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Abstract

The concept of Γ-semigroups is a generalization of semigroups. In this
paper, we consider Γ-groups and prove that every Γ-group is derived from a
group then, we give the number of Γ-groups of small order.
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1. Introduction

The concept of Γ-semigroups was introduced by Sen in [14] and [15] that is a
generalization of a semigroups. Many classical notions of semigroups have been
extended to Γ-semigroups (see, for example, [6, 10, 13, 16] and [17]). Dutta
and Adhikari have found operator semigroups of a Γ-semigroup to be a very
effective tool in studying Γ-semigroups [5]. Recently, Davvaz et al. introduced the
notion of Γ-semihypergroups as a generalization of semigroups, a generalization
of semihypergroups and a generalization of Γ-semigroups [2, 8, 9].
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The determination of all groups of a given order up to isomorphism is a very
old question in group theory. It was introduced by Cayley who constructed the
groups of order 4 and 6 in 1854, see [4]. In this paper, we prove that a Γ-group
is derived from a group. Also, we give the number of Γ-groups of small order.

2. Preliminaries

We begin this section by the definition of a Γ-semigroup.

Definition [14]. Let S and Γ be nonempty sets. Then S is called a Γ-semigroup
if there exists a mapping S × Γ × S −→ S, written (a, γ, b) by aγb, such that
satisfies the identities (aαb)βc = aα(bβc), for all a, b, c ∈ S and α, β ∈ Γ.

Let S be a Γ-semigroup and α be a fixed element in Γ. We define a.b = aαb,
for all a, b ∈ S. It is easy to check that (S, .) is a semigroup and we denote this
semigroup by Sα.

Let A and B be subsets of a Γ-semigroup S and ∆ ⊆ Γ. Then A∆B is defined
as follows

A∆B = {aδb | a ∈ A, b ∈ B, δ ∈ ∆}.

For simplicity we write a∆B and A∆b instead of {a}∆B and A∆{b}, respectively.
Also, we write AδB in place of A{δ}B.

Let S be an arbitrary semigroup and Γ any nonempty set. Define a mapping
S × Γ× S −→ S by aαb = ab, for all a, b ∈ S and α ∈ Γ. It is easy to see that S
is a Γ-semigroup. Thus a semigroup can be considered to be a Γ-semigroup.

In the following some examples of Γ-semigroups are presented.

Example 1. Let S = {i, 0,−i} and Γ = S. Then S is a Γ-semigroup under the
multiplication over complex number while S is not a semigroup under complex
number multiplication.

Example 2. Let S be the set of all m × n matrices with entries from a field F
and Γ be a set of n×m matrices with entries from F . Then S is a Γ-semigroup
with the usual product of matrices.

Example 3. Let (S,≤) be a totally ordered set and Γ be a nonempty subset of
S. We define

xγy = max{x, γ, y},

for every x, y ∈ S and γ ∈ Γ. Then S is a Γ-semigroup.
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Example 4. Let S = [0, 1] and Γ = N. For every x, y ∈ S and γ ∈ Γ we define
xγy = xy

γ . Then, for every x, y, z ∈ S and α, β ∈ Γ, we have

(xαy)βz =
xyz

αβ
= xα(yβz).

This means that S is a Γ-semigroup.

A nonempty subset T of a Γ-semigroup S is said to be a Γ-subsemigroup of S if
TΓT ⊆ T .

Definition. A nonempty subset I of Γ-semigroup S is called a left (right) Γ-
closed subset if SΓI ⊆ I (IΓS ⊆ I). A Γ-semigroup S is called a left (right)
simple Γ-semigroup if it has no proper left (right) Γ-closed subset. Also, S is
called a simple Γ-semigroup if it has no proper Γ-closed subset both left and
right.

3. Enumeration of Γ-groups of finite order

Definition. A Γ-semigroup S is called a Γ-group if Sα is a group, for every α ∈ Γ.

Example 5. Let S = {a, b, c, d, e, f} and Γ = {α, β}. Define the operations α
and β as the following tables

α a b c d e f

a b c d e f a
b c d e f a b
c d e f a b c
d e f a b c d
e f a b c d e
f a b c d e f

β a b c d e f

a c d e f a b
b d e f a b c
c e f a b c d
d f a b c d e
e a b c d e f
f b c d e f a

Then S is a Γ-group. One can see that f and e are the neutral elements of Sα
and Sβ, respectively.

Theorem 6. Let S be a Γ-semigroup. Then S is a simple Γ-semigroup if and
only if Sα is a group, for every α ∈ Γ.

Proof. Let S be a simple Γ-semigroup and α ∈ Γ, we show that Sα is a group.
Let I = aαS, where a ∈ S. Then, I is a right Γ-closed subset of S, indeed

IΓS = (aαS)ΓS ⊆ aαS = I.
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Since S has no proper right Γ-closed subset, we have I = aαS = S. Similarly, we
can prove that Sαa = S. Therefore, Sα is a group.

Conversely, let I 6= φ be a left Γ-closed subset of S, s ∈ S and a ∈ I. Since Sα
is a group, there exists t ∈ S such that s = tαa ⊆ SαI ⊆ I. So S = I. Similarly,
we can prove that S has no proper right Γ-closed subset. Therefore, S is simple.

Corollary 7. Let S be a Γ-semigroup. If Sα is a group, for some α ∈ Γ, then
Sβ is a group, for every β ∈ Γ.

Proof. Since Sα is a group, previous theorem implies that S is a simple Γ-group.
Thus, for every β ∈ Γ, Sβ is a group.

Corollary 8. Let S be a Γ-semigroup. If Sα is a group, for some α ∈ Γ, then S
is a Γ-group.

Proof. By Corollary 7, it is trivial.

Theorem 9. Let S be a Γ-group and α, β ∈ Γ. Then there exists b ∈ S such that
xβy = xαbαy, for every x, y ∈ S.

Proof. It is sufficient to put b = eαβeα, where eα is the neutral element of Sα.
Then, for every x, y ∈ S, we have

xβy = (xαeα)β(eααy)

= xα(eαβeα)αy

= xαbαy.

By the previous theorem, we conclude that every Γ-group is derived from a group.
Therefore, if S is a Γ-group, then we can consider (S, .) as a group and Γ ⊆ S, so
xαy is a product in (S, .), for every x, y ∈ S and α ∈ Γ. Also, Theorem 9 implies
that the groups Sα and Sβ are isomorphic, for every α, β ∈ Γ.

Definition. Let S be a Γ-group and S′ be a Γ′-group. If there exist mappings
ϕγ : S −→ S′, for every γ ∈ Γ, and f : Γ −→ Γ′ such that

ϕγ(xγy) = ϕγ(x)f(γ)ϕγ(y),

for all x, y ∈ S, then we say ({ϕγ}γ∈Γ, f) is a homomorphism between S and S′.
Also, if f and ϕγ , for every γ ∈ Γ, are bijections, then ({ϕγ}γ∈Γ, f) is called an
isomorphism, and S and S′ are called isomorphic.

Lemma 10. Let S be a Γ-group and S′ be a Γ′-group. Then S and S′ are
isomorphic if and only if S and S′ are isomorphic group and |Γ| = |Γ′|.
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Proof. If S and S′ are isomorphic, then by the previous definition, for every
α ∈ Γ, the groups Sα and S′α′ are isomorphic where f : S −→ S′ is a bijection
and f(α) = α′.

Theorem 11. The number of Γ-groups of order n is nk, up to isomorphism,
where k is the number of isomorphism classes of groups of order n.

Proof. Suppose that (S, ·) is a group and Γ and Γ′ be two subsets of S such that
|Γ| = |Γ′|. Then by previous lemma, there exists only one Γ-group derived from
(S, .), up to isomorphism. So, for every m ≤ n there exists only one Γ-group,
where Γ is a subset of S such that |Γ| = m. Thus, the number of Γ-groups derived
from (S, .) is n, up to isomorphism. Therefore, if there exist k groups of order n,
then we have nk Γ-groups of order n, up to isomorphism.

Corollary 12. Suppose that n > 1 is an integer with decomposition into primes
as n = pe11 p

e2
2 · · · perr . If n is prime to

r∏
j=1

(p
ej
j − 1)

and ej ≤ 2, then the number of Γ-groups of order n is n2m, where m is the
number of j’s with ej = 2.

Proof. By a result of Rédei [12], all such groups of order n are abelian. Thus,
the number of isomorphism types of abelian groups of order n is given by

r∏
j=1

p(ej) = 2m,

where p(ej) is the number of partitions of ej ≤ 2 and p(1) = 1, p(2) = 2. The
proof is completed by applying Theorem 11.

The case m = 0 of the Corollary 12 was studied by Szele [18]. In connection with
this, Erdös [7] showed that the number of n ≤ x such that (n, ϕ(n)) = 1 (ϕ(n) is
Euler’s phi function) is asymptotic to

e−γx

logloglogx

where γ is Euler’s constant. For additional results on the asymptotic of n ≤ x
satisfying Rédei’s condition and asymptotic enumeration of finite abelian groups
see [1, 11, 19].

In the following table we give the number of Γ-groups of order less than 30.
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Order Number of Γ− groups Order Number of Γ− groups
1 1 16 224
2 2 17 17
3 3 18 90
4 8 19 19
5 5 20 100
6 12 21 42
7 7 22 44
8 40 23 23
9 18 24 360
10 20 25 50
11 11 26 52
12 60 27 135
13 13 28 112
14 28 29 29
15 15 30 120
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[11] A. Ivić, On the number of abelian groups of a given order and on certain related
multiplicative functions, J. Number Theory 16 (1983) 119–137.
doi:10.1016/0022-314x(83)90037-9
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