ xa ≤ xb and ax ≤ bx. It is denoted by (S, ·,≤). For an
ordered semigroup S and ∅ 6= H ⊆ S, denote

(H] = {t ∈ S : t ≤ h, for some h ∈ H}.

H is called downward closed if H = (H].

Let I be a nonempty subset of an ordered semigroup S. I is called a left
(right) ideal of S, if SI ⊆ I (IS ⊆ I) and (I] = I. I is an ideal of S if it is both a
left and a right ideal of S. S is left (right) simple if it has no non-trivial proper
left (right) ideal. Similarly we define simple ordered semigroups. S is called a
t-simple ordered semigroup if it is both left and right simple.

An element a ∈ S is called ordered regular if a ≤ axa for some x ∈ S. If
every element of an ordered semigroup is ordered regular then S is called regular.
Thus S is a regular ordered semigroup if and only if a ∈ (aSa] for all a ∈ S. An
element b ∈ S is said to be an ordered inverse of a if a ≤ aba and b ≤ bab. In a
regular ordered semigroup every element has an ordered inverse. For, if a ≤ axa

then a ≤ a(xax)a and xax ≤ (xax)a(xax) shows that xax is an ordered inverse
of a. We denote the set of all ordered inverse of a by V≤(a). If A is a nonempty
subset of S, then we denote ∪a∈AV≤(a) by V≤(A). An element e ∈ S is defined to
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be an ordered idempotent if e ≤ e2 [1]. Ordered idempotents take a determining
role in characterizing regular ordered semigroups [7], completely regular ordered
semigroups, Clifford ordered semigroups [1], etc. If a ≤ axa then both ax and xa

are ordered idempotents. The set of all ordered idempotents of S is denoted by
E≤(S). Kehayopulu [8] defined an ordered semigroups S to be completely regular
if a ∈ (a2Sa2] for all a ∈ S. Thus an ordered semigroup S is a completely regular
ordered semigroup if and only if for every a ∈ S, a ≤ a2xa2 for some x ∈ S.

3. Regular ordered semigroups generated by ordered idempotents

In this section we show that the subsemigroup generated by all ordered idempo-
tents in a regular ordered semigroup S is always a regular ordered subsemigroup.

We denote the subsemigroup generated by the set E≤(S) of all ordered idem-
potents of S by < E≤(S) > or simply by < E≤ >. Let En

≤ be the set of all
elements of S which can be written as the product of n (not necessarily distinct)
ordered idempotents of S. Then < E≤(S) >=

⋃∞
n=1

En
≤.

Lemma 3.1. Let S be a regular ordered semigroup and n ∈ N be such that n > 1

(1) Then x ∈ En
≤ implies that V≤(x) ∩ En−1

≤ 6= φ.

(2) Let En
≤ be downward closed in S for every n ∈ N. Then x ∈ En

≤ if and only

if V≤(x) ∩En−1

≤
6= φ.

Proof. (1) We prove this results by induction on n. Consider x ∈ E2
≤. Then for

some e1, e2 ∈ E≤, x = e1e2. Let y ∈ V≤(x). Then x ≤ xyx and y ≤ yxy. Now
take f = e2ye1. Then it follows that f = e2ye1 ≤ e2yxye1 ≤ e2ye1e2ye1 = f2.
Thus f ∈ E≤(S).

Now x ≤ xyx implies that x ≤ e1e2e2ye1e1e2 = xfx. Furthermore f =
e2ye1 ≤ e2yxye1 ≤ e2ye1(e1e2)e2ye1 = fxf . Hence f ∈ V≤(x) ∩ E≤.

Suppose that the result holds for all k < n. Let x ∈ En
≤. Then x = e1e2 . . . en

where e1, e2, . . . , en ∈ E≤(S). Let y = e2 . . . en. Then y ∈ En−1

≤
. So by the

induction hypothesis we have z ∈ V≤(y) ∩ En−2

≤
. Consider w ∈ V≤(x). Let

f = z(e2 . . . enwe1). Now e2 . . . enwe1 ≤ e2 . . . en(wxw)e1 ≤ (e2 . . . enwe1)(e2 . . .
enwe1), since x = e1e2 . . . en. Thus e2 . . . enwe1 ∈ E≤(S). Since z ∈ En−2

≤
, so

f = z(e2 . . . enwe1) ∈ En−1

≤
.

Now we have
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f = z(e2 . . . enwe1)

≤ z[e2 . . . en(wxw)e1)] [w ∈ V≤(x)]

≤ z[(e2 . . . enw)(e1e2 . . . en)we1] [x = e1e2 · · · en]

≤ z(e2 . . . enwe1)(e2 . . . enze2 . . . en)we1 [z ∈ V≤(e2e3 · · · en)]

≤ z(e2 . . . enwe1)e1e2 . . . en(ze2 . . . en)we1 [e1 ≤ e21]

≤ f(e1e2 . . . en)f [f = z(e2 . . . enwe1)]

≤ fxf .

Since w ∈ V≤(x), so x ≤ xwx. This implies that x ≤ e1e2 . . . enwx ≤
e1ywe1(e1e2 . . . en) ≤ e1(ywe1)x ≤ e1(yzywe1)x ≤ e1e2 . . . enze2 . . . enwe1x ≤
x(ze2 . . . enwe1)x = xfx. Thus f ∈ V≤(x)∩En−1

≤
, that is, V≤(x)∩En−1

≤
6= φ. So

the result follows by induction.
(2) The necessary part follows from (1).

Let V≤(x) ∩ En−1

≤ 6= φ. Then there is y ∈ V≤(x) ∩ En−1

≤ . Now y ∈ En−1

≤ implies

that there is z ∈ V≤(y)∩En−2

≤
, by (1). Then x ≤ xyx ≤ (xy)z(yx). Now xy, yx ∈

E≤(S) and z ∈ En−2

≤
implies that xyzyx ∈ En

≤; and hence x ∈ (En
≤] = En

≤, since
En

≤ is downward closed. Thus the result follows.

Now we show that regularity of an ordered semigroup S ensures the same for
< E≤(S) >.

Theorem 3.2. Let S be a regular ordered semigroup and En
≤ is downward closed

in S for every n > 1. Then V≤(E
n−1

≤ ) = En
≤; and hence the subsemigroup < E≤ >

of S generated by the ordered idempotents of S is also regular.

Proof. Let z ∈ V≤(E
n−1

≤
). Then there is w ∈ En−1

≤
such that z ∈ V≤(w), which

again implies that w ∈ En−1

≤
∩ V≤(z). Then z ∈ En

≤, by Lemma 3.1 and so

V≤(E
n−1

≤
) ⊆ En

≤.

Now let x ∈ En
≤. Then V≤(x) ∩ En−1

≤ 6= φ. Consider y ∈ V≤(x) ∩ En−1

≤ .

Then x ∈ V≤(y) implies that x ∈ V≤(E
n−1

≤ ). Thus V≤(E
n−1

≤ ) ⊆ En
≤. Hence

V≤(E
n−1

≤
) = En

≤. This completes the proof.

The following lemma has been given in [1]. For the sake of completeness, we
would like to include a short proof here also.

Lemma 3.3. Let S be a completely regular ordered semigroup. Then for every

a ∈ S there is a′ ∈ V≤(a) such that a ≤ aa′a, a ≤ a2a′, and a ≤ a′a2.

Proof. Let a ∈ S. Then there is t ∈ S such that a ≤ a2ta2. Then a ≤ a3ta2ta2 ≤
a3ta2ta2ta3 ≤ aa′a, where a′ = a2ta2ta2ta2. Similarly we have a′ ≤ a′aa′. Thus
a′ ∈ V≤(a). Also a ≤ a2ta2 ≤ a4ta2ta2ta2 = a2a′. Similarly it can be shown that
a ≤ a′a2.
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Now we have the following results on completely regular ordered semigroups.

Theorem 3.4. Let S be a completely regular ordered semigroup and En
≤ is down-

ward closed in S, for every n ∈ N. Then < E≤(S) > is a completely regular

ordered subsemigroup.

Proof. Consider a ∈< E≤(S) >. Then a = e1e2 . . . em for some m ∈ N, and
e1, e2, . . . , em ∈ E≤(S). Since a is completely regular, there is h ∈ V≤(a) such
that a ≤ aha, a ≤ a2h and a ≤ ha2, by Lemma 3.3. Now a ∈ V≤(h)∩Em

≤ implies

that h ∈ Em+1

≤
, by Lemma 3.1 and hence h3 ∈< E≤(S) >. Then a ≤ a2h3a2

implies that < E≤(S) > is completely regular.

Following Eberhart, Williams and Kinch [2] let us define an equivalence relation
γ on S in the following way: for a, b ∈ S,

aγb if and only if there exists a sequence x1, x2, . . . xn of elements of
S such that x1 ∈ V≤(a), xi ∈ V (xi−1); i = 2, . . . , n and b ∈ V (xn).

In the following theorem we show that < E≤(S) > is the union of all γ-equivalence
classes of ordered idempotents.

Theorem 3.5. Let S be a regular ordered semigroup and En
≤ be downward closed

in S for every n ∈ N. Then for any x ∈ S, x ∈< E≤ > if and only if there is an

ordered idempotent e ∈ E≤ such that xγe.

Proof. Consider x ∈< E≤ >. Then x ∈ Em
≤ ; for some m ∈ N. If m = 1,

then the result follows trivially. Let m > 1. Then V≤(x) ∩ Em−1

≤
6= φ, by

Lemma 3.1. Consider x1 ∈ V≤(x) ∩ Em−1

≤
. Repeated application of this process

yields a sequence of elements x1, x2, . . . , xm−1 of S such that x1 ∈ V≤(x), xi ∈
V (xi−1) ∩ Em−1

≤
for i = 2, . . . ,m − 1, whence xm−1 ∈ E≤. Say e = xm−1. Thus

xγe.

Conversely assume that x ∈ S and there is e ∈ E≤(S) such that xγe. Then
there are elements x1, x2, . . . , xn ∈ S such that x1 ∈ V≤(x), xi ∈ V≤(xi−1) and
e ∈ V (xn) so that x ≤ xx1x ≤ (xx1)(x2x1)x ≤ · · · ≤ (xx1)x2 . . . xnexn . . . x2x1x
which can be rearranged as:

(3.1) x ≤

{

(xx1)(x2x3) · · · (xne)(exn) . . . (x3x2)(x1x) if n is even

(xx1)(x2x3) . . . (xn−1xn)e(xnxn−1) . . . (x3x2)(x1x) if n is odd.

Since xx1, x1x, xne, exn and xixi−1, xj−1xj(i = 2, . . . , n; j = 2, . . . , n) are all or-
dered idempotents of S, so x ∈ (En+2

≤
(S)] in both the cases. This implies that

x ∈ En+2

≤
(S) and hence x ∈< E≤(S) >.
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Definition 3.6. An ordered semigroup S is said to be generated by the ordered
idempotents if S =< E≤(S) >.

Let T be a subsemigroup of S and A ⊆ S. We say that T is generated as an
ordered subsemigroup by A if for every t ∈ T there are n ∈ N and a1, a2, . . . , an ∈
A such that t ≤ a1a2 . . . an. It is denoted by T =< A >≤. Now we show
that every ideal I of an ordered idempotent generated ordered semigroup is also
generated as an ordered subsemigroup by the ordered idempotents E≤(I).

Theorem 3.7. Let S be a regular ordered semigroup generated by its ordered

idempotents and for every n > 1, let En
≤ be downward closed in S. Then every

ideal of S is also a regular ordered semigroup generated by ordered idempotents

as an ordered subsemigroup.

Proof. Suppose that S =< E≤(S) >. Consider an ideal I of S and x ∈ I.
Since x ∈< E≤(S) >, so xγe for some e ∈ E≤(S), by Theorem 3.5; and hence
there is a sequence of elements x1, x2, . . . , xn ∈ S such that x1 ∈ V≤(x), xi ∈
V≤(xi−1); i = 2, 3, . . . , n and e ∈ V (xn). Then it follows that x ≤ xx1x ≤
xx1x2x1x ≤ x(x1x2 . . . xn)e(xn . . . x2x1)x which can be rearranged as:
(3.2)

x ≤

{

x((x1x2)(x2x3) . . . (xn−1xn)e(xnxn−1) . . . (x3x2)(x2x1))x; if n is even

x((x1x2)(x2x3) . . . (xne)(exn) . . . (x3x2)(x2x1))x; if n is odd.

Since I is an ideal of S, xx1, x1x ∈ I. Now for r = 1, 2, . . . , n − 1; xr+1xr ≤
xr+1xrxr+1xr ≤ xr+1xr(xr−1xr)xr+1xr ≤ · · · ≤ xr+1xr . . . x2(x1x)x1x2 . . . xr+1xr.
Since x1x ∈ I the above inequality implies that xr+1xr ∈ I for r = 1, 2, . . . n− 1.
Similarly e, xne, exn and xrxr+1 for r = 1, 2, . . . n − 1 all belong to I. Also
for r = 1, 2, . . . , n − 1 the elements xrxr+1, xr+1xr, xne and exn are all or-
dered idempotents in S. Thus xrxr+1, xr+1xr, xne and exn ∈ E≤(I) for all
r = 1, 2, . . . , n − 1. So (x1x2)(x2x3) . . . (xn−1xn)e(xnxn−1) . . . (x3x2)(x2x1) and
(x1x2)(x2x3) . . . (xne)(exn) . . . (x3x2)(x2x1) ∈< E≤(I) >. Therefore from (3.2)
it follows that x ∈< E≤(I) >≤. Hence < E≤(I) >≤= I, in other words I is
generated as an ordered subsemigroup by its ordered idempotents. Also every
ideal of a regular ordered semigroup is also regular. This completes the proof.
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