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Abstract

We present a new criterion for the existence of Hilbert-symbol equiva-
lence of two number fields. In principle, we show that the system of local
conditions for this equivalence may be expressed in terms of Clifford invari-
ants in place of Hilbert-symbols, shifting the focus from Brauer groups to
Brauer-Wall groups.
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1. Introduction and notation

The Witt functor is a covariant functor from the category of fields into the cat-
egory of commutative rings, that assigns to a field K its Witt ring WK. This
is a set of similarity classes of non-degenerate symmetric bilinear forms over K,
equipped with an addition induced by an orthogonal sum and a multiplication
induced by a tensor product. Thus, in a certain sense, the Witt ring encodes
information about all possible orthogonal geometries over K. It is natural to
wonder to what extend arithmetic of a field determines possible geometries over
it. This leads to the notion of Witt equivalence—a concept introduced in 1970 by
D. Harrison (see [8]). Two fields are said to be Witt equivalent, when there is an
isomorphism between their Witt rings. Hence, in a sense, Witt equivalent fields
admit the same classes of orthogonal geometries, notwithstanding the differences
in their underlying arithmetics. The basic tool for studying Witt equivalence
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of global fields is a so called Hilbert-symbol equivalence (HSE for short) intro-
duced1 in the beginning of 1990s by R. Perlis, K. Szymiczek, P.E. Conner and
R. Litherland (see [12]). Since then, HSE has been studied in numerous papers
(see e.g. [1, 2, 16, 17]) and generalized to higher degree forms ([3, 6, 7, 13])
and also to other classes of fields. In fact, recently Hilbert-symbol equivalence
has became an independent research subject by itself for a number of authors
including: A. Czogała and B. Rothkegel ([4, 5]), T.C. Palfrey ([11]), M. Somodi
([14, 15]).

For any field K, by Br(K) we denote the Brauer group of similarity classes of
central simple algebras over K and by BW(K) the Brauer-Wall group of classes
of central simple graded K-algebras (for details see e.g. [10, Chapter IV]). It
is well known, that the subgroup of Br(K) consisting of elements of order 2 is
generated by classes of quaternion algebras. We shall denote this group by Q(K).
Its counterpart—a subgroup of BW(K) generated by classes of graded quaternion
algebras will be denoted GQ(K).

Let K and L be two number fields. Denote by ΩK (respectively ΩL) the set
of all primes of K (resp. L), i.e. the set of classes of non-trivial valuations on
K (resp. L). A pair of maps (t, T ), where t : K̇/K̇2 ∼−−→ L̇/L̇2 is an isomorphism of
the square class groups and T : ΩK

∼−−→ ΩL is a bijection of their sets of primes,
is called a Hilbert-symbol equivalence (c.f. [18, §6.4] or [4, p. 14]), if for every
prime p ∈ ΩK the map

(1)
(
a, b

Kp

)
7→
(
ta, tb

LTp

)

induces a group isomorphism Q(Kp)
∼−−→ Q(LTp).

Remark 1. Since for every prime p of a number field K, the group Q(Kp) either
consists of two elements {±1} or is trivial (when Kp

∼= C), thus the condition in
the above definition of HSE is usually stated in the form:

(2) ∀
a,b∈K̇/K̇2

(
a, b

Kp

)
= 1 ⇐⇒

(
ta, tb

LTp

)
= 1,

for every prime p ∈ ΩK .

In a nutshell, HSE is a pair of maps compatible with splitting of local quaternion
algebras or, in other words, with splitting of 2-fold Pfister forms. The aim of
this paper is to prove a new criterion for two number fields to be Hilbert-symbol
equivalent, that slightly relaxes this condition, by moving the focus from classes

1When introduced, Hilbert-symbol equivalence was first called “reciprocity equivalence”, the
present term was introduced later.
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of central simple algebras to classes of central simple graded algebras. That is,
instead of controlling splitting of 2-fold Pfister forms, we demand the control only
over binary forms, yet still achieving the same overall effect. To this end, we shall
say that a pair of maps (t, T ) as above is a graded Hilbert-symbol equivalence (or
GHSE in short), if for every prime p ∈ ΩK the map

(3)
〈
a, b

Kp

〉
7→
〈
ta, tb

LTp

〉

induces a group isomorphism Λp : GQ(Kp)
∼−−→ GQ(LTp).

As mentioned above, in HSE we control the splitting of 2-fold Pfister forms,
while in GHSE we control only binary forms. Therefore, it does not come as a
surprise that every HSE is a GHSE (see Proposition 6). Nevertheless, in this
paper we prove that for any two given number fields HSE exists if and only if
GHSE exists (Theorem 13). Moreover, if any of the fields in question has a single
dyadic point, then every GHSE is in fact a HSE (Proposition 14).

Remark 2. A similar problem was treated earlier in [9] for function fields. In
the former paper, we defined a “graded quaternion-symbol equivalence” by the
condition

∀
a,b∈K̇/K̇2

〈
a, b

Kp

〉
= 1 ⇐⇒

〈
ta, tb

LTp

〉
= 1

analogous to (2). For function fields, it turned out to be equivalent to our present
condition (3). It is not clear, but rather unlikely, whether this would still hold
for number fields. Hence, in t his paper we use the latter condition and to avoid
confusion the new name “graded Hilbert-symbol equivalence”.

2. Main result

In what follows, we freely use a “triple-notation” (see [10, Ch. V, §3] for details)
for elements of a Brauer-Wall group. In this notation, a class of a graded quater-
nion algebra

〈a,b
F

〉
is represented by a triple

((a,b
F

)
, 0,−ab

)
. If (t, T ) is a GHSE,

then by definition for every prime p ∈ ΩK , the map Λp : GQ(Kp)
∼−−→ GQ(LTp)

is an isomorphism. In the triple notation

Λp

((a, b
Kp

)
, 0,−ab

)
=
(( ta, tb

LTp

)
, 0,−tatb

)
.

We begin with a description of the group GQ. It is obvious that for any prime
p ∈ ΩK (resp. q ∈ ΩL) the group GQ(Kp) (resp. GQ(Lq)) consists of all the
triples (A, 0, a) with A ∈ Q(Kp) and a ∈ K̇p/K̇2

p (reps. A ∈ Q(Lq) and a ∈ L̇q/L̇2
q).

Thus:
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Observation 3. There is a canonical bijection between GQ(Kp) and Q(Kp) ×
K̇p/K̇2

p. In particular:

1. if p is an infinite complex prime, then |GQ(Kp)| = 1;

2. if p is an infinite real prime, then |GQ(Kp)| = 4;

3. if p is a finite non-dyadic prime, then |GQ(Kp)| = 8;

4. if p is a finite dyadic prime, then |GQ(Kp)| = 2n+3, where n = (Kp : Q2).

In general the bijection GQ(Kp) → Q(Kp) × K̇p/K̇2
p is not a group isomorphism.

For instance, if Kp
∼= R, then GQ(Kp) is a cyclic group (the class (1, 0,−1) being

a generator), while Q(Kp)× K̇p/K̇2
p
∼= Z2 × Z2. Similarly, if p is finite non-dyadic

and the level ofKp is s(Kp) = 2, then GQ(Kp) ∼= Z2×Z4 but Q(Kp)×K̇p/K̇2
p
∼= Z3

2.
Nevertheless, the above observation has immediate consequences:

Corollary 4. If (t, T ) is a GHSE, then T maps complex primes of K to complex
primes of L, real primes to real primes, finite non-dyadic primes to finite non-
dyadic primes and dyadic primes to dyadic primes.

Corollary 5. If p is a dyadic prime of K, then (Kp : Q2) = (LTp : Q2).

As it was mentioned in the introduction, every HSE is a GHSE.

Proposition 6. If (t, T ) is a Hilbert-symbol equivalence, then it is a graded
Hilbert-symbol equivalence.

Proof. Let (t, T ) be a HSE, we need to show that for every prime p ∈ ΩK , it
induces a group isomorphism Λp : GQ(Kp)

∼−−→ GQ(LTp). In the triple-notation,
an element of GQ(Kp) has a form (A, 0, a) with A ∈ Q(Kp) and a ∈ K̇p/K̇2

p.
Now, (t, T ) is a HSE, thus t factors through the local square class groups by [16,
Proposition 1.4] and, by definition, Γp

( a,b
Kp

)
:=
( ta,tb
LTp

)
is an isomorphism of Q(Kp)

and Q(LTp). It follows that Λp
(
(A, 0, a)

)
:= (ΓpA, 0, ta) is a bijection. It is in

fact it is a group isomorphism as:

Λp
(
(A, 0, a)(B, 0, b)

)
= Λp

((
A ·B ·

( a,b
Kp

)
, 0, ab

))
=
(
Γp
(
A ·B ·

( a,b
Kp

))
, 0, t(ab)

)
=
(
ΓpA · ΓpB ·

( ta,tb
LTp

)
, 0, tatb

)
=
(
ΓpA, 0, ta)(ΓpB, 0, tb) = Λp(A, 0, a) · Λp(B, 0, b).

Lemma 7. If (t, T ) is a GHSE, then for every prime p ∈ ΩK and every square
class a ∈ K̇/K̇2:
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1. a ∈ −K̇p/K̇2
p if and only if ta ∈ −L̇Tp/L̇2

Tp;

2. a ∈ K̇p/K̇2
p if and only if ta ∈ L̇Tp/L̇2

Tp.

Proof. The assertions are trivial, when p is a complex prime. Therefore, without
loss of generality, we may assume that p is not complex. In particular Q(Kp) ∼=
Z2 ∼= Q(LTp). Fix a square class a ∈ K̇/K̇2 and assume that a is a minus square
in Kp, hence the graded quaternion algebra

〈1,a
Kp

〉
splits and so does its image

Λp(
〈1,a
Kp

〉
) =

〈 1,ta
LTp

〉
. Consequently ta is a minus square in LTp. This proves the

first assertion.
Once we know that local minus squares are preserved we may show that it

preserves local squares, as well. In fact, this was already proved in [9, Observa-
tion 3.4] for arbitrary fields, but for sake of completeness, we repeat the argument.
Take any a ∈ K̇p/K̇2

p, it is a square if and only if
〈−1,a
Kp

〉
= 1. Now, Λp is an isomor-

phism, so that
〈 t(−1),ta

LTp

〉
= 1. We already know that t preserves minus squares,

therefore
〈−1,ta
LTp

〉
= 1. This means that ta is a square in LTp as claimed.

Lemma 8. If either F = R or F is a local field, then the group GQ(F ) is a
disjoint sum

GQ(F ) =
{〈a,b

F

〉
: a, b ∈ Ḟ/Ḟ 2

}
∪
{
(−1, 0, 1)

}
.

Proof. First we show that the triple (−1, 0, 1) ∈ GQ(F ) is not a class of any
graded quaternion algebra. Indeed, suppose a contrario, that there are a, b ∈ Ḟ/Ḟ 2

such that
〈a,b
F

〉
=
((a,b

F

)
, 0,−ab

)
= (−1, 0, 1). Then −ab is a square in F , hence

the binary quadratic form ax2 + by2 is hyperbolic and consequently
(a,b
F

)
splits.

Now, we need to show that every other element (A, 0, a) of GQ(F ) is a class
of some graded quaternion algebra. To this end, fix a square class a ∈ Ḟ/Ḟ 2.
Observe that (1, 0, a) =

((1,−a
F

)
, 0, a

)
is a class of

〈1,−a
F

〉
. Finally, when a is not

a square, we construct the class (−1, 0, a) as follows. Since a /∈ Ḟ 2, then there
is b ∈ Ḟ/Ḟ 2 such that

(a,b
F

)
= −1 by [10, Theorem VI.2.16]. Take, thus, a graded

quaternion algebra
〈−ab,b

F

〉
, then

〈−ab,b
F

〉
=
((−ab,b

F

)
, 0, ab2

)
=
((a,b

F

)(−b,b
F

)
, 0, a

)
= (−1, 0, a).

Now, since Λp maps classes of graded quaternion algebras to classes of graded
quaternion algebras, it follows that it must preserve the distinguished element
(−1, 0, 1).

Corollary 9. If (t, T ) is a GHSE, then for every prime p ∈ ΩK the associated
isomorphism Λp : GQ(Kp)→ GQ(LTp) maps (−1, 0, 1) to (−1, 0, 1).
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Recall (see e.g. [10, Chapter XI]) that the level s(F ) of a field F is a minimal
length of a sum of squares that represents−1, with the convention that s(F ) =∞,
when F is formally real.

Lemma 10. If F is a local field, then the level s(F ) of F equals the order, in the
group GQ(F ), of the class of the graded quaternion algebra

〈1,1
F

〉
.

Proof. Since F is a local field, therefore its level is either 1, 2 or 4 (the last
case is only possible when F is dyadic). Suppose that s(F ) = 1, thus −1 is a
square and consequently

〈1,1
F

〉
= (1, 0, 1) is the unit element of the Brauer-Wall

group of F . Now, let −1 be a sum of two squares but not a square itself. Then〈1,1
F

〉
= (1, 0,−1) 6= (1, 0, 1) while

〈1,1
F

〉2 = (1, 0,−1)2 =
(
1 · 1 ·

(−1,−1
F

)
, 0, 1

)
= (1, 0, 1),

because
(−1,−1

F

)
splits by [10, Corollary III.2.8(3)]. Finally assume that s(F ) = 4,

thus
(−1,−1

F

)
= −1, hence

〈1,1
F

〉2 = (−1, 0, 1) and
〈1,1
F

〉4 = (−1, 0, 1)2 = (1, 0, 1).

It follows that a graded Hilbert-symbol equivalence preserves not only local
squares but local levels, as well.

Corollary 11. If (t, T ) is a GHSE, then for every prime p ∈ ΩK , the local levels
s(Kp) and s(LTp) are equal.

Proposition 12. If there is a graded Hilbert-symbol equivalence of two number
fields K and L, then there is a Hilbert-symbol equivalence of K, L.

Proof. It is known (see [17]) that there exists a Hilbert-symbol equivalence of
two number fields if and only if their primes can be coupled in such a way that
complex primes of K are matched with complex primes of L, real primes with
real primes, finite non-dyadic primes with finite non-dyadic primes and finite
dyadic primes with finite dyadic primes and all the local levels are preserved and,
in addition, for dyadic primes the local degrees over Q2 are preserved. Observe
that all these hold in our case: the matching is obtained by Corollary 4, the local
levels of finite primes agree by the previous corollary (and for infinite primes they
agree trivially), finally the local degrees of dyadic primes are also preserved by
Observation 3.4.

Combining now Propositions 6 and 12 we may write our main result.

Theorem 13. Let K, L be two number fields, then the following conditions are
equivalent:
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1. there exists a graded Hilbert-symbol equivalence of K and L;

2. there exists a Hilbert-symbol equivalence of K and L;

3. fields K and L are Witt equivalent.

The equivalence of (2) and (3) above was actually the original reason for intro-
ducing HSE in the first place and is proved in [12]. The bottom line of the above
theorem is that the fact whether two number fields admit the same classes of
orthogonal geometries (Witt equivalence) is fully determined by the behavior of
Clifford invariants over them (graded Hilbert-symbol equivalence). If we addi-
tionally assume that any (hence both in view of Corollary 4) of the two fields has
a unique dyadic prime, then more can be said. Instead of the above “existential”
result, we can prove a full converse of Proposition 6.

Proposition 14. If a number field K has a unique dyadic prime, then every
graded Hilbert-symbol equivalence is a Hilbert-symbol equivalence.

Proof. Let (t, T ) be a GHSE. It follows immediately form Corollary 4 that the
field L has only one dyadic prime, say e = Td, where d is the unique dyadic
prime of K. First, take an infinite prime p of K. Then Tp ∈ ΩL is also an infinite
prime. If p is complex (and so is Tp), then all local quaternion algebras split at p
and the condition (2) is vacuously satisfied. Assume that p is a real prime, then( a,b
Kp

)
splits if and only if either a or b is a square in Kp. Now, GHSE preserves

local squares by Lemma 7. Consequently
( ta,tb
LTp

)
splits if and only if

( a,b
Kp

)
splits,

as desired.
Next, take a finite non-dyadic prime p ∈ ΩK . Then Tp is also finite and

non-dyadic. The local level s(Kp) is either 2 or 1. Suppose first that s(Kp) = 2.
Corollary 11 asserts that also s(LTp) = 2. The square class group K̇p/K̇2

p consists
of four elements: ±1, ±π, where π is a uniformizer of p. Denote ρ := tπ and
q := Tp. Now, t preserves local squares and local minus squares by Lemma 7,
hence ordq±ρ = 1. The unique non-split quaternion algebra over Kp is

(−1,±π
Kp

)
=(π,π

Kp

)
=
(−π,−π

Kp

)
. It is mapped to

(−1,±ρ
Lq

)
=
(ρ,ρ
Lq

)
=
(−ρ,−ρ

Lq

)
, which again is a

unique non-split quaternion algebra over LTp. Hence, the condition (2) is met.
Assume conversely that s(Kp) = s(LTp) = 1, then

( a,b
Kp

)
= 1 if and only if either

a ∈ K2
p or b ∈ K2

p or ab ∈ K2
p . But local squares are preserved, therefore

( a,b
Kp

)
= 1

if and only if
( ta,tb
LTp

)
= 1.

Finally, consider the unique dyadic prime d of K and take any two square-
classes a, b ∈ K̇/K̇2. Suppose that the local quaternion algebra

( a,b
Kd

)
splits. By

the Hilbert’s reciprocity formula we have
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1 =
∏

p∈ΩK

(
a, b

Kp

)
=

∏
p∈ΩK
p6=d

(
a, b

Kp

)
.

However, for all primes p 6= d we have already shown that (2) holds. Consequently
we can write

1 =
∏

p∈ΩK
p6=d

(
ta, tb

LTp

)
=
∏

q∈ΩL
q6=e

(
ta, tb

Lq

)
.

Using Hilbert’s reciprocity law again, we see that
( ta,tb
Le

)
= 1. Analogously one

shows that
( a,b
Kd

)
= −1 implies

( ta,tb
Le

)
= −1. Thus we have proved (2) for all

primes and so (t, T ) is a HSE.
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