Discussiones Mathematicae General Algebra and Applications 35 (2015) 33–39 doi:10.7151/dmgaa.1228

ENUMERATION OF Γ -GROUPS OF FINITE ORDER

DARIUSH HEIDARI

Faculty of Science Mahallat institute of higher education Mahallat, Iran e-mail: dheidari82@gmail.com

AND

Marzieh Amooshahi

Faculty of Science Mahallat institute of higher education Mahallat, Iran e-mail: mz.amooshahi@gmail.com

Abstract

The concept of Γ -semigroups is a generalization of semigroups. In this paper, we consider Γ -groups and prove that every Γ -group is derived from a group then, we give the number of Γ -groups of small order.

Keywords: Γ -semigroup, Γ -group.

2010 Mathematics Subject Classification: 20N20.

1. INTRODUCTION

The concept of Γ -semigroups was introduced by Sen in [14] and [15] that is a generalization of a semigroups. Many classical notions of semigroups have been extended to Γ -semigroups (see, for example, [6, 10, 13, 16] and [17]). Dutta and Adhikari have found operator semigroups of a Γ -semigroup to be a very effective tool in studying Γ -semigroups [5]. Recently, Davvaz *et al.* introduced the notion of Γ -semihypergroups as a generalization of semigroups, a generalization of semihypergroups and a generalization of Γ -semigroups [2, 8, 9].

The determination of all groups of a given order up to isomorphism is a very old question in group theory. It was introduced by Cayley who constructed the groups of order 4 and 6 in 1854, see [4]. In this paper, we prove that a Γ -group is derived from a group. Also, we give the number of Γ -groups of small order.

2. Preliminaries

We begin this section by the definition of a Γ -semigroup.

Definition [14]. Let S and Γ be nonempty sets. Then S is called a Γ -semigroup if there exists a mapping $S \times \Gamma \times S \longrightarrow S$, written (a, γ, b) by $a\gamma b$, such that satisfies the identities $(a\alpha b)\beta c = a\alpha(b\beta c)$, for all $a, b, c \in S$ and $\alpha, \beta \in \Gamma$.

Let S be a Γ -semigroup and α be a fixed element in Γ . We define $a.b = a\alpha b$, for all $a, b \in S$. It is easy to check that (S, .) is a semigroup and we denote this semigroup by S_{α} .

Let A and B be subsets of a Γ -semigroup S and $\Delta \subseteq \Gamma$. Then $A\Delta B$ is defined as follows

$$A\Delta B = \{a\delta b \mid a \in A, b \in B, \delta \in \Delta\}.$$

For simplicity we write $a\Delta B$ and $A\Delta b$ instead of $\{a\}\Delta B$ and $A\Delta \{b\}$, respectively. Also, we write $A\delta B$ in place of $A\{\delta\}B$.

Let S be an arbitrary semigroup and Γ any nonempty set. Define a mapping $S \times \Gamma \times S \longrightarrow S$ by $a\alpha b = ab$, for all $a, b \in S$ and $\alpha \in \Gamma$. It is easy to see that S is a Γ -semigroup. Thus a semigroup can be considered to be a Γ -semigroup.

In the following some examples of Γ -semigroups are presented.

Example 1. Let $S = \{i, 0, -i\}$ and $\Gamma = S$. Then S is a Γ -semigroup under the multiplication over complex number while S is not a semigroup under complex number multiplication.

Example 2. Let S be the set of all $m \times n$ matrices with entries from a field F and Γ be a set of $n \times m$ matrices with entries from F. Then S is a Γ -semigroup with the usual product of matrices.

Example 3. Let (S, \leq) be a totally ordered set and Γ be a nonempty subset of S. We define

$$x\gamma y = \max\{x, \gamma, y\},\$$

for every $x, y \in S$ and $\gamma \in \Gamma$. Then S is a Γ -semigroup.

Example 4. Let S = [0, 1] and $\Gamma = \mathbb{N}$. For every $x, y \in S$ and $\gamma \in \Gamma$ we define $x\gamma y = \frac{xy}{\gamma}$. Then, for every $x, y, z \in S$ and $\alpha, \beta \in \Gamma$, we have

$$(x\alpha y)\beta z = \frac{xyz}{\alpha\beta} = x\alpha(y\beta z).$$

This means that S is a Γ -semigroup.

A nonempty subset T of a Γ -semigroup S is said to be a Γ -subsemigroup of S if $T\Gamma T \subseteq T$.

Definition. A nonempty subset I of Γ -semigroup S is called a left (right) Γ closed subset if $S\Gamma I \subseteq I$ ($I\Gamma S \subseteq I$). A Γ -semigroup S is called a left (right) simple Γ -semigroup if it has no proper left (right) Γ -closed subset. Also, S is called a simple Γ -semigroup if it has no proper Γ -closed subset both left and right.

3. Enumeration of Γ -groups of finite order

Definition. A Γ -semigroup S is called a Γ -group if S_{α} is a group, for every $\alpha \in \Gamma$.

Example 5. Let $S = \{a, b, c, d, e, f\}$ and $\Gamma = \{\alpha, \beta\}$. Define the operations α and β as the following tables

α	a	b	c	d	e	f		β	a	b	c	d	e	f
a	b	c	d	e	f	a	-	a	c	d	e	f	a	b
b	c	d	e	f	a	b		b	d	e	f	a	b	c
c	d	e	f	a	b	c		c	e	f	a	b	c	d
d	e	f	a	b	c	d		d	f	a	b	c	d	e
e	$\int f$	a	b	c	d	e		e	a	b	c	d	e	f
f	a	b	c	d	e	f		f	b	c	d	e	f	a

Then S is a Γ -group. One can see that f and e are the neutral elements of S_{α} and S_{β} , respectively.

Theorem 6. Let S be a Γ -semigroup. Then S is a simple Γ -semigroup if and only if S_{α} is a group, for every $\alpha \in \Gamma$.

Proof. Let S be a simple Γ -semigroup and $\alpha \in \Gamma$, we show that S_{α} is a group. Let $I = a\alpha S$, where $a \in S$. Then, I is a right Γ -closed subset of S, indeed

$$I\Gamma S = (a\alpha S)\Gamma S \subseteq a\alpha S = I$$

Since S has no proper right Γ -closed subset, we have $I = a\alpha S = S$. Similarly, we can prove that $S\alpha a = S$. Therefore, S_{α} is a group.

Conversely, let $I \neq \phi$ be a left Γ -closed subset of $S, s \in S$ and $a \in I$. Since S_{α} is a group, there exists $t \in S$ such that $s = t\alpha a \subseteq S\alpha I \subseteq I$. So S = I. Similarly, we can prove that S has no proper right Γ -closed subset. Therefore, S is simple.

Corollary 7. Let S be a Γ -semigroup. If S_{α} is a group, for some $\alpha \in \Gamma$, then S_{β} is a group, for every $\beta \in \Gamma$.

Proof. Since S_{α} is a group, previous theorem implies that S is a simple Γ -group. Thus, for every $\beta \in \Gamma$, S_{β} is a group.

Corollary 8. Let S be a Γ -semigroup. If S_{α} is a group, for some $\alpha \in \Gamma$, then S is a Γ -group.

Proof. By Corollary 7, it is trivial.

Theorem 9. Let S be a Γ -group and $\alpha, \beta \in \Gamma$. Then there exists $b \in S$ such that $x\beta y = x\alpha b\alpha y$, for every $x, y \in S$.

Proof. It is sufficient to put $b = e_{\alpha}\beta e_{\alpha}$, where e_{α} is the neutral element of S_{α} . Then, for every $x, y \in S$, we have

$$\begin{aligned} x\beta y &= (x\alpha e_{\alpha})\beta(e_{\alpha}\alpha y) \\ &= x\alpha(e_{\alpha}\beta e_{\alpha})\alpha y \\ &= x\alpha b\alpha y. \end{aligned}$$

By the previous theorem, we conclude that every Γ -group is derived from a group. Therefore, if S is a Γ -group, then we can consider (S, .) as a group and $\Gamma \subseteq S$, so $x \alpha y$ is a product in (S, .), for every $x, y \in S$ and $\alpha \in \Gamma$. Also, Theorem 9 implies that the groups S_{α} and S_{β} are isomorphic, for every $\alpha, \beta \in \Gamma$.

Definition. Let S be a Γ -group and S' be a Γ' -group. If there exist mappings $\varphi_{\gamma}: S \longrightarrow S'$, for every $\gamma \in \Gamma$, and $f: \Gamma \longrightarrow \Gamma'$ such that

$$\varphi_{\gamma}(x\gamma y) = \varphi_{\gamma}(x)f(\gamma)\varphi_{\gamma}(y),$$

for all $x, y \in S$, then we say $(\{\varphi_{\gamma}\}_{\gamma \in \Gamma}, f)$ is a homomorphism between S and S'. Also, if f and φ_{γ} , for every $\gamma \in \Gamma$, are bijections, then $(\{\varphi_{\gamma}\}_{\gamma \in \Gamma}, f)$ is called an isomorphism, and S and S' are called isomorphic.

Lemma 10. Let S be a Γ -group and S' be a Γ '-group. Then S and S' are isomorphic if and only if S and S' are isomorphic group and $|\Gamma| = |\Gamma'|$.

Proof. If S and S' are isomorphic, then by the previous definition, for every $\alpha \in \Gamma$, the groups S_{α} and $S'_{\alpha'}$ are isomorphic where $f: S \longrightarrow S'$ is a bijection and $f(\alpha) = \alpha'$.

Theorem 11. The number of Γ -groups of order n is nk, up to isomorphism, where k is the number of isomorphism classes of groups of order n.

Proof. Suppose that (S, \cdot) is a group and Γ and Γ' be two subsets of S such that $|\Gamma| = |\Gamma'|$. Then by previous lemma, there exists only one Γ -group derived from (S, .), up to isomorphism. So, for every $m \leq n$ there exists only one Γ -group, where Γ is a subset of S such that $|\Gamma| = m$. Thus, the number of Γ -groups derived from (S, .) is n, up to isomorphism. Therefore, if there exist k groups of order n, then we have nk Γ -groups of order n, up to isomorphism.

Corollary 12. Suppose that n > 1 is an integer with decomposition into primes as $n = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r}$. If n is prime to

$$\prod_{j=1}^{r} (p_j^{e_j} - 1)$$

and $e_j \leq 2$, then the number of Γ -groups of order n is $n2^m$, where m is the number of j's with $e_j = 2$.

Proof. By a result of Rédei [12], all such groups of order n are abelian. Thus, the number of isomorphism types of abelian groups of order n is given by

$$\prod_{j=1}^r p(e_j) = 2^m,$$

where $p(e_j)$ is the number of partitions of $e_j \leq 2$ and p(1) = 1, p(2) = 2. The proof is completed by applying Theorem 11.

The case m = 0 of the Corollary 12 was studied by Szele [18]. In connection with this, Erdös [7] showed that the number of $n \leq x$ such that $(n, \varphi(n)) = 1$ $(\varphi(n)$ is Euler's phi function) is asymptotic to

$$\frac{e^{-\gamma}x}{\log\log\log x}$$

where γ is Euler's constant. For additional results on the asymptotic of $n \leq x$ satisfying Rédei's condition and asymptotic enumeration of finite abelian groups see [1, 11, 19].

In the following table we give the number of Γ -groups of order less than 30.

Order	Number of Γ – groups	Order	Number of Γ – groups
1	1	16	224
2	2	17	17
3	3	18	90
4	8	19	19
5	5	20	100
6	12	21	42
7	7	22	44
8	40	23	23
9	18	24	360
10	20	25	50
11	11	26	52
12	60	27	135
13	13	28	112
14	28	29	29
15	15	30	120

Acknowledgement

We would like to thank the referee for his/her great effort in proofreading the manuscript.

References

- E. Alkan, On the enumeration of finite abelian and solvable groups, J. Number Theory 101 (2003) 404–423. doi:10.1016/s0022-314x(03)00055-6
- [2] S.M. Anvariyeh, S. Mirvakili and B. Davvaz, On Γ-hyperideals in Γ-semihypergroups, Carpathian J. 26 (2010) 11–23.
- [3] A.H. Clifford and G.B. Preston, The Algebraic Theory of Semigroups (American Mathematical Society, 1967).
- [4] A. Cayley, On the theory of groups, as depending on the symbolic equation θⁿ = 1, Phil. Mag. 7 (1854) 40-47.
- [5] T.K. Dutta and N.C. Adhikary, On Γ-semigroup with right and left unities, Soochow J. of Math. 19(4) (1993) 461–474.
- [6] T.K. Dutta and N.C. Adhikari, On Noetherian Γ-semigroup, Kyungpook Math. J. 36 (1996) 89–95.
- [7] P. Erdös, Some asymptotic formulas in number theory, J. Indian Math. Soc. 12 (1948) 75–78.
- [8] D. Heidari, S.O. Dehkordi and B. Davvaz, Γ-Semihypergroups and their properties, U.P.B. Sci. Bull., Series A 72(1) (2010) 197-210.

- [9] D. Heidari and B. Davvaz, Γ-hypergroups and Γ-Semihypergroups associated to binary relations, Iran. J. Sci. Technol. Trans. A Sci. A2 (2011) 69–80.
- [10] D. Heidari and M. Amooshahi, Transformation semigroups associated to Γsemigroups, Discuss. Math. Gen. Algebra Appl. 33(2) (2013) 249–259. doi:10.7151/dmgaa.1024
- [11] A. Ivić, On the number of abelian groups of a given order and on certain related multiplicative functions, J. Number Theory 16 (1983) 119–137. doi:10.1016/0022-314x(83)90037-9
- [12] L. Rédei, Das scheife Produkt in der Gruppentheorie, Comment. Math. Helv. 20 (1947) 225–264. doi:10.1007/bf02568131
- [13] N.K. Saha, On Γ-semigroup II, Bull. Cal. Math. Soc. 79 (1987) 331-335.
- [14] M.K. Sen, On Γ-semigroups, in: Proc. of the Int. Conf. on Algebra and it's Appl, Decker Publication (Ed(s)), (New York, 1981).
- [15] M.K. Sen and N.K. Saha, On Γ -semigroup I, Bull. Cal. Math. Soc. **78** (1986) 180-186. doi:10.1090/s0002-9904-1944-080095-6
- [16] A. Seth, Γ-group congruences on regular Γ-semigroups, Internat. J. Math. Math. Sci. (1992) 103–106. doi:10.1155/so161171292000115
- [17] M. Siripitukdet and A. Iampan, On the Ideal Extensions in Γ-semigroups, Kyungpook Math. J. 48 (2008) 585–591. doi:10.5666/kmj.2008.48.4.585
- [18] T. Szele, Uber die endichen ordnungszahlen, zu denen nur eine gruppe gehört, Comment. Math. Helv. 20 (1947) 265–267. doi:10.1007/bf02568132
- [19] R. Warlimont, On the set of natural numbers which only yield orders of abelian groups, J. Number Theory 20 (1985) 354–362. doi:10.1016/0022-314x(85)90026-5

Received 26 October 2014 First revised 22 January 2015 Second revised 10 February 2015