
Discussiones Mathematicae
General Algebra and Applications 35 (2015) 97–103
doi:10.7151/dmgaa.1230

NON-DETERMINISTIC LINEAR HYPERSUBSTITUTIONS

Nareupanat Lekkoksung and Prakit Jampachon

Department of Mathematics, Faculty of Science
Khon Kaen University, Khon Kaen

40002, Thailand

e-mail: n.lekkoksung@kkumail.com
prajam@kku.ac.th

Abstract

A non-deterministic hypersubstitution maps operation symbols to sets
of terms of the corresponding arity. A non-deterministic hypersubstitution
of type τ is said to be linear if it maps any operation symbol to a set
of linear terms of the corresponding arity. We show that the extension
of non-deterministic linear hypersubstitutions of type τ map sets of linear
terms to sets of linear terms. As a consequence, the collection of all non-
deterministic linear hypersubstitutions forms a monoid. Non-deterministic
linear hypersubstitutions can be applied to identities and to algebras of
type τ .
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1. Introduction

In 2008, K. Denecke, P. Glubudom and J. Koppitz [3] studied non-deterministic
hypersubstitutions and considered the extensions of such mappings. They also
showed that the set of all non-deterministic hypersubstitutions forms a monoid
under a certain binary operation.

The concept of linear terms has a long history as old as the concept of terms.
In 2012, M. Couceiro and E. Lehtonen [2] gave a sufficient and necessary condition
that a set of operations is the set of linear term operations of some algebra.

In this paper, we define non-deterministic linear hypersubstitutions and we
show that the set of all non-deterministic linear hypersubstitutions forms a monoid.

Let n ≥ 1 be a natural number. Let Xn = {x1, . . . , xn} be an n-element
set. The set Xn is called an alphabet and its elements are called variables. Let
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{fi : i ∈ I} be the set of operation symbols, indexed by the set I. The sets Xn

and {fi : i ∈ I} have to be disjoint. To every operation symbol fi, we assign a
natural number ni ≥ 1, called the arity of fi. As in the definition of algebra, the
sequence τ = (ni)i∈I of all the arities is called the type. With this notation for
operation symbols and variables, we can define the terms of type τ , (see also [5]).

The n-ary terms of type τ are defined in the following inductive way:

(i) Every variable xi ∈ Xn is an n-ary term.

(ii) If t1, . . . , tni are n-ary terms and fi is an ni-ary operation symbol, then
fi(t1, . . . , tni) is an n-ary term.

(iii) The set Wτ (Xn) = Wτ (x1, . . . , xn) of all n-ary terms is the smallest set
which contains x1, . . . , xn and is closed under finite application of (ii).

We denote by Wτ (X) the set of all terms of type τ over the countably infinite
alphabet X, that is,

Wτ (X) :=

∞⋃
n=1

Wτ (Xn).

Let t be a term. We denote the set of variables occurring in the term t by var(t).

A term in which each variables occurs at most once, is said to be linear. For a
formal definition of n-ary linear terms we replace condition (ii) in the definition
of terms by a slightly different condition.

Definition [2]. An n-ary linear term of type τ is defined in the following induc-
tive way:

(i) For any j ∈ {1, . . . , n}, xj ∈ Xn is an n-ary linear term (of type τ).

(ii) If t1, . . . , tni are n-ary linear terms and if var(tj) ∩ var(tk) = ∅ for all
1 ≤ j < k ≤ ni, then fi(t1, . . . , tni) is an n-ary linear term.

(iii) The set W lin
τ (Xn) of all n-ary linear terms is the smallest set which contains

x1, . . . , xn and is closed under finite application of (ii).

The set of all linear terms of type τ over the countably infinite alphabet X is
defined by

W lin
τ (X) :=

⋃
n≥1

W lin
τ (Xn).

The set Wτ (X) of all terms of type τ is closed under substitution. This is not true
for linear terms as the following example shows: Let τ = (2) and let f be a binary
operation symbol. Then f(x1, x2) and f(x2, x1) are linear, but if we substitute
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f(x1, x2) for x1 and f(x2, x1) for x2 in f(x1, x2), we obtain f(f(x1, x2), f(x2, x1)),
which is not a linear.

One of the most interesting operations on terms is the superposition. Let
Wτ (Xn) and Wτ (Xm) be the set of all n-ary and m-ary terms, respectively. Then
the superposition

Snm : Wτ (Xn)× (Wτ (Xm))n →Wτ (Xm)

is defined inductively as follows:

(i) Snm(xj , t1, . . . , tn) := tj , xj ∈ Xn and ti ∈Wτ (Xm).

(ii) Snm(fi(s1, . . . , sni), t1, . . . , tni) :=
fi(S

n
m(s1, t1, . . . , tni), . . . , S

n
m(sni , t1, . . . , tni)).

We can extend the superposition operation Snm to sets of terms by the following:
Let m,n be natural numbers. We define

Ŝnm : P(Wτ (Xn))× (P(Wτ (Xm)))n → P(Wτ (Xm))

inductively as follows. Let B ∈ P(Wτ (Xn)), B1, . . . , Bn ∈ P(Wτ (Xm)).

(i) If B = {xj} for 1 ≤ j ≤ n, then Ŝnm({xj}, B1, . . . , Bn) := Bj .

(ii) If B = {fi(t1, . . . , tni)} and if we suppose that the sets Ŝnm({tj}, B1, . . . , Bn)
for 1 ≤ j ≤ ni are already defined, then Ŝnm({fi(t1, . . . , tn)}, B1, . . . , Bn) :=
{fi(r1, . . . , rni) : rj ∈ Ŝnm({tj}, B1, . . . , Bn), 1 ≤ j ≤ ni}.

(iii) If B is an arbitrary non-empty subset of Wτ (Xn), we define

Ŝnm(B,B1, . . . , Bn) :=
⋃
b∈B

Ŝnm({b}, B1, . . . , Bn).

If one of the sets B,B1, . . . , Bn is empty, we define Ŝnm(B,B1, . . . , Bn) = ∅.
Let τ = (ni)i∈I be a type and let (fi)i∈I be an indexed set of operation symbols

of type τ. Any mapping

σ : {fi : i ∈ I} → P(Wτ (X))

with σ(fi) ⊆ Wτ (Xni) for i ∈ I is called a non-deterministic hypersubstitution
of type τ [3]. For short we write non-deterministic hypersubstitution as nd-
hypersubstitution. Every nd-hypersubstitution σ of type τ induces a mapping
σ̂ : P(Wτ (X))→ P(Wτ (X)) by the following inductive definition [3]:

(i) σ̂[∅] := ∅,
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(ii) σ̂[{x}] := {x} for every variable x ∈ X,

(iii) For t = fi(t1, . . . , tni) ∈Wτ (X) we set

σ̂[{fi(t1, . . . , tni)}] := Ŝni
m (σ(fi), σ̂[{t1}], . . . , σ̂[{tni}])

if we inductively assume that σ̂[{tj}], 1 ≤ j ≤ ni are already defined. Here
ni is the arity of fi.

(iv) σ̂[B] :=
⋃
{σ̂[{t}] : t ∈ B ⊆Wτ (X)}.

We denote by Hypnd(τ) the set of all non-deterministic hypersubstitutions of
type τ .

In [3], the authors used the mapping σ̂ for a nd-hypersubstitution σ on the
set Hypnd(τ) to define a binary operation

◦nd : Hypnd(τ)×Hypnd(τ)→ Hypnd(τ)

by σ1 ◦nd σ2 := σ̂1 ◦ σ2 for all σ1, σ2 ∈ Hypnd(τ). The nd-hypersubstitution σid
with σid(fi) := {fi(x1, . . . , xni)}, for all i ∈ I, is an identity element. They have
shown that the algebra (Hypnd(τ); ◦nd, σid) is a monoid.

2. Non-deterministic linear hypersubstitutions

Non-deterministic linear hypersubstitution (for short, nd-linear hypersupstitu-
tion) map operation symbols to sets of linear terms of the corresponding arity.
Formally, we define nd-linear hypersubstitutions in the following way:

Definition. A non-deterministic linear hypersubstitution of type τ is a mapping

σ : {fi | i ∈ I} → P(W lin
τ (X))

with σ(fi) ⊆W lin
τ (Xni) for i ∈ I.

We denote Hypndlin(τ) by the set of all non-deterministic linear hypersubstitutions.
For the extension of an nd-linear hypersubstitution σ the following holds:

Lemma 1 [1]. For any linear hypersubstitution σ and any linear term t we have

var(t) ⊇ var(σ̂[t]).

Lemma 2. For any nd-linear hypersubstitution σ and any set of linear terms T
we have

var(T ) ⊇ var(σ̂[T ]).
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Proof. If T is a one-element set, then we will give a proof by induction on the
complexity of the linear term which forms the only element of the one-element
set T .

1. If T = {xj}, where xj ∈ X, then

var(T ) = var({xj})
= var(σ̂[{xj}])
= var(σ̂[T ]).

2. If T = {fi(t1, . . . , tni)} and we assume that

var({tj}) ⊇ var(σ̂[{tj}]),

for all 1 ≤ j ≤ ni, then

var(T ) = var({fi(t1, . . . , tni)})

=

ni⋃
j=1

var({tj})

⊇
ni⋃
j=1

var(σ̂[{tj}])

⊇ var(Ŝni
ni

(σ(fi), σ̂[{t1}], . . . , σ̂[{tni}]))

= var(σ̂[{fi(t1, . . . , tni)}])

= var(σ̂[T ]).

3. If T is an arbitrary non-empty subset of W lin
τ (X), then

var(T ) =
⋃
t∈T

var({t})

⊇
⋃
t∈T

var(σ̂[{t}])

= var(
⋃
t∈T

σ̂[{t}])

= var(σ̂[T ]).

4. If T is the empty set, then ∅ = var(T ) = var(σ̂[∅]) = var(∅) = ∅.

Therefore we have var(T ) ⊇ var(σ̂[T ]).
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Lemma 3. For a set of linear terms of the form T = {fi(t1, . . . , tni)} and an
nd-linear hypersubstitution σ we have

var(σ̂[{tj}]) ∩ var(σ̂[{tk}]) = ∅

for all 1 ≤ j < k ≤ ni.

Proof. By the previous lemma we have var({tl}) ⊇ var(σ̂[{tl}]) for any 1 ≤ l ≤
ni and thus

∅ = var({tj}) ∩ var({tk}) ⊇ var(σ̂[{tj}]) ∩ var(σ̂[{tk}]).

Therefore var(σ̂[{tj}]) ∩ var(σ̂[{tk}]) = ∅.

Proposition 4. The extension of any nd-linear hypersubstitution maps non-
empty sets of linear terms to non-empty sets of linear terms.

Proof. Let T be an element in P(W lin
τ (X)) and let σ ∈ Hypndlin(τ).

1. If T is a one-element set, then we will give a proof by induction on the
complexity of the linear term which forms the only element of the one-
element set T .

(a) If T = {xj}, where xj ∈ X, then

σ̂[T ] = σ̂[{xj}] = {xj},

is a set of linear terms.

(b) If T = {fi(t1, . . . , tnj )}, by the previous lemma we have var(σ̂[{tj}])∩
var(σ̂[{tk}]) = ∅ for all 1 ≤ j < k ≤ ni, and if we assume that
σ̂[{t1}], . . . , σ̂[{tni}] are sets of linear terms, then

σ̂[T ] = σ̂[{fi(t1, . . . , tni)}]
= Ŝni

n (σ(fi), σ̂[{t1}], . . . , σ̂[{tni}]),

is a set of linear terms.

2. If T is an arbitrary non-empty subset of W lin
τ (X), then σ̂[T ] =

⋃
t∈T

σ̂[{t}]

is a non-empty set of linear terms.

Thus, the extension of an nd-linear hypersubstitution maps non-empty sets of
linear terms to non-empty sets of linear terms.
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Since the extension of an nd-linear hypersubstitution of type τ maps P(W lin
τ (X))

to P(W lin
τ (X)) we may define a product σ1 ◦nd σ2, by

σ1 ◦nd σ2 := σ̂1 ◦ σ2.

Here ◦ is the usual composition of mappings. By the previous lemma (σ1 ◦nd
σ2)(fi) = σ̂1[σ2(fi)] is a set of linear terms.

From the above facts we obtain the following theorem.

Theorem 5. The set of all nd-linear hypersubstitutions is a submonoid of the
set of all nd-hypersubstitution. That is, (Hypndlin(τ), ◦nd, σid) is a submonoid of
the monoid (Hypnd(τ), ◦nd, σid).
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