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Abstract

The main purpose of this paper is to introduce the concept of (Γ, n)-
semihypergroups as a generalization of hypergroups, as a generalization of n-
ary hypergroups and obtain an exact covariant functor between the category
(Γ, n)-semihypergrous and the category semigroups. Moreover, we introduce
and study complete part. Finally, we obtain some new results and some
fundamental theorems in this respect.
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1. Introduction

Algebraic hyperstructures are a suitable generalization of classical algebraic struc-
tures. In a classical algebraic structure, the composition of two elements is an
element, while in an algebraic hyperstructure, the composition of two elements
is a set. The hypergroup notion was introduced in 1934 by the French mathe-
matician F. Marty [16], at the 8th Congress of Scandinavian Mathematicians. He
published some notes on hypergroups, using them in different contexts: algebraic
functions, rational fractions, non commutative groups. Since then, hundreds of
papers and several books have been written on this topic and several kinds of hy-
pergroups have been intensively studied, such as: regular hypergroups, reversible
regular hypergroups, canonical hypergroups, cogroups, cyclic hypergroups, asso-
ciativity hypergroups.

A recent book on hyperstructures [4] points out on their applications in fuzzy
and rough set theory, cryptography, codes, automata, probability, geometry, lat-
tices, binary relations, graphs and hypergraphs. Hypergraph theory is a useful
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toll for discrete optimization problems. A comprehensive review of the theory of
hypergraph appears in [2].

Let H be a nonempty set and ◦ : H×H −→ ℘∗(H), be a map such that ℘∗(H)
be the set of all nonempty subset of H. The couple (H, ◦) is called hypergroupoid.
If A and B are nonempty subset of H, then we define

A ◦B =
⋃

a∈A,b∈B
a ◦ b, x ◦A = {x} ◦A, A ◦ x = A ◦ {x}.

A hypergroupoid (H, ◦) is called a semihypergroup if for all x, y, z ∈ H, we have
x ◦ (y ◦ z) = (x ◦ y) ◦ z. A semihypergroup (H, ◦) is called hypergroup if for
every x ∈ H, we have x ◦H = H ◦ x = H. Several books have been written on
hyperstructure theory, see [3, 4, 7]. A regular hypergroup (H, ◦) is a hypergroup
which has at least an identity and any element of H has at least an inverse. In
other words, there exists e ∈ H, such that for all x ∈ H, we have x ∈ x ◦ e∩ e ◦ x
and there exists x

′ ∈ H such that e ∈ x ◦ x′ ∩ x′ ◦ x.
An n-ary structure generalizations of algebraic structures is the most natu-

ral way for further development and deeper understanding of their fundamental
properties. The notion of n-ary group, which is a generalization of the notion
of a group, was introduced by W. Dörnte in 1928 [10]. Since then many papers
concerning various n-ary algebra have appeared in the literature [8, 9, 11, 12].

The notion of Γ-semigroups was introduced by Sen in [17, 18]. Let G and
Γ be two nonempty sets. Then, G is called a Γ -semigroup if there exists a
mapping G × Γ × G −→ G, written (a, α, b) by aαb, such that it satisfies the
identities aα(bβc) = (aαb)βc, for all a, b, c ∈ G and α, β ∈ Γ. The concept
of Γ-semihypergroups was introduced by Davvaz et al. [13]. Let G and Γ be
two nonempty sets. Then, G is called a Γ-semihypergroup if each α ∈ Γ be a
hyperoperation on G, i.e., aαb ⊆ G, and for every a, b, c ∈ G, and for every
α, β ∈ Γ we have the associative property that is aα(bβc) = (aαb)βc. Let G1 be
a Γ1-semihypergroup and G2 be a Γ2-semigroup. If there exists a map ϕ : G1 −→
G2 and a bijection f : Γ1 −→ Γ2 such that ϕ(xαy) ⊆ ϕ(x)f(α)ϕ(y), for every
x, y ∈ G1 and α ∈ Γ1, then ϕ a homomorphism between G1 and G2.

In 1964, Nobusawa introduced Γ-rings as a generalization of rings. Barnes
[1] weakened slightly the conditions in the definition of Γ-ring in the sense of
Nobusawa. Barnes [1], Luh [15] and Kyuno [14] studied the structure of Γ-rings
and obtained various generalization analogous to corresponding parts in ring
theory. After that, Dehkordi et. al. [5, 6] investigated the ideals, rough ideals,
homomorphisms and regular relations of Γ-semihyperrings.

The aim of this research work is to define a new class of n-ary multialgebras
that we call (Γ, n)-semihypergroups that is a generalization of n-ary semihyper-
groups, a generalization of Γ-semihypergroups, a generalization of semihyper-
group and a generalization of semigroups. Also, we define complete part and
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regular relation. Moreover, we introduce an exact covariant functor between the
category (Γ, n)-semihypergroups and the category semigroups.

2. (Γ,n)-Semihypergroup

In this section, we present some definitions and results concerning. First of all,
let us introduced (Γ, n)-semihypergroup. Let G, Γ be nonempty sets and n ∈ N,
n ≥ 2. A map α : Gn −→ ℘∗(G) is called n-ary hyperoperation on G, where
℘∗(G) is the set of all nonempty subsets of G and α ∈ Γ. Then, (G,Γ) is called
(Γ, n)-hypergroupoid. If G1, G2, . . . , Gn are subsets of G, then we define

α(G1, G2, . . . , Gn) =
⋃
{α(x1, x2, . . . , xn) : xi ∈ Gi, 1 ≤ i ≤ n},

Γ(G1, G2, . . . , Gn) =
⋃
{α(x1, x2, . . . , xn) : xi ∈ Gi, α ∈ Γ, 1 ≤ i ≤ n}.

The sequence xi, xi+1, . . . , xj , will be denoted by xji . For j ≤ i, xji is empty. In
the case when xi+1 = · · · = xj = x will be written be written in the form xj−i.

A (Γ, n)-hypergroupoid is called (Γ, n)-semihypergroup if for every α, β ∈ Γ
and x1, x2, . . . , x2n−1 ∈ G

α
(
xi−1

1 , β
(
x
n+i−1)
1

)
, x2n−1

n+i

)
= β

(
xj−1

1 , α
(
xn+j−1
j

)
, x2n−1

n+j

)
.

A (Γ, n)-hypergroupoid (G,Γ) in which for every α ∈ Γ the equation

y ∈ α
(
yi−1

1 , xi, y
n
i+1

)
,

has the solution xi ∈ G for every yi−1
1 , yni+1, y ∈ G is called (Γ, n)- quasihyper-

group. A (Γ, n)-hypergroup is both a (Γ, n)-semihypergroup and (Γ, n)- quasihy-
pergroup. A (Γ, n)-hypergroup G is commutative if for every xn1 of G and any
permutation δ of {1, 2, . . . , n} and for all α ∈ Γ we have

α(xn1 ) = α(xδ(1), xδ(2), . . . , xδ(n)).

An element e of a (Γ, n)-hypergroup G is called an n-ary identity or a neutral
element, if there exist α ∈ Γ such that

x = α(ei−1, x, en−1).

Let G be a (Γ, n)-semihypergroup and α ∈ Γ be a fixed element. We define
f(a1, a2, . . . , an) = α(a1, a2, . . . , an). It is easy to see that (G, f) is an n-ary
semihypergroup and when n = 2, (G, f) is a semihypergroup. We denote this
n-ary semihypergroup by G[α].
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Proposition 2.1. Let G be a (Γ, n)-semihypergroup and for every α ∈ Γ, the
element e ∈ G be neutral element. Then, for every α1, α2 ∈ Γ and xn1 ∈ G, we
have α1(xn1 ) = α2(xn1 ).

Proof. Suppose that e is a neutral element for every α ∈ Γ. Then for xn1 ∈ G,
we have x1 = α(x1, e

n−1) and x1 = β(x, en−1). Hence

α(x1, x
n
2 ) = α(β(x1, e

n−1), xn2 ) = β(x1, α(x2, e
n−1), xn3 ) = β(x1, x2, x

n
3 ).

This completes the proof.

By Proposition 2.1, if for every α, β ∈ Γ, e is a neutral element, then G[α] = G[β].
This implies that (Γ, n)-semihypergroup G is an n-ary hypergroup.

Definition 2.2. Let (G,Γ) be a (Γ, n)-hypergroup and H be a nonempty subset
of G. We say that H is a (Γ, n)-subhypergroup of G if following conditions hold:

1. For every α ∈ Γ, H is closed under the n-ary hyperoperation α,

2. For all x0, x1, . . . , xn ∈ H, α ∈ Γ and fixed i ∈ {1, 2, . . . , n} there exists
x ∈ H such that x0 ∈ α(xi−1

1 , x, xni+1).

Definition 2.3. A nonempty subset I of a (Γ, n)-semihypergroup is said to be
a k-ideal of G if

1. I is a (Γ, n)-subsemihypergroup of G,

2. Γ(Gk−1
1 , I, Gnk+1) ⊆ I.

If for every 1 ≤ k ≤ n, I is a k-ideal, then we say that I is an ideal.

Definition 2.4. Let G be a semigroup and I be a nonempty subset of G. We
say that I is a left ideal if I is a subsemigroup of G and GI ⊆ I. In the same
way can define right ideal.

Definition 2.5. Let G1 and G2 be (Γ1, n) and (Γ2, n)-semihypergroup, respec-
tively. A map (ϕ, f) : G1×Γ1 −→ G2×Γ2 is called a homomorphism if for every
xn1 ∈ G1

ϕ(α(xn1 )) = f(α)(ϕ(xn1 )).

Also, if ϕ and f are onto, then (ϕ, f) is called an epimorphism.

Example 1. Let G be a group and Γ = {αn : n ∈ N}. Then, for every xni ∈ G,
we define

αn(xn1 ) = G.

Then, G is a (Γ, n)-hypergroup.
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Example 2. Let X be a totally ordered set and Γ be a nonempty subset of X.
We define

α(xni ) = {x ∈ G : x ≥ max{xni , α}},

for every α ∈ Γ and xni ∈ X. Then, (X,Γ) is a (Γ, n)-semihypergroup.

Example 3. Let H be a semigroup and {Xh}h∈H be a collection of disjoint sets.
Consider G =

⋃
h∈H Xh and Γ = Z(H). For every g ∈ G there exist h ∈ H such

that g ∈ Xh. We define
α(xni ) = Xαx1,x2,...,xn ,

where xi ∈ Xhi , for 1 ≤ i ≤ n. Then G is a (Γ, n)-hypergroup and is called
(Z(H), n)-hypergroup.

Example 4. Let An = [n, n+1), Γ1 = 2Z, Γ2 = 2Z+1 and G1, G2 be (Z(2Z), n),
(Z(2Z + 1), n)-semihyperring, respectively. Then, (ϕ, f) is a homomorphism.

ϕ : G1 −→ G2, ϕ(x) = x+ 1

f : γ1 −→ Γ2, f(α) = α.

Example 5. Let (H, ◦) be a hypergroup and Γ ⊆ H be a nonempty set. We
define for every xi ∈ H and α ∈ Γ

α(xi) = α ◦ x1 ◦ · · · ◦ xn.

Then H is a (Γ, n)-semihypergroup.

Example 6. Let G be a group and Hn be a normal subgroups of G such that
Hn ⊆ Hn+1. We define n-ary hyperoperation on G as follows:

αn(xi) = Hn ◦ x1 ◦ x2, . . . , ◦xn.

Then G is a (Γ, n)-hypergroup.

3. Fundamental relation and complete part

By using a certain type of equivalence relations, we can connect (Γ, n)-semi-
hypergroup to semigroups and (Γ, n)-hypergroups to groups. These equivalence
relations are called strong regular relations. More exactly, starting with a (Γ, n)-
semihypergroup (hypergroup) and using a strong regular relation, we can con-
struct semigroup (group). In this section, we introduce a strong regular relation
β∗ and complete part such that has an important role in the study of (Γ, n)-
semihypergroups.
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Let G be a (Γ, n)-hypergroup. We define

α1[1] = {α1 (xn1 ) : xi ∈ G, 1 ≤ i ≤ n}

α2[2] =
{
α2

(
xi−1

1 , α1[1], x
n
i+1

)
, xi ∈ G, 2 ≤ i ≤ n

}
α3[3] =

{
α3

(
xi−1

1 , α2[2], x
n
i+1

)
, xi ∈ G, 2 ≤ i ≤ n

}
...

αn[n] =
{
αn
(
xi−1

1 , αn−1[n−1], x
n
i+1

)
, xi ∈ G, 2 ≤ i ≤ n

}
,

for every α1, α2, . . . , αn ∈ Γ. Let U =
⋃
k≥1,α∈Γ Uk[α]. We define

xβny ⇔ ∃αn[n] ∈ U , such that {x, y} ⊆ αn[n].

We have β =
⋃
n≥1 βn is reflexive and symmetric. Let β∗ be the transitive closure

of β. This relation is called fundamental relation.
Let G be a (Γ, n)-semihypergroup and ρ be an equivalence relation on G. If

A and B are nonempty subset of G, then

AρB ⇐⇒ ∀a ∈ A,∃b ∈ B such that aρb

∀b ∈ B, ∃a ∈ A such that aρb.

and

AρB ⇐⇒ ∀a ∈ A, and b ∈, B, aρb.

The equivalence relation ρ is called k-regular if from aρb, it follows that

α(xk−1
1 , a, xnk+1) ρ α(xk−1

1 , b, xnk+1),

for every α ∈ Γ and is called k-strongly regular if from aρb,

α(xk−1
1 , a, xnk+1) ρ α(xk−1

1 , b, xnk+1).

for every α ∈ Γ. ρ is called regular (strongly regular) if it is k-regular (strongly
regular) for every 1 ≤ k ≤ n.

Proposition 3.1. Let G be a (Γ, n)-semihypergroup and β∗ be a fundamenteal
relation on G. Then, β∗ is the smallest strongly regular relation on G.

Proof. Suppose that aβ∗b and x is an arbitrary element of G. It follows that
thee exists x0 = a, x1, . . . , xn = b such that for very i ∈ {0, 1, . . . , n − 1} such
that xiβxi+1. Let u1 ∈ α(a, yn2 ) and u2 ∈ α(b, yn2 ). It follows that there exist
ξn[n] such that {xi, yn2 } ⊆ ξn[n]. Hence α(xi, y

n
2 ) ⊆ α(ξn[n], y

n
2 ) and α(xi+1, y

n
2 )
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⊆ α(ξn[n], y
n
2 ). Thus α(xi, y

n
2 )βα(xi+1, y

n
2 ). This implies that for every i ∈

{0, 1, 2, . . . , n − 1} and for all ti ∈ α(xi, y
n
2 ), we have tiβti+1. If we consider

t0 = u1 and tn = u2, then we obtain u1β
∗u2. Then β∗ is 1-strongly regular and

similarly, it is j-strongly regular for 2 ≤ j ≤ n.

Let R be a strongly regular relation on G. Since R is reflexive, we have
β ⊆ R. Suppose that βn−1 ⊆ R. If aβnb, then {a, b} ⊆ αn[n]. Since αn[n] =

α
(
yi−1

1 , ξn−1[n−1], y
n
i+1

)
there exists u, v ∈ ξn−1[n−1] such that a ∈ αn

(
yi−1

1 , u, yni+1

)
and b ∈ αn

(
yi−1

1 , v, yni+1

)
and according to the hypothesis since uβn−1v, we have

uRv. Since R is strongly regular it follows that aRb and by induction, it follows
that β ⊆ R, whence β∗ ⊆ R.

Proposition 3.2. Let G be a (Γ, n)-semihypergroup and ρ be an equivalence
relation on G. Then, ρ is regular if and only if [G : ρ] is a (Γ̂, n)- semihypergroup
with respect the following operation:

α̂(ρ(a1), ρ2(a2), . . . , ρ(an)) = {ρ(a) : a ∈ α(a1, a2, . . . , an)}.

Proof. First we check that the hyperoperation α̂ is well defined. Let ρ(ai) =
ρ(bi), for 1 ≤ i ≤ n. Then, we have aiρbi. Since ρ is regular, it follows that

α(a1, a2, . . . , an) ρ α(b1, a2, . . . , an),

α(b1, a2, . . . , an) ρ α̂(b1, b2, . . . , an),

...

α(b1, b2, · · ·n−1 , an) ρ α(b1, b2, . . . , bn).

Hence for every u1 ∈ α(a1, a2, . . . , an) there exists u2 ∈ α(b1, b2, . . . , bn) such that
ρ(u1) = ρ(u2). It follows that

α̂(ρ(a1), ρ2(a2), . . . , ρ(an)) ⊆ α̂(ρ(b1), ρ2(b2), . . . , ρ(bn)),

and similarly we obtain the converse inclusion. Now, we check the associativity
of n-ary hyperoperation α. Let

ρ(u) ∈ α̂
(
ρ(xi)

k−1
i=1 , β̂(ρ(yi))

n
i=1, ρ(xi)

n
i=k+1)

)
.

This means that there exists ρ(v) ∈ β̂(ρ(yi))
n
i=1 such that

ρ(u) ∈ α̂
(
ρ(xi)

k−1
i=1 , ρ(v), ρ(xi)

n
i=k+1

)
.
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Hence there exist u1 ∈ α
(
xk−1
i , v, xni=k+1

)
such that ρ(u) = ρ(u1) and there exist

v1 ∈ β(yi)
n
i=1 such that ρ(v) = ρ(v1). Since ρ is regular there exist

u2 ∈ α
(
xk−1
i , v1, x

n
k+1

)
⊆ α

(
xk−1
i , β(yi)

n
1 , x

n
k+1

)
= β

(
xk−1
i , α(yi)

n
1 , x

n
k+1

)
,

such that ρ(u2) = ρ(u). Hence we obtain that there exists u3 ∈ α(yi)
n
1 such that

u2 ∈ β
(
xk−1
i , u3, x

n
k+1

)
. We have

ρ(u) = ρ(u3) ∈ β̂
(
ρ(xi)

k−1
i=1 , α̂(ρ(yi))

n
i=1, ρ(xi)

n
i=k+1)

)
.

It follows that

α̂
(
ρ(xi)

k−1
i=1 , β̂(ρ(yi))

n
i=1, ρ(xi)

n
i=k+1)

)
⊆ β̂

(
ρ(xi)

k−1
i=1 , α̂(ρ(yi))

n
i=1, ρ(xi)

n
i=k+1)

)
.

Similarly, we obtain the converse inclusion.

Let [G : ρ] be a (Γ̂, n)-semihypergroup, aρb and xi ∈ G, for 1 ≤ i ≤ n − 1.
Since ρ is well-defined. If u ∈ α

(
xk−1
i , a, xnk+1

)
, then

ρ(u) ∈ α̂
(
ρ(xk−1

1 ), ρ(a), ρ(xnk+1)
)

= α̂
(
ρ(xk−1

1 ), ρ(b), ρ(xnk+1)
)

=
{
ρ(v) : v ∈ α

(
xk−1

1 , b, xnk+1

)}
.

Hence there exists v ∈ α
(
xk−1

1 , b, xnk+1

)
such that uρv, whence

α
(
xk−1

1 , a, xnk+1

)
ρ α

(
xk−1

1 , b, xnk+1

)
.

This completes the proof.

Definition 3.3. Let G be a (Γ, n)-semihypergroup and C be a nonempty subset
of G. We say that C is an α-complete part of G if for any nonzero number n, the
following implication holds:

C ∩ αn[n] 6= ∅ =⇒ αn[n] ⊆ C.

If for every α ∈ Γ, C is an α-complete part, then C is complete part.

Example 7. Let An = [n, n + 1), Γ = Z. Then, R is a (Z, n)-semihypergroup
by n-ary hyperoperation defined in the Example 3. For every n ∈ Z, An is a
complete part but C = N is not complete part.
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Proposition 3.4. Let G be a (Γ, n)-semihypergroup and ρ is a strongly regular
relation on G, then for every a ∈ G, the equivalence class ρ(a) is a complete part
of G.

Proof. Suppose that for n ∈ N, ρ(a) ∩ αn[n] 6= ∅. This implies that there exists
b ∈ αn[n] such that ρ(a) = ρ(b). Let π : G −→ [G : ρ] be a natural homomorphism.
Then, we have

π(a) = π(αn[n]) = π
(
α
(
xi−1

1 , βn−1[(n−1)], x
n
i+1

))
= α̂

(
π(xi−1

1 , π(βn−1[n−1]), π(xi)
n
i+1

)
.

This meanies that αn[n] ⊆ π(a) = ρ(a).

Definition 3.5. Let A be a subset of G. Then, the smallest complete part of G
that contain A denoted by by C(A).

Denote Kα
1 (A) = A and for every n ≥ 1 denote

Kα
n+1(A) =

{
x ∈ G : ∃m ∈ N, x ∈ αm[m],K

α
n (A) ∩ αm[m] 6= ∅

}
,

and Kα(A) =
⋃
n≥1K

α
n (A). Let K(A) =

⋃
α∈ΓKα(A).

Proposition 3.6. Let G be a (Γ, n)-hypergroup. Then

(1) For every n ≥ 2, we have Kα
n (Kα

2 (x)) = Kα
n+1(x),

(2) the following relation is equivalence

x ∼ y ⇐⇒ ∃n ≥ 1, x ∈ Kn(y).

Proof. Suppose that n = 2. We have

Kα
2 (Kα

2 (x)) =
{
y ∈ G : ∃n ∈ N, y ∈ αn[n],K

α
2 (x) ∩ αn[n] 6= ∅

}
= Kα

3 (x).

Let Kα
n−1(Kα

2 (x)) = Kα
n (x). Then,

Kα
n (Kα

2 (x)) =
{
y ∈ G : ∃n ∈ N, y ∈ αn[n],K

α
n−1(Kα

2 (x)) ∩ αn[n] 6= ∅
}

= Kα
n+1(x).

(2) Suppose that n = 2 and x ∈ Kα
2 (y). Then,

x ∈ Kα
2 (y) = {z ∈ G : ∃m ∈ N, z ∈ αn[n],K

α
1 (y) ∩ αn[n] 6= ∅}.
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Hence {x, y} ⊆ αn[n] which implies that y ∈ Kα
2 (x). Let

x ∈ Kn−1(y)⇐⇒ y ∈ Kn−1(x),

and x ∈ Kα
n (y). Then, there exists n ∈ N such that x ∈ αn[n] and b ∈

αn[n] ∩ Kα
n−1(y). This implies that b ∈ Kα

2 (x) and y ∈ Kα
n−1(b). Hence y ∈

Kα
n−1(Kα

2 (x)) = Kα
n (x). In the same way, the converse implication holds.

Proposition 3.7. Let G be a (Γ, n)-hypergroup and A be a nonempty subset of
G. Then, C(A) = K(A).

Proof. Suppose that A is a nonempty subset of G and K(A) ∩ αn[n] 6= ∅. Then
there exist m ≥ 1 and α ∈ Γ such that Kα

m(A) ∩ αn[n] 6= ∅. Hence αn[n] ⊆
Kα
m+1(A), which means that αn[n] ⊆ K(A).

Let A ⊆ B and B is a complete part of G, then we show that K(A) ⊆ B.
We have Kα

1 (A) ⊆ B and suppose that Kα
n (A) ⊆ B. We check that Kα

n+1(A) ⊆
B. Let b ∈ Kα

n+1(A). Then there exists m ∈ N, such that b ∈ αm[m] and
Kα
n (A) ∩ αm[m] 6= ∅. Hence B ∩ αm[m] 6= ∅ and we obtain αm[m] ⊆ B. Therefore,

b ∈ B and K(A) = C(A).

Proposition 3.8. Let G be a (Γ, n)-hypergroup. Then, the relation ∼ and β∗

are coincide.

Proof. Suppose that xβy. Then there exists α ∈ Γ such that x ∈ Kα
2 (y) ⊆ K(y).

This implies that x ∼ y. Now, if we have x ∼ y, then there exists α ∈ Γ and n ≥ 1
such that xKα

n+1y which implies that αn[n] ∩Kα
n (y) 6= ∅. Let a ∈ αn[n] ∩Kα

n (y).
Hence aβx. Since a1 ∈ Kα

n (y), it follows that there exists αn−1[n−1] such that
αn−1[n−1] ∩Kα

n−1[n−1](y) 6= ∅. Let a2 ∈ αn−1[n−1] ∩Kα
n−1(y). Hence a1βa2 and

a2 ∈ Kα
n−1[n−1](y). After finite number of steps, we obtain that there exists an−1

and an such that an−1βan and an ∈ Kα
n−(n−1)(y) = {y}. Therefore, xβ∗y.

4. Θ relation and T Functor

The category CΓH in which the objects are (Γ, n)-semihypergroups. For (Γ, n)-
semihypergroups G1 and G2 Mor(G1, G2), are epimorphism from G1 to G2 and
CG is the category of all semigroups. The purpose of this section is to introduce
the concept of T - functor. First we shall present the fundamental definitions.

We denote the equivalence class of element x ∈ G by β∗(x). Let

[G : Γ] =
{

(β∗(xi))
n−1
i=1 , α)

}
.
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We define the relation Θ as follows:(
(β∗(xi))

n−1
i=1 , α), ((β∗(yj))

n−1
j=1 , β)

)
∈ Θ

if an only if

α̂
(
(β∗(xi))

n−1
i=1 , β

∗(x)
)

= β̂
(

(β∗(yj))
n−1
j=1 , β

∗(x)
)
,

for every β∗(x) ∈ [G : β∗]. Obviously, Θ is an equivalence relation. Let
Θ
(
(β∗(xi))

n−1
i=1 , α)

)
denote the equivalence class contain (β∗(xi))

n−1
i=1 , α). Let

∆[G] be the set of all equivalence classes on [G : Γ]. We define operation as
follows:

Θ
(
(β∗(xi))

n−1
i=1 , α)

)
◦Θ

(
(β∗(yi))

n−1
i=1 , β)

)
= Θ

(
α̂
(
β∗(xi))

n−1
i=1 , β

∗(y1)
)
, β∗(yi)

n−1
i=2 , β

)
,

for every β∗(xi), β
∗(yi) ∈ [G : β∗], 1 ≤ i ≤ n− 1 and α, β ∈ Γ. This operation is

well-defined. Indeed,

Θ
(
(β∗(xi))

n−1
i=1 , α1

)
= Θ

(
(β∗(ai))

n−1
i=1 , α2

)
,

Θ
(
(β∗(yi))

n−1
i=1 , β1

)
= Θ

(
(β∗(bi))

n−1
i=1 , β2

)
.

Hence
α̂1(β∗(xi))

n−1
i=1 , β

∗(x)) = α̂2(β∗(ai))
n−1
i=1 , β

∗(x)),

β̂1(β∗(yi))
n−1
i=1 , β

∗(y)) = β̂2(β∗(bi))
n−1
i=1 , β

∗(y)),

for every β∗(x), β∗(y) ∈ [G : β∗]. We have

β̂2

(
α̂2(β∗(ai)

n−1
i=1 , β

∗(b1)), β∗(bi)
n−2
i=2 , β

∗(y))
)

= α̂2

(
β∗(ai)

n−1
i=1 , β̂2(β∗(bi)

n−1
i=1 , β

∗(y))
)

= α̂2

(
β∗(ai)

n−1
i=1 , β̂1(β∗(yi))

n−1
i=1 , β

∗(y))
)

= β̂1

(
α̂2(β∗(ai)

n−1
i=1 , β

∗(y1)), β∗(yi)
n−1
i=2 , β

∗(y)
)

= β̂1

(
α̂1(β∗(xi)

n−1
i=1 , β

∗(y1)), β∗(yi)
n−1
i=2 , β

∗(y)
)
.

This implies that

Θ
(
(α̂2(β∗(ai)

n−1
i=1 , β

∗(b1)), β∗(bi)
n−2
i=2 , β2

)
= Θ

(
(α̂1(β∗(xi)

n−1
i=1 , β

∗(y1)), β∗(yi)
n−2
i=2 , β1

)
.
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Hence
Θ
(
(β∗(xi))

n−1
i=1 , α1

)
◦Θ

(
(β∗(yi))

n−1
i=1 , β1

)
= Θ

(
(α̂2(β∗(ai)

n−1
i=1 , β

∗(b1)), β∗(bi)
n−2
i=2 , β2

)
= Θ

(
(α̂1(β∗(xi)

n−1
i=1 , β

∗(y1)), β∗(yi)
n−2
i=2 , β1

)
= Θ

(
(β∗(ai))

n−1
i=1 , α2

)
◦Θ

(
(β∗(bi))

n−1
i=1 , β2

)
.

Thus ◦ is well-defined.

Moreover, the function ◦ is associative. Indeed,

Θ(β∗(xi))
n−1
i=1 , α) ◦

(
Θ(β∗(yi))

n−1
i=1 , β) ◦Θ(β∗(zi)

n−1
i=1 , γ)

)
= Θ

(
(β∗(xi))

n−1
i=1 , α)

)
◦Θ(β̂(β∗(yi)

n−1
i=1 , β

∗(z1)), β∗(z2), . . . , β∗(zn−1), γ))

= Θ
((
α̂(β∗(xi)

n−1
i=1 , β̂(β∗(yi)

n−1
i=1 , β

∗(z1)), β∗(zi)
n
i=2)

)
, γ
)
.

On the other hand,(
Θ(β∗(xi)

n−1
i=1 , α) ◦Θ(β∗(yi))

n−1
i=1 , β)

)
◦Θ(β∗(zi)

n−1
i=1 , γ)

=
(

Θ
(
α̂(β∗(xi)

n−1
i=1 , β

∗(y1)), β∗(yi)
(n−1)
i=2 , β

))
◦Θ(β∗(zi)

n−1
i=1 , γ)

= Θ
(
β̂(α̂(β∗(xi)

n−1
i=1 , β

∗(y1)), β∗(yi)
n−1
i=2 , β

∗(z1)), β∗(zi)
n−1
i=2 , γ

)
.

Hence (∆[G], ◦) is a semigroup.

Let G be a (Γ, n)-semihypergroup. Then, for ∆1 ⊆ ∆ and G1 ⊆ G we define

[∆1] =
{
β∗(x) ∈ [G : β∗] : Θ

(
β∗(x), β∗(y)n−1

i=2 α
)
∈ ∆1, ∀α ∈ Γ, β∗(y) ∈ [G : β∗]

}
,

[[G1]] =
{

Θ(β∗(xi)
n−1
i=1 , αi) ∈ ∆ : α̂i(β

∗(xi)
n−1
i=1 , β

∗(x)) ∈ G1, ∀β∗(x) ∈ [G : β∗]
}
.

Proposition 4.1. Let G be a commutative (Γ, n)-semihypergroup. Then, the
following statements are true:

1. If ∆1 ⊆ ∆[G] is an ideal, then [∆1] is a (Γ, n)-ideal of [G : β∗].

2. If G1 is a (Γ, n)-ideal of [G : β∗], then [[G1]] is an ideal of ∆[G].

Proof. (i) Suppose that ∆1 is an ideal of ∆[G] and β∗(x) ∈ ∆1. This implies
that Θ(β∗(x), β∗(y))n−1

i=2 , α) ∈ ∆1, for every α ∈ Γ and β∗(y) ∈ [G : β∗]. Let
Θ (β∗(yi))

n−1
i=1 , β) ∈ ∆[G]. Since ∆1 is an ideal of ∆[G], thus
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Θ
(
β∗(yi))

n−1
i=1 , β

)
◦Θ

(
β∗(x), β∗(y))n−1

i=2 , α
)
∈ ∆1

=⇒ Θ
(
β̂(β∗(yi))

n−1
i=1 , β

∗(x)), β∗(y))n−1
i=2 ), α

)
∈ ∆1.

So for every α, β ∈ Γ and β∗(yi)
n−1
i=1 ∈ [G : β∗], we have β̂(β∗(yi))

n−1
i=1 , β

∗(x)) ∈ ∆1.
Therefore, ∆1 is an ideal of [G : β∗].

(ii) Let Θ(β∗(xi)
n−1
i=1 , α) ∈ [[G1]] and Θ(β∗(yi)

n−1
i=1 , β) ∈ ∆[G]. Hence for every

β∗(x) ∈ [G : β∗],

α̂(β∗(x1), β∗(x2), . . . , β∗(xn−1), β∗(x)) ∈ G1.

On the other hand

Θ(β∗(xi)
n−1
i=1 , α) ◦Θ(β∗(yi)

n−1
i=1 , β) = Θ

(
α̂(β∗(xi)

n−1
i=1 , β

∗(y1)), β∗(yi)
n−1
i=2 , β

)
.

Since G1 is an ideal of [G : β∗], this implies that

Θ
(
α̂(β∗(xi)

n−1
i=1 , β

∗(y1)), β∗(yi)
n−1
i=2 ), β

)
∈ G1.

Therefore, [[G1]] is a right ideal of ∆[G]. This completes the proof.

Let G be a (Γ, n)-semihypergroup and e is a natural element of G. It is easy to
see that Θ(β∗(e)n−1

i=1 , α) is a left unity of ∆[G].

Proposition 4.2. Let G be a (Γ, n)-semihypergroup with natural element and I
be an ideal of G. [[[I]]] = I.

Proof. Suppose that β∗(x) ∈ [[[I]]]. Hence Θ(β∗(x), β∗(yi)
n−1
i=1 , α) ∈ [[I]], for

every α ∈ Γ and β∗(yi)
n−1
i=1 ∈ [G : β∗]. So α̂(β∗(x), β(e)ni=1) ⊆ I. Since G has a

left unity, thus β∗(x) ∈ I. Therefore, I = [[I]].

Theorem 4.3. Let G1 and G2 be (Γ1, n) and (Γ2, n)-semihypergroups and (ϕ, f) :
G1 × Γ1 −→ G2 × Γ2 be an epimorphism. Then, there exists a homomorphism

(̂ϕ, f) : ∆[G1] −→ ∆[G2]. Moreover, if (ϕ, f) is an isomorphism then, (̂ϕ, f) is
isomorphism.

Proof. We define

(̂ϕ, f)
(
Θ(β∗(xi)

n−1
i=1 , α)

)
= Θ

(
β∗(ϕ(xi))

n−1
i=1 , f(α)

)
.
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First we prove that (̂ϕ, f) is well-defined. Let

Θ(β∗(xi)
n−1
i=1 , α) = Θ(β∗(yi)

n−1
i=1 , β).

This implies that

(ϕ, f)
(
α̂(β∗(xi)

n−1
i=1 , β

∗(x))
)

= (ϕ, f)
(
β̂(β∗(yi)

n−1
i=1 , β

∗(x))
)
,

for every β∗(x) ∈ [G : β∗]. Hence

f̂(α)
(
β∗(ϕ(xi))

n−1
i=1 , β

∗(ϕ(x))
)

= f̂(β)
(
β∗(ϕ(yi))

n−1
i=1 , β

∗(ϕ(x))
)
.

Since ϕ is onto,

f̂(α)
(
β∗(ϕ(xi))

n−1
i=1 , β

∗(y)
)

= f̂(β)
(
β∗(ϕ(yi))

n−1
i=1 , β

∗(y)
)
,

for every β∗(y) ∈ [G2 : β∗]. Hence the function (̂ϕ, f) is well defined. Let
Θ
(
β∗(xi)

n−1
i=1 , α

)
,Θ(β∗

(
yi)

n−1
i=1 , β

)
∈ ∆[G1]. Then,

(̂ϕ, f)
(
Θ(β∗(xi)

n−1
i=1 , α) ◦Θ(β∗(yi)

n−1
i=1 , β)

)
= (̂ϕ, f)

(
Θ(α̂(β∗(xi)

n−1
i=1 , β

∗(y1)), β∗(yi)
n−1
i=2 , β

)
= Θ(f̂(α)(β∗(ϕ(xi))

n−1
i=1 , β

∗(ϕ(y1)), β∗(ϕ(yi))
n−1
i=2 , f(β))

= Θ(β∗(ϕ(xi))
n−1
i=1 , f(α)) ◦Θ(β∗

(
ϕ(yi))

n−1
i=1 , f(β)

)
= (̂ϕ, f)

(
Θ(β∗(xi)

n−1
i=1 , α)

)
◦ (̂ϕ, f)

(
Θ(β∗(yi)

n−1
i=1 , β)

)
.

Hence (̂ϕ, f) is homomorphism.

Let (ϕ, f) be one to one and (̂ϕ, f)
(
Θ(β∗(xi)

n−1
i=1 , α)

)
= (̂ϕ, f)

(
Θ(β∗(yi)

n−1
i=1 , β)

)
.

Then, we have

Θ(β∗
(
ϕ(xi))

n−1
i=1 , f(α)

)
= Θ

(
β∗(ϕ(yi))

n−1
i=1 , f(β)

)
=⇒ f̂(α)(β∗

(
ϕ(xi))

n−1
i=1 , β

∗(y)
)

= f̂(β)
(
β∗(ϕ(yi))

n−1
i=1 , β

∗(y)
)

=⇒ f̂(α)
(
β∗(ϕ(xi))

n−1
i=1 , β

∗(ϕ(x)
)

= f̂(β)(β∗
(
ϕ(yi))

n−1
i=1 , β

∗(ϕ(x)
)

=⇒ (ϕ, f)
(
Θ(β∗(xi)

n−1
i=1 , α)

)
= (ϕ, f)

(
Θ
(
β∗(yi)

n−1
i=1 , α

))
=⇒ Θ(β∗(xi)

n−1
i=1 , α) = Θ

(
β∗(yi)

n−1
i=1 , α

)
,

where y = ϕ(x). One can see that if (ϕ, f) is an onto, then (̂ϕ, f) is an onto.
This completes the proof.
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Proposition 4.4. Let G1 and G2 be (Γ1, n) and (Γ2, n)-semihypergroups, respec-
tively. Then,

∆[G1 ×G2] ∼= ∆[G1]×∆[G2].

Proof. Suppose that β∗, β∗1 and β∗2 be fundamental relations on G1 × G2, G1

and G2, respectively. It is easy to see that

[G1 ×G2 : β∗] ∼= [G1 : β∗1 ]× [G2 : β∗2 ].

We define

ψ : ∆[G1 ×G2] −→ ∆[G1]×∆[G2]

Θ
(
β∗((xi, yi)

n−1
i=1 ), (α1, α2)

)
−→

(
Θ(β∗(xi)

n−1
i=1 , α1),Θ(β∗(yi)

n−1
i=1 , α2)

)
.

Obviously, this function is well-defined. We proof ψ is a homomorphism.

ψ
(
Θ
(
β∗(xi, yi)

n−1
i=1 , (α1, α2)

)
Θ
(
β∗(zi, wi)

n−1
i=1 , (β1, β2)

))
= ψ

(
Θ
(
α1(β∗(xi)

n−1
i=1 , β

∗(z1)), β∗(zi)
n−1
i=2 ),

Θ(α2(β∗(yi)
n−1
i=1 , β

∗(w1)), β∗(wi)
n−1
i=2

)
, (β1, β2)

)
=
(
Θ(α1(β∗(xi)

n−1
i=1 , β

∗(z1)), β∗(zi)
n−1
i=2 , β1),

Θ(α2(β∗(yi)
n−1
i=1 , β

∗(w1)), β∗(wi)
n−1
i=2 ), β2

)
= ψ

(
Θ
(
β∗(xi, yi)

n−1
i=1 , (α1, α2)

))
◦ ψ
(
Θ
(
β∗(zi, wi)

n−1
i=1 , (β1, β2)

))
.

It is easy to see that ψ is onto and one to one.

Theorem 4.5. There exists an exact covariant functor between the category of
(Γ, n)-semihpergroup and the category of semigroups.

Proof. Suppose that G1, G2 and G3 are (Γ1, n), (Γ2, n) and (Γ3, n)-semihyper-
groups, respectively and (ϕ1, f1) : (G1,Γ1) −→ (G2,Γ2), (ϕ2, f2) : (G2,Γ2) −→
(G3,Γ3) are epimorphisms. We define

T (G1,Γ1) = ∆[G1], T (G2,Γ2) = ∆[G2], T (G3,Γ3) = ∆[G3].

T ((ϕ1, f1)) = ̂(ϕ1, f1), T ((ϕ2, f2)) = ̂(ϕ2, f2).

T ((ϕ2, f2) ◦ (ϕ1, f1)) Θ
(
β∗(xi)

n−1
i=1 , α

)
= T ((ϕ2 ◦ ϕ1, f2 ◦ f1))Θ

(
β∗(xi)

n−1
i=1 , α

)
= Θ(ϕ2 ◦ ϕ1(β∗(xi)

n−1
i=1 ), f2 ◦ f1(α))

= T ((ϕ2, f2)) ◦ T ((ϕ1, f1))Θ(β∗(xi)
n−1
i=1 , α).
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for every Θ
(
β∗(xi)

n−1
i=1 , α

)
∈ ∆[G1]. On the other hand, if Id is an identity

homomorphism, then T (Id) is an identity homomorphism. Therefore, T is a
covariant functor. By Theorem 4.3, T is an exact functor. This complete the
proof.
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