PSEUDO-BCH-ALGEBRAS

Andrzej Walendziak
Institute of Mathematics and Physics
Siedlce University
3 Maja 54, 08-110 Siedlce, Poland
e-mail: walent@interia.pl

Abstract

The notion of pseudo-BCH-algebras is introduced, and some of their properties are investigated. Conditions for a pseudo- BCH -algebra to be a pseudo-BCI-algebra are given. Ideals and minimal elements in pseudo-BCHalgebras are considered.

Keywords: (pseudo-)BCK/BCI/BCH-algebra, minimal element, (closed) ideal, centre.
2010 Mathematics Subject Classification: 03G25, 06F35.

1. Introduction

In 1966, Y. Imai and K. Iséki ([10, 11]) introduced BCK- and BCI-algebras. In 1983, Q.P. Hu and X. Li ([9]) introduced BCH-algebras. It is known that BCKand BCI-algebras are contained in the class of BCH-algebras. J. Neggers and H.S. Kim ([16]) defined d-algebras which are a generalization of BCK-algebras.

In 2001, G. Georgescu and A. Iorgulescu ([8]) introduced the pseudo-BCKalgebras as an extension of BCK-algebras. In 2008, W.A. Dudek and Y.B. Jun ([3]) introduced pseudo-BCI-algebras as a natural generalization of BCI-algebras and of pseudo-BCK-algebras. These algebras have also connections with other algebras of logic such as pseudo-MV-algebras and pseudo-BL-algebras defined by G. Georgescu and A. Iorgulescu in [6] and [7], respectively. Those algebras were investigated by several authors in $[4,5,14]$ and [15]. As a generalization of dalgebras, Y.B. Jun, H.S. Kim and J. Neggers ([13]) introduced pseudo-d-algebras. Recently, R.A. Borzooei et al. ([1]) defined pseudo-BE-algebras.

In this paper we introduce pseudo-BCH-algebras as an extension of BCH algebras. We give basic properties of pseudo- BCH -algebras and provide some
conditions for a pseudo-BCH-algebra to be a pseudo-BCI-algebra. Moreover we study the set Cen \mathfrak{X} of all minimal elements of a pseudo-BCH-algebra \mathfrak{X}, the socalled centre of \mathfrak{X}. We also consider ideals in pseudo-BCH-algebras and establish a relationship between the ideals of a pseudo- BCH -algebra and the ideals of its centre. Finally we show that the centre of a pseudo-BCH-algebra \mathfrak{X} defines a regular congruence on \mathfrak{X}.

2. Definition and examples of pseudo-BCH-algebras

We recall that an algebra $\mathfrak{X}=(X ; *, 0)$ of type $(2,0)$ is called a $B C H$-algebra if it satisfies the following axioms:
(BCH-1) $\quad x * x=0$;
(BCH-2) $\quad(x * y) * z=(x * z) * y$;
(BCH-3) $\quad x * y=y * x=0 \Longrightarrow x=y$.
A BCH-algebra \mathfrak{X} is said to be a BCI-algebra if it satisfies the identity
(BCI) $\quad((x * y) *(x * z)) *(z * y)=0$.
A BCK-algebra is a BCI-algebra \mathfrak{X} satisfying the law $0 * x=0$.
Definition 2.1 ([3]). A pseudo-BCI-algebra is a structure $\mathfrak{X}=(X ; \leq, *, \diamond, 0)$, where " \leq " is a binary relation on the set $X, " * "$ and " \diamond " are binary operations on X and " 0 " is an element of X, satisfying the axioms:

```
(pBCI-1) \(\quad(x * y) \diamond(x * z) \leq z * y, \quad(x \diamond y) *(x \diamond z) \leq z \diamond y ;\)
\((\) pBCI-2) \(\quad x *(x \diamond y) \leq y, \quad x \diamond(x * y) \leq y ;\)
(pBCI-3) \(\quad x \leq x\);
(pBCI-4) \(\quad x \leq y, y \leq x \Longrightarrow x=y\);
(pBCI-5) \(\quad x \leq y \Longleftrightarrow x * y=0 \Longleftrightarrow x \diamond y=0\).
```

A pseudo-BCI-algebra \mathfrak{X} is called a pseudo-BCK-algebra if it satisfies the identities
(pBCK) $0 * x=0 \diamond x=0$.
Definition 2.2. A pseudo-BCH-algebra is an algebra $\mathfrak{X}=(X ; *, \diamond, 0)$ of type $(2,2,0)$ satisfying the axioms:

$$
\begin{array}{ll}
\text { (pBCH-1) } & x * x=x \diamond x=0 ; \\
\text { (pBCH-2) } & (x * y) \diamond z=(x \diamond z) * y ; \\
\text { (pBCH-3) } & x * y=y \diamond x=0 \Longrightarrow x=y ; \\
\text { (pBCH-4) } & x * y=0 \Longleftrightarrow x \diamond y=0 .
\end{array}
$$

Remark 2.3. Observe that if $(X ; *, 0)$ is a BCH-algebra, then letting $x \diamond y:=$ $x * y$, produces a pseudo- BCH -algebra ($X ; *, \diamond, 0$). Therefore, every BCH-algebra is a pseudo-BCH-algebra in a natural way. It is easy to see that if ($X ; *, \diamond, 0$) is a pseudo-BCH-algebra, then $(X ; \diamond, *, 0)$ is also a pseudo-BCH-algebra. From Proposition 3.2 of [3] we conclude that if $(X ; \leq, *, \diamond, 0)$ is a pseudo-BCI-algebra, then $(X ; *, \diamond, 0)$ is a pseudo-BCH-algebra.

We say that a pseudo-BCH-algebra \mathfrak{X} is proper if $* \neq \diamond$ and it is not a pseudo-BCI-algebra.

Remark 2.4. The class of all pseudo-BCH-algebras is a quasi-variety. Therefore, if \mathfrak{X}_{1} and \mathfrak{X}_{2} are two pseudo-BCH-algebras, then the direct product $\mathfrak{X}=\mathfrak{X}_{1} \times \mathfrak{X}_{2}$ is also a pseudo-BCH-algebra. In the case when at least one of \mathfrak{X}_{1} and \mathfrak{X}_{2} is proper, then \mathfrak{X} is proper.

Example 2.5. Let $X_{1}=\{0, a, b, c\}$. We define the binary operations $*_{1}$ and \diamond_{1} on X_{1} as follows:

$*_{1}$	0	a	b	c	
0	0	0	0	0	
a	a	0	a	0	
b	b	b	0	0	
c	c	b	c	0	

\diamond_{1}	0	a	b	c
0	0	0	0	0
a	a	0	a	0
b	b	b	0	0
c	c	c	a	0

It is easy to check that $\mathfrak{X}_{1}=\left(X_{1} ; *_{1}, \diamond_{1}, 0\right)$ is a pseudo-BCH-algebra. On the set $X_{2}=\{0,1,2,3\}$ consider the operation $*_{2}$ given by the following table:

$*_{2}$	0	1	2	3
0	0	0	0	0
1	1	0	0	1
2	2	2	0	0
3	3	3	3	0

By simple calculation we can get that $\mathfrak{X}_{2}=\left(X_{2} ; *_{2}, *_{2}, 0\right)$ is a (pseudo)-BCHalgebra. The direct product $\mathfrak{X}=\mathfrak{X}_{1} \times \mathfrak{X}_{2}$ is a pseudo-BCH-algebra. Observe that \mathfrak{X} is proper. Let $x=(a, 1), y=(a, 3)$ and $z=(a, 2)$. Then $(x * y) \diamond(x * z)=$ $(0,1) \diamond(0,0)=(0,1)$ and $z * y=(0,0)$. Since $(0,1) \not \leq(0,0)$, we conclude that \mathfrak{X} is not a pseudo-BCI-algebra, and therefore it is a proper pseudo-BCH-algebra.

Proposition 2.6. Any (proper) pseudo-BCH-algebra satisfying (pBCK) can be extended to a (proper) pseudo-BCH-algebra containing one element more.

Proof. Let $\mathfrak{X}=(X ; *, \diamond, 0)$ be a pseudo-BCH-algebra satisfying (pBCK) and let $\delta \notin X$. On the set $Y=X \cup\{\delta\}$ consider the operations:

$$
x *^{\prime} y= \begin{cases}x * y & \text { if } \quad x, y \in X \\ \delta & \text { if } \quad x=\delta \text { and } y \in X \\ 0 & \text { if } \quad x \in Y \text { and } y=\delta\end{cases}
$$

and

$$
x \diamond^{\prime} y= \begin{cases}x \diamond y & \text { if } \quad x, y \in X \\ \delta & \text { if } \quad x=\delta \text { and } y \in X \\ 0 & \text { if } \quad x \in Y \text { and } y=\delta\end{cases}
$$

Obviously, $\left(Y ; *^{\prime}, \diamond^{\prime}, 0\right)$ satisfies the axioms $(\mathrm{pBCH}-1),(\mathrm{pBCH}-3)$, and $(\mathrm{pBCH}-4)$. Further, the axiom ($\mathrm{pBCH}-2$) is easily satisfied for all $x, y, z \in X$. Moreover, by routine calculation we can verify it in the case when at least one of x, y, z is equal to δ. Thus, by definition, $\left(Y ; *^{\prime}, \diamond^{\prime}, 0\right)$ is a pseudo-BCH-algebra. Clearly, if \mathfrak{X} is a proper pseudo-BCH-algebra, then $\left(Y ; *^{\prime}, \diamond^{\prime}, 0\right)$ is also a proper pseudo-BCH-algebra.

From Example 2.5 and Proposition 2.6 we conclude that there are infinite many proper pseudo-BCH-algebras.

3. Properties of pseudo-BCH-ALGEbras

Let $\mathfrak{X}=(X ; *, \diamond, 0)$ be a pseudo-BCH-algebra. Define the relation \leq on X by $x \leq y$ if and only if $x * y=0$ (or equivalently, $x \diamond y=0$).

For any $x \in X$ and $n=0,1,2, \ldots$, we put

$$
\begin{aligned}
& 0 *^{0} x=0 \quad \text { and } \quad 0 *^{n+1} x=\left(0 *^{n} x\right) * x \\
& 0 \diamond^{0} x=0 \quad \text { and } \quad 0 \diamond^{n+1} x=\left(0 \diamond^{n} x\right) \diamond x
\end{aligned}
$$

Proposition 3.1. In a pseudo-BCH-algebra \mathfrak{X} the following properties hold (for all $x, y, z \in X$):
(P1) $x \leq y, y \leq x \Longrightarrow x=y$;
(P2) $x \leq 0 \Longrightarrow x=0$;
$(\mathrm{P} 3) x *(x \diamond y) \leq y, \quad x \diamond(x * y) \leq y$;
(P4) $x * 0=x=x \diamond 0$;
(P5) $0 * x=0 \diamond x$;
(P6) $x \leq y \Longrightarrow 0 * x=0 \diamond y$;
$(\mathrm{P} 7) 0 \diamond(0 *(0 \diamond x))=0 \diamond x, \quad 0 *(0 \diamond(0 * x))=0 * x$;
(P8) $0 *(x * y)=(0 \diamond x) \diamond(0 * y)$;
$(\mathrm{P} 9) 0 \diamond(x \diamond y)=(0 * x) *(0 \diamond y)$.

Proof. (P1) follows from ($\mathrm{pBCH}-3$).
(P2) Let $x \leq 0$. Then $x * 0=0$. Applying ($\mathrm{pBCH}-2$) and ($\mathrm{pBCH}-1$) we obtain

$$
0 \diamond x=(x * 0) \diamond x=(x \diamond x) * 0=0 * 0=0
$$

that is, $0 \leq x$. Therefore $x=0$ by (P 1).
(P3) Using ($\mathrm{pBCH}-2)$ and $(\mathrm{pBCH}-1)$ we have $(x *(x \diamond y)) \diamond y=(x \diamond y) *(x \diamond y)=0$. Hence $x *(x \diamond y) \leq y$. Similarly, $x \diamond(x * y) \leq y$.
(P4) Putting $y=0$ in (P3), we have $x *(x \diamond 0) \leq 0$ and $x \diamond(x * 0) \leq 0$. From (P2) we obtain $x *(x \diamond 0)=0$ and $x \diamond(x * 0)=0$. Thus $x \leq x \diamond 0$ and $x \leq x * 0$.

On the other hand, $(x \diamond 0) * x=(x * x) \diamond 0=0 \diamond 0=0$ and $(x * 0) \diamond x=$ $(x \diamond x) * 0=0 * 0=0$, and so $x \diamond 0 \leq x$ and $x * 0 \leq x$. By (P 1), $x * 0=x=x \diamond 0$.
(P5) Applying (pBCH-1) and (pBCH-2) we get $0 * x=(x \diamond x) * x=(x * x) \diamond x=$ $0 \diamond x$.
(P6) Let $x \leq y$. Then $x \diamond y=0$ and therefore $0 * x=(x \diamond y) * x=(x * x) \diamond y=0 \diamond y$.
(P7) From (P3) it follows that $0 *(0 \diamond x) \leq x$ and $0 \diamond(0 * x) \leq x$. Hence, using (P5) and (P6) we obtain (P7).
(P8) Applying ($\mathrm{pBCH}-1$) and ($\mathrm{pBCH}-2$) we have

$$
\begin{aligned}
(0 \diamond x) \diamond(0 * y) & =(((x * y) *(x * y)) \diamond x) \diamond(0 * y) \\
& =(((x * y) \diamond x) *(x * y)) \diamond(0 * y) \\
& =(((x \diamond x) * y) *(x * y)) \diamond(0 * y) \\
& =((0 * y) *(x * y)) \diamond(0 * y) \\
& =((0 * y) \diamond(0 * y)) *(x * y) \\
& =0 *(x * y) .
\end{aligned}
$$

(P9) The proof is similar to the proof of (P8).
From (P1) and (P3) we get
Corollary 3.2. Every pseudo-BCH-algebra satisfies (pBCI-2)-(pBCI-5).
Remark 3.3. In any pseudo-BCI-algebra the relation \leq is transitive (see [3], Proposition 3.2). However, in the pseudo-BCH-algebra \mathfrak{X} from Example 2.5 we have $(a, 1) \leq(a, 2)$ and $(a, 2) \leq(a, 3)$ but $(a, 1) \not \leq(a, 3)$.

Theorem 3.4. Let \mathfrak{X} be a pseudo-BCH-algebra. Then \mathfrak{X} is a pseudo-BCI-algebra if and only if it satisfies the following implication:

$$
\begin{equation*}
x \leq y \Longrightarrow x * z \leq y * z, x \diamond z \leq y \diamond z \tag{3.1}
\end{equation*}
$$

Proof. If \mathfrak{X} is a pseudo-BCI-algebra, then \mathfrak{X} satisfies (3.1) by Proposition 3.2 (b7) of [3]. Conversely, let (3.1) hold in \mathfrak{X} and let $x, y, z \in X$. By (P3), $x \diamond(x * z) \leq z$ and $x *(x \diamond z) \leq z$. Hence $(x \diamond(x * z)) * y \leq z * y$ and $(x *(x \diamond z)) \diamond y \leq z \diamond y$, and so $(x * y) \diamond(x * z) \leq z * y$ and $(x \diamond y) *(x \diamond z) \leq z \diamond y$. Therefore, \mathfrak{X} satisfies (pBCI-1). Consequently, \mathfrak{X} is a pseudo-BCI-algebra.

Theorem 3.5. Let \mathfrak{X} be a pseudo-BCH-algebra. The following statements are equivalent:
(i) $x *(y * z)=(x * y) * z \quad$ for all $\quad x, y, z \in X$;
(ii) $0 * x=x=0 \diamond x \quad$ for every $\quad x \in X$;
(iii) $x * y=x \diamond y=y * x \quad$ for all $\quad x, y \in X$;
(iv) $x \diamond(y \diamond z)=(x \diamond y) \diamond z \quad$ for all $\quad x, y, z \in X$.

Proof. (i) \Longrightarrow (ii). Let $x \in X$. We have $x=x * 0=x *(x * x)=(x * x) * x=0 * x$. By (P5), $0 \diamond x=x$.
(iv) \Longrightarrow (ii). The proof is similar to the above proof.
(ii) \Longrightarrow (iii). Let (ii) hold and $x, y \in X$. Applying (P8) and (pBCH-2) we obtain

$$
\begin{aligned}
x * y & =0 *(x * y)=(0 \diamond x) \diamond(0 * y) \\
& =x \diamond y \\
& =(0 * x) \diamond y=(0 \diamond y) * x=y * x .
\end{aligned}
$$

(iii) \Longrightarrow (i). Let $x, y, z \in X$. Using (iii) and (pBCH-2) we get

$$
x *(y * z)=(y \diamond z) * x=(y * x) \diamond z=(x * y) * z .
$$

(iii) \Longrightarrow (iv) has a proof similar to the proof of implication (iii) \Longrightarrow (i).

Hence all the conditions are equivalent.
Corollary 3.6. If \mathfrak{X} is a pseudo- $B C H$-algebra satisying the idendity $0 * x=x$, then $(X ; *, 0)$ is an Abelian group each element of which has order 2 (that is, a Boolean group).

4. The centre of a pseudo-BCH-algebra. Ideals

An element a of a pseudo-BCH-algebra \mathfrak{X} is said to be minimal if for every $x \in X$ the following implication

$$
x \leq a \Longrightarrow x=a
$$

holds.

Proposition 4.1. Let \mathfrak{X} be a pseudo-BCH-algebra and let $a \in X$. Then the following conditions are equivalent (for every $x \in X$):
(i) a is minimal;
(ii) $x \diamond(x * a)=a$;
(iii) $0 \diamond(0 * a)=a$;
(iv) $a * x=(0 * x) \diamond(0 * a)$;
(v) $a * x=0 \diamond(x * a)$.

Proof. (i) \Longrightarrow (ii). By (P2), $x \diamond(x * a) \leq a$ for all $x \in X$. Since a is minimal, we get (ii).
(ii) \Longrightarrow (iii). Obvious.
(iii) \Longrightarrow (iv). We have $a * x=(0 \diamond(0 * a)) * x=(0 * x) \diamond(0 * a)$.
(iv) \Longrightarrow (v). Applying (P5) and (P8) we see that

$$
0 \diamond(x * a)=0 *(x * a)=(0 \diamond x) \diamond(0 * a)=(0 * x) \diamond(0 * a)=a * x
$$

$(\mathrm{v}) \Longrightarrow(\mathrm{i})$. Let $x \leq a$. Then $x * a=0$ and hence $a * x=0 \diamond(x * a)=0$. Thus $a \leq x$. Consequently, $x=a$.

Replacing $*$ by \diamond and \diamond by $*$ in Proposition 4.1 we obtain
Proposition 4.2. Let \mathfrak{X} be a pseudo-BCH-algebra and let $a \in X$. Then for every $x \in X$ the following conditions are equivalent:
(i) a is minimal;
(ii) $x *(x \diamond a)=a$;
(iii) $0 *(0 \diamond a)=a$;
(iv) $a \diamond x=(0 \diamond x) *(0 \diamond a)$;
(v) $a \diamond x=0 *(x \diamond a)$.

Proposition 4.3. Let \mathfrak{X} be a pseudo-BCH-algebra and let $a \in X$. Then a is minimal if and only if there is an element $x \in X$ such that $a=0 * x$.

Proof. Let a be a minimal element of \mathfrak{X}. By Proposition 4.2, $a=0 *(0 \diamond a)$. If we set $x=0 \diamond a$, then $a=0 * x$.

Conversely, suppose that $a=0 * x$ for some $x \in X$. Using (P7) we get

$$
0 *(0 \diamond a)=0 *(0 \diamond(0 * x))=0 * x=a
$$

From Proposition 4.2 it follows that a is minimal.
For $x \in X$, set

$$
\bar{x}=0 \diamond(0 * x)
$$

$\mathrm{By}(\mathrm{P} 5), \bar{x}=0 *(0 * x)=0 \diamond(0 \diamond x)=0 *(0 \diamond x)$.
Proposition 4.4. Let \mathfrak{X} be a pseudo-BCH-algebra. For any $x, y \in X$ we have:
(a) $\overline{x * y}=\bar{x} * \bar{y}$;
(b) $\overline{x \diamond y}=\bar{x} \diamond \bar{y}$;
(c) $\overline{\bar{x}}=\bar{x}$.

Proof. (a) Applying (P8) and (P9) we get

$$
\begin{aligned}
\overline{x * y} & =0 \diamond(0 *(x * y))=0 \diamond[(0 \diamond x) \diamond(0 * y)] \\
& =[0 *(0 \diamond x)] *[0 \diamond(0 * y)]=\bar{x} * \bar{y} .
\end{aligned}
$$

(b) has a proof similar to (a).
(c) By $(\mathrm{P} 7), 0 *(0 \diamond(0 * x))=0 * x$, that is, $0 * \bar{x}=0 * x$. Hence $\overline{\bar{x}}=0 \diamond(0 * \bar{x})=$ $0 \diamond(0 * x)=\bar{x}$.

Following the terminology from BCH-algebras (see [2], Definition 5) the set $\{x \in$ $X: x=\bar{x}\}$ will be called the centre of \mathfrak{X}. We shall denote it by Cen \mathfrak{X}. By Proposition 4.1, Cen \mathfrak{X} is the set of all minimal elements of \mathfrak{X}. We have

$$
\begin{equation*}
\text { Cen } \mathfrak{X}=\{\bar{x}: x \in X\} . \tag{4.1}
\end{equation*}
$$

Define $\Phi: \mathfrak{X} \rightarrow$ Cen \mathfrak{X} by $\Phi(x)=\bar{x}$ for all $x \in X$. By Proposition 4.4, Φ is a homomorphism from \mathfrak{X} onto Cen \mathfrak{X}. We also obtain

Proposition 4.5. Let \mathfrak{X} be a pseudo-BCH-algebra. Then Cen \mathfrak{X} is a subalgebra of \mathfrak{X}.

Proposition 4.6. Let \mathfrak{X} be a pseudo-BCH-algebra and let $x, y \in C e n \mathfrak{X}$. Then for every $z \in X$ we have

$$
\begin{equation*}
x \diamond(z * y)=y *(z \diamond x) \tag{4.2}
\end{equation*}
$$

Proof. Let $z \in X$. Using Propositions 4.2 and 4.1 we obtain

$$
x \diamond(z * y)=[z *(z \diamond x)] \diamond(z * y)=[z \diamond(z * y)] *(z \diamond x)=y *(z \diamond x)
$$

that is, (4.2) holds.
Following [5], a pseudo-BCI-algebra $(X ; \leq, *, \diamond, 0)$ is said to be p-semisimple if it satisfies for all $x \in X$,

$$
0 \leq x \Longrightarrow x=0
$$

From Theorem 3.1 of [5] it follows that if $\mathfrak{X}=(X ; \leq, *, \diamond, 0)$ is a pseudo-BCIalgebra, then \mathfrak{X} is p-semisimple if and only if $x=\bar{x}$ for every $x \in X$ (that is, Cen $\mathfrak{X}=\mathfrak{X})$.

Theorem 4.7. Let \mathfrak{X} be a pseudo-BCH-algebra. Then Cen \mathfrak{X} is a p-semisimple pseudo-BCI-algebra.
Proof. Since Cen \mathfrak{X} is a subalgebra of \mathfrak{X}, Cen \mathfrak{X} is a pseudo-BCH-algebra. Let $x, y, z \in \operatorname{Cen} \mathfrak{X}$ and let $x \leq y$. Since x and y are minimal elements of \mathfrak{X}, we get $x=y$. Hence $x * z \leq y * z$ and $x \diamond z \leq y \diamond z$. Then, by Theorem 3.4, Cen \mathfrak{X} is a pseudo-BCI-algebra. Obviously, $x=\bar{x}$ for every $x \in$ Cen \mathfrak{X}, and therefore Cen \mathfrak{X} is p-semisimple.

Remark 4.8. From Theorem 3.6 of [5] we deduce that (Cen $\mathfrak{X} ;+, 0$) is a group, where $x+y$ is $x *(0 \diamond y)$ for all $x, y \in \operatorname{Cen} \mathfrak{X}$.

Definition 4.9. Let X be a pseudo-BCH-algebra. A subset I of X is called an ideal of X if it satisfies for all $x, y \in X$
(I1) $0 \in I$;
(I2) if $x * y \in I$ and $y \in I$, then $x \in I$.
We will denote by $\operatorname{Id}(\mathfrak{X})$ the set of all ideals of \mathfrak{X}. Obviously, $\{0\}, X \in \operatorname{Id}(\mathfrak{X})$.
Proposition 4.10. Let \mathfrak{X} be a pseudo-BCH-algebra and let $I \in \operatorname{Id}(\mathfrak{X})$. For any $x, y \in X$, if $y \in I$ and $x \leq y$, then $x \in I$.
Proof. Straightforward.
Proposition 4.11. Let \mathfrak{X} be a pseudo-BCH-algebra and I be a subset of X satisfying (I1). Then I is an ideal of \mathfrak{X} if and only if for all $x, y \in X$,
(I2') if $x \diamond y \in I$ and $y \in I$, then $x \in I$.
Proof. Let I be an ideal of \mathfrak{X}. Suppose that $x \diamond y \in I$ and $y \in I$. By (P3), $x *(x \diamond y) \leq y$ and from Proposition 4.10 it follows that $x *(x \diamond y) \in I$. Therefore, since $x \diamond y \in I$ and I satisfies (I2), we obtain $x \in I$, that is, (I2') holds. The proof of the implication (I2') \Rightarrow (I2) is analogous.

Example 4.12. Let $X=\{0, a, b, c, d\}$. Define binary operations $*$ and \diamond on X by the following tables:

$*$	0	a	b	c	d
0	0	0	0	0	d
a	a	0	a	0	d
b	b	b	0	0	d
c	c	b	c	0	d
d	d	d	d	d	0

\diamond	0	a	b	c	d
0	0	0	0	0	d
a	a	0	a	0	d
b	b	b	0	0	d
c	c	c	a	0	d
d	d	d	d	d	0

By routine calculation, $\mathfrak{X}=(X ; *, \diamond, 0)$ is a pseudo- BCH -algebra. It is easy to see that $\operatorname{Id}(\mathfrak{X})=\{\{0\},\{0, a\},\{0, b\},\{0, a, b, c\}, X\}$.

The following two propositions give the homomorphic properties of ideal.
Proposition 4.13. Let \mathfrak{X} and \mathfrak{Y} be pseudo-BCH-algebras. If $\varphi: \mathfrak{X} \rightarrow \mathfrak{Y}$ is a homomorphism and $J \in \operatorname{Id}(\mathfrak{Y})$, then the inverse image $\varphi^{-1}(J)$ of J is an ideal of \mathfrak{X}.

Proof. Straightforward.
Proposition 4.14. Let $\varphi: \mathfrak{X} \rightarrow \mathfrak{Y}$ be a surjective homomorphism. If I is an ideal of \mathfrak{X} containing $\varphi^{-1}(0)$, then $\varphi(I)$ is an ideal of \mathfrak{Y}.
Proof. Since $0 \in I$, we have $0=\varphi(0) \in \varphi(I)$. Let $x, y \in Y$ and suppose that $x * y, y \in \varphi(I)$. Then there are $a \in X$ and $b, c \in I$ such that $x=\varphi(a), y=\varphi(b)$ and $x * y=\varphi(c)$. We have $\varphi(a * b)=\varphi(c)$ and hence $(a * b) * c \in \varphi^{-1}(0) \subseteq I$. By the definition of an ideal, $a \in I$. Consequently, $x=\varphi(a) \in \varphi(I)$. This means that $\varphi(I)$ is an ideal of \mathfrak{Y}.

Definition 4.15. An ideal I of a pseudo-BCH-algebra \mathfrak{X} is said to be closed if $0 * x \in I$ for every $x \in I$.

Theorem 4.16. An ideal I of a pseudo-BCH-algebra \mathfrak{X} is closed if and only if I is a subalgebra of \mathfrak{X}.
Proof. Suppose that I is a closed ideal of \mathfrak{X} and let $x, y \in I$. By ($\mathrm{pBCH}-2$) and (pBCH-1),

$$
\begin{aligned}
{[(x * y) *(0 * y)] \diamond x } & =[(x * y) \diamond x] *(0 * y) \\
& =[(x \diamond x) * y] *(0 * y) \\
& =(0 * y) *(0 * y)=0 .
\end{aligned}
$$

Hence $[(x * y) *(0 * y)] \diamond x \in I$. Since $x, 0 * y \in I$, we have $x * y \in I$. Similarly, $x \diamond y \in I$. Conversely, if I is a subalgebra of \mathfrak{X}, then $x \in I$ and $0 \in I$ imply $0 * x \in I$.

Theorem 4.17. Every ideal of a finite pseudo-BCH-algebra is closed.
Proof. Let I be an ideal of a finite pseudo-BCH-algebra \mathfrak{X} and let $a \in I$. Suppose that $|X|=n$ for some $n \in \mathbb{N}$. At least two of the $n+1$ elements:

$$
0,0 * a, 0 *^{2} a, \ldots, 0 *^{n} a
$$

are equal, for instance, $0 *^{r} a=0 *^{s} a$, where $0 \leq s<r \leq n$. Hence

$$
0=\left(0 *^{r} a\right) \diamond\left(0 *^{s} a\right)=\left[\left(0 *^{s} a\right) \diamond\left(0 *^{s} a\right)\right] *^{r-s} a=0 *^{r-s} a .
$$

Therefore $0 *^{r-s} a \in I$. Since $a \in I$, by definition, $0 * a \in I$. Consequently, I is a closed ideal of \mathfrak{X}.

For any pseudo-BCH-algebra \mathfrak{X}, we set

$$
\mathrm{K}(\mathfrak{X})=\{x \in X: 0 \leq x\} .
$$

Observe that Cen $\mathfrak{X} \cap \mathrm{K}(\mathfrak{X})=\{0\}$. Indeed, $0 \in \operatorname{Cen} \mathfrak{X} \cap \mathrm{~K}(\mathfrak{X})$ and if $x \in$ Cen $\mathfrak{X} \cap \mathrm{K}(\mathfrak{X})$, then $x=0 \diamond(0 * x)=0 \diamond 0=0$.

In Example 4.12, Cen $\mathfrak{X}=\{0, d\}$ and $\mathrm{K}(\mathfrak{X})=\{0, a, b, c\}$.
It is easy to see that

$$
x \in \mathrm{~K}(\mathfrak{X}) \Longleftrightarrow \bar{x}=0 \Longleftrightarrow x \in \Phi^{-1}(0) .
$$

Thus

$$
\begin{equation*}
\mathrm{K}(\mathfrak{X})=\Phi^{-1}(0) . \tag{4.3}
\end{equation*}
$$

Proposition 4.18. Let \mathfrak{X} be a pseudo-BCH-algebra. Then $\mathrm{K}(\mathfrak{X})$ is a closed ideal of \mathfrak{X}.

Proof. By (4.3) and Proposition 4.13, $\mathrm{K}(\mathfrak{X})$ is an ideal of \mathfrak{X}. Let $x \in \mathrm{~K}(\mathfrak{X})$. Then $\bar{x}=0$ and hence $\Phi(0 * x)=0 * \bar{x}=0$. Consequently, $0 * x \in \mathrm{~K}(\mathfrak{X})$. Thus $\mathrm{K}(\mathfrak{X})$ is a closed ideal.

Corollary 4.19. For any pseudo-BCH-algebra \mathfrak{X} the set $\mathrm{K}(\mathfrak{X})$ is a subalgebra of \mathfrak{X}, and so it is a pseudo-BCH-algebra.

Proposition 4.20. Let \mathfrak{X} and \mathfrak{Y} be pseudo-BCH-algebras. Then:
(a) $\operatorname{Cen}(\mathfrak{X} \times \mathfrak{Y})=\operatorname{Cen}(\mathfrak{X}) \times \operatorname{Cen}(\mathfrak{Y})$;
(b) $K(\mathfrak{X} \times \mathfrak{Y})=K(\mathfrak{X}) \times K(\mathfrak{Y})$.

Proof. This is immediate from definitions.
For any element a of a pseudo- BCH -algebra \mathfrak{X}, we define a subset $\mathrm{V}(a)$ of X as

$$
\mathrm{V}(a)=\{x \in X: a \leq x\}
$$

Note that $\mathrm{V}(a) \neq \emptyset$, because $a \leq a$ gives $a \in \mathrm{~V}(a)$. Furthermore, $\mathrm{V}(0)=\mathrm{K}(\mathfrak{X})$.
Proposition 4.21. Let \mathfrak{X} be a pseudo-BCH-algebra. Then for each $x \in X$ there exists a unique element $a \in$ Cen \mathfrak{X} such that $a \leq x$.

Proof. Let $x \in X$. Take $a=\bar{x}$, that is, $a=0 \diamond(0 * x)$. By (P3), $a \leq x$. From (4.1) it follows that $a \in$ Cen \mathfrak{X}. To prove uniqueness, let $b \in$ Cen \mathfrak{X} be such that $b \leq x$. Then $b \diamond x=0$. Therefore,

$$
0 * b=(b \diamond x) * b=(b * b) \diamond x=0 \diamond x=0 * x
$$

and hence $b=\bar{b}=0 \diamond(0 * b)=0 \diamond(0 * x)=\bar{x}=a$.
Lemma 4.22. Let \mathfrak{X} be a pseudo-BCH-algebra and $a \in \operatorname{Cen} \mathfrak{X}$. Then

$$
\mathrm{V}(a)=\Phi^{-1}(a) .
$$

Proof. Suppose that $x \in \mathrm{~V}(a)$, that is, $a \leq x$. We have $\bar{x} \leq x$. Since $a, \bar{x} \in$ Cen \mathfrak{X}, by Proposition 4.21, $a=\bar{x}$, that is, $x \in \Phi^{-1}(a)$.
Conversely, if $a=\bar{x}$, then $a \leq x$ by (P3). Hence $x \in \mathrm{~V}(a)$.
Proposition 4.23. Let \mathfrak{X} be a pseudo-BCH-algebra. Then:
(a) $X=\underset{a \in \operatorname{Cen} X}{ } \mathrm{~V}(a)$;
(b) if $a, b \in \mathrm{CenX}$ and $a \neq b$, then $\mathrm{V}(a) \cap \mathrm{V}(b)=\emptyset$.

Proof. (a) Clearly, $\bigcup_{a \in \operatorname{Cen} \mathfrak{X}} \mathrm{~V}(a) \subseteq X$ and let $x \in X$. Obviously, $x \in \mathrm{~V}(\bar{x})$ and $\bar{x} \in$ Cen \mathfrak{X}. Therefore, $x \in \bigcup_{a \in \operatorname{Cen} \mathfrak{X}} \mathrm{~V}(a)$.
(b) Let $a, b \in \operatorname{Cen}(\mathfrak{X})$ and $a \neq b$. On the contrary suppose that $\mathrm{V}(a) \cap \mathrm{V}(b) \neq \emptyset$. Let $x \in \mathrm{~V}(a) \cap \mathrm{V}(b)$. Then $a \leq x$ and $b \leq x$. From Proposition 4.21 it follows that $a=b$, a contradition.

We now establish a relationship between the ideals of a pseudo-BCH-algebra and the ideals of its centre.

Proposition 4.24. Let \mathfrak{X} be a pseudo-BCH-algebra and let $A \subseteq$ Cen \mathfrak{X}. The following statements are equivalent:
(i) A is an ideal of Cen \mathfrak{X};
(ii) $\bigcup_{a \in A} \mathrm{~V}(a)$ is an ideal of \mathfrak{X}.

Proof. Let $I=\bigcup_{a \in A} \mathrm{~V}(a)$. From Lemma 4.22 we have $I=\bigcup_{a \in A} \Phi^{-1}(a)=$ $\Phi^{-1}(A)$.
(i) \Rightarrow (ii). Let $A \in \operatorname{Id}(\operatorname{Cen} \mathfrak{X})$. By Proposition 4.13, I is an ideal of \mathfrak{X}.
(ii) \Rightarrow (i). Since $I=\Phi^{-1}(A)$, we conclude that $A=\Phi(I)$. Obviously, $0 \in A$ and hence $\Phi^{-1}(0) \subseteq I$. Applying Proposition 4.14 we deduce that A is an ideal of Cen \mathfrak{X}.

Theorem 4.25. There is a one-to-one correspondence between ideals of a pseudo-BCH-algebra \mathfrak{X} containing $\mathrm{K}(\mathfrak{X})$ and ideals of Cen \mathfrak{X}.

Proof. Set $\mathcal{I}=\{I \in \operatorname{Id}(\mathfrak{X}): I \supseteq \mathrm{~K}(\mathfrak{X})\}$ and $\mathcal{C}=\operatorname{Id}($ Cen $\mathfrak{X})$. We consider two functions:

$$
f: I \in \mathcal{I} \rightarrow\{\bar{x}: x \in I\} \quad \text { and } \quad g: A \in \mathcal{C} \rightarrow \bigcup_{a \in A} \mathrm{~V}(a)
$$

Since $f(I)=\Phi(I)$, from Proposition 4.14 we conclude that f maps \mathcal{I} into \mathcal{C}. By Proposition 4.24, $g(A)=\bigcup_{a \in A} \mathrm{~V}(a) \in \mathcal{I}$ for all $A \in \mathcal{C}$, and therefore g maps \mathcal{C} into \mathcal{I}. We have

$$
\begin{equation*}
(f \circ g)(A)=\Phi\left(\Phi^{-1}(A)\right)=A \quad \text { for all } \quad A \in \mathcal{C} \tag{4.4}
\end{equation*}
$$

Obviously, $I \subseteq \Phi^{-1}(\Phi(I))$. Let now $x \in \Phi^{-1}(\Phi(I))$, that is, $\bar{x}=\bar{a}$ for some $a \in I$. Then $\Phi(x * a)=0$, and hence $x * a \in \Phi^{-1}(0)$. Therefore, $x * a \in I$ (since $\left.\Phi^{-1}(0)=\mathrm{K}(\mathfrak{X}) \subseteq I\right)$. By definition, $x \in I$. Thus $\Phi^{-1}(\Phi(I))=I$. Consequently,

$$
\begin{equation*}
(g \circ f)(I)=\Phi^{-1}(\Phi(I))=I \quad \text { for all } \quad I \in \mathcal{I} \tag{4.5}
\end{equation*}
$$

We conclude from (4.4) and (4.5) that $f \circ g=\mathrm{id}_{\mathcal{C}}$ and $g \circ f=\mathrm{id}_{\mathcal{I}}$, hence that f and g are inverse bijections between \mathcal{I} and \mathcal{C}.

Example 4.26. Let $\mathfrak{X}_{1}=\left(\{0, a, b, c\} ; *_{1}, \diamond_{1}, 0\right)$ be the pseudo-BCH-algebra from our Example 2.5. Consider the set $X_{2}=\{0,1,2,3,4\}$ with the operation $*_{2}$ defined by the following table:

$*_{2}$	0	1	2	3	4
0	0	0	4	3	2
1	1	0	4	3	2
2	2	2	0	4	3
3	3	3	2	0	4
4	4	4	3	2	0

From Example 3 of [17] it follows that $\mathfrak{X}_{2}=\left(X_{2} ; *_{2}, *_{2}, 0\right)$ is a (pseudo)-BCHalgebra. The direct product $\mathfrak{X}=\mathfrak{X}_{1} \times \mathfrak{X}_{2}$ is a pseudo-BCH-algebra. From Proposition 4.20 we have Cen $\mathfrak{X}=\{0\} \times\{0,2,3,4\}$ and $\mathrm{K}(\mathfrak{X})=X_{1} \times\{0,1\}$. It is easy to see that $\operatorname{Id}(\operatorname{Cen} \mathfrak{X})=\{\{(0,0)\},\{(0,0),(0,3)\}$, Cen $\mathfrak{X}\}$. Then, by Theorem $4.25, \mathfrak{X}$ has three ideals containing $\mathrm{K}(\mathfrak{X})$, namely: $\mathrm{K}(\mathfrak{X}), \mathrm{K}(\mathfrak{X}) \cup\{(0,3),(a, 3),(b, 3),(c, 3)\}$ and \mathfrak{X}.

Now we shall show that the centre Cen \mathfrak{X} defines a regular congruence on a pseudo-BCH-algebra \mathfrak{X}. Let Con \mathfrak{X} denote the set of all congruences on \mathfrak{X} and let
$\theta \in \operatorname{Con} \mathfrak{X}$. For $x \in X$, we write x / θ for the congruence class containing x, that is, $x / \theta=\{y \in X: y \theta x\}$. Set $X / \theta=\{x / \theta: x \in X\}$. It is easy to see that the factor algebra $\mathfrak{X} / \theta=\langle X / \theta ; *, \diamond, 0 / \theta\rangle$ satisfies ($\mathrm{pBCH}-1$) and ($\mathrm{pBCH}-2$). The axioms ($\mathrm{pBCH}-3$) and ($\mathrm{pBCH}-4$) are not necessarity satisfied. If \mathfrak{X} / θ is a pseudo- BCH -algebra, then we say that θ is regular.

Remark 4.27. A. Wroński has shown that non-regular congruences exist in BCK-algebras (see [18]) and hence in pseudo-BCH-algebras.

Theorem 4.28. Let \mathfrak{X} be a pseudo-BCH-algebra and let $\theta_{c}=\left\{(x, y) \in X^{2}\right.$: $\bar{x}=\bar{y}\}$. Then θ_{c} is a regular congruence on \mathfrak{X} and $\mathfrak{X} / \theta_{c} \cong$ Cen \mathfrak{X}.

Proof. The mapping Φ is a homomorphism from \mathfrak{X} onto Cen \mathfrak{X}. Moreover we have

$$
\operatorname{Ker} \Phi=\left\{(x, y) \in X^{2}: \Phi(x)=\Phi(y)\right\}=\theta_{c}
$$

By the Isomorphism Theorem we get $\mathfrak{X} / \theta_{c} \cong$ Cen \mathfrak{X}, and therefore θ_{c} is a regular congruence on \mathfrak{X}.

Acknowledgments

The author is indebted to the referee for his/her very careful reading and suggestions.

References

[1] R.A. Borzooei, A.B. Saeid, A. Rezaei, A. Radfar and R. Ameri, On pseudo-BEalgebras, Discuss. Math. General Algebra and Appl. 33 (2013) 95-97. doi:10.7151/dmgaa. 1193
[2] M.A. Chaudhry, On BCH-algebras, Math. Japonica 36 (1991) 665-676.
[3] W.A. Dudek and Y.B. Jun, Pseudo-BCI-algebras, East Asian Math. J. 24 (2008) 187-190.
[4] G. Dymek, Atoms and ideals of pseudo-BCI-algebras, Comment. Math. 52 (2012) 73-90.
[5] G. Dymek, p-semisimple pseudo-BCI-algebras, J. Mult.-Valued Logic Soft Comput. 19 (2012) 461-474.
[6] G. Georgescu and A. Iorgulescu, Pseudo-MV algebras: a noncommutative extension of MV algebras, in: The Proc. of the Fourth International Symp. on Economic Informatics (Bucharest, Romania, May 1999) 961-968.
[7] G. Georgescu and A. Iorgulescu, Pseudo-BL algebras: a noncommutative extension of BL algebras, in: Abstracts of the Fifth International Conference FSTA 2000 (Slovakia, February, 2000) 90-92.
[8] G. Georgescu and A. Iorgulescu, Pseudo-BCK algebras: an extension of BCK algebras, in: Proc. of DMTCS'01: Combinatorics, Computability and Logic (Springer, London, 2001) 97-114.
[9] Q.P. Hu and X. Li, On BCH-algebras, Math. Seminar Notes 11 (1983) 313-320.
[10] Y. Imai and K. Iséki, On axiom systems of propositional calculi XIV, Proc. Japan Academy 42 (1966) 19-22.
[11] K. Iséki, An algebra related with a propositional culculus, Proc. Japan Academy 42 (1966) 26-29.
[12] Y.B. Jun, H.S. Kim and J. Neggers, On pseudo-BCI ideals of pseudo-BCI-algebras, Matem. Vesnik 58 (2006) 39-46.
[13] Y.B. Jun, H.S. Kim and J. Neggers, Pseudo-d-algebras, Information Sciences 179 (2009) 1751-1759. doi:10.1016/j.ins.2009.01.021
[14] Y.H. Kim and K.S. So, On minimality in pseudo-BCI-algebras, Commun. Korean Math. Soc. 27 (2012) 7-13. doi:10.4134/CKMS.2012.27.1.007
[15] K.J. Lee and Ch.H. Park, Some ideals of pseudo-BCI-algebras, J. Appl. \& Informatics 27 (2009) 217-231.
[16] J. Neggers and H.S. Kim, On d-algebras, Math. Slovaca 49 (1999) 19-26.
[17] A.B. Saeid and A. Namdar, On n-fold ideals in BCH-algebras and computation algorithms, World Applied Sciences Journal 7 (2009) 64-69.
[18] A. Wroński, BCK-algebras do not form a variety, Math. Japon. 28 (1983) 211-213.

