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Abstract

The notions of a period of an element of a pseudo-BCI-algebra and a
periodic pseudo-BCI-algebra are defined. Some of their properties and char-
acterizations are given.
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1. Introduction

In 1966 K. Iséki introduced the notion of BCI-algebra (see [10]). BCI-algebras
have connections with BCI-logic being the BCI-system in combinatory logic which
has application in the language of functional programming. The name of BCI-
algebra originates from the combinatories B, C, I in combinatory logic.

The concept of pseudo-BCI-algebra has been introduced in [1] as an extension
of BCI-algebras. Pseudo-BCI-algebras are algebraic models of some extension of
a noncommutative version of the BCI-logic (see [5] for details). These algebras
have also connections with other algebras of logic such as pseudo-BCK-algebras,
pseudo-BL-algebras and pseudo-MV-algebras introduced by G. Georgescu and A.
Iorgulescu in [6, 7] and [8], respectively. More about those algebras the reader
can find in [9].

In this paper we define the notion of a period of an element of a pseudo-BCI-
algebra. Some of its properties are also given. Finally, we study the concept of
a periodic pseudo-BCI-algebra proving some of its interesting characterization.
All necessary material needed in the sequel is presented in Section 2 making our
exposition self-contained.

http://dx.doi.org/10.7151/dmgaa.1227
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2. Preliminaries

A pseudo-BCI-algebra is a structure X = (X;≤,→, , 1), where ≤ is binary
relation on a set X, → and  are binary operations on X and 1 is an element of
X such that for all x, y, z ∈ X, we have

(a1) x→ y ≤ (y → z) (x→ z), x y ≤ (y  z)→ (x z),

(a2) x ≤ (x→ y) y, x ≤ (x y)→ y,

(a3) x ≤ x,

(a4) if x ≤ y and y ≤ x, then x = y,

(a5) x ≤ y iff x→ y = 1 iff x y = 1.

It is obvious that any pseudo-BCI-algebra (X;≤,→, , 1) can be regarded as
a universal algebra (X;→, , 1) of type (2, 2, 0). Note that every pseudo-BCI-
algebra satisfying x→ y = x y for all x, y ∈ X is a BCI-algebra.

Every pseudo-BCI-algebra satisfying x ≤ 1 for all x ∈ X is a pseudo-BCK-
algebra. A pseudo-BCI-algebra which is not a pseudo-BCK-algebra will be called
proper.

Any pseudo-BCI-algebra X = (X;≤,→, , 1) satisfies the following, for all
x, y, z ∈ X,

(b1) if 1 ≤ x, then x = 1,

(b2) if x ≤ y, then y → z ≤ x→ z and y  z ≤ x z,

(b3) if x ≤ y and y ≤ z, then x ≤ z,

(b4) x→ (y  z) = y  (x→ z),

(b5) x ≤ y → z iff y ≤ x z,

(b6) x→ y ≤ (z → x)→ (z → y), x y ≤ (z  x) (z  y),

(b7) if x ≤ y, then z → x ≤ z → y and z  x ≤ z  y,

(b8) 1→ x = 1 x = x,

(b9) ((x→ y) y)→ y = x→ y, ((x y)→ y) y = x y,

(b10) x→ y ≤ (y → x) 1, x y ≤ (y  x)→ 1,

(b11) (x→ y)→ 1 = (x→ 1) (y  1), (x y) 1 = (x 1)→ (y → 1),

(b12) x→ 1 = x 1.
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If (X;≤,→, , 1) is a pseudo-BCI-algebra, then, by (a3), (a4), (b3) and (b1),
(X;≤) is a poset with 1 as a maximal element.

Example 2.1 ([3]). Let X = {a, b, c, d, e, f, 1} and define binary operations →
and  on X by the following tables:

→ a b c d e f 1

a 1 d e b c a a
b c 1 a e d b b
c e a 1 c b d d
d b e d 1 a c c
e d c b a 1 e e
f a b c d e 1 1
1 a b c d e f 1

 a b c d e f 1

a 1 c b e d a a
b d 1 e a c b b
c b e 1 c a d d
d e a d 1 b c c
e c d a b 1 e e
f a b c d e 1 1
1 a b c d e f 1

Then X = (X;→, , 1) is a (proper) pseudo-BCI-algebra. Observe that it is not
a pseudo-BCK-algebra because a � 1.

Example 2.2 ([11]). Let Y1 = (−∞, 0] and let ≤ be the usual order on Y1.
Define binary operations → and  on Y1 by

x→ y =

{
0 if x ≤ y,
2y
π arctan(ln( yx)) if y < x,

x y =

{
0 if x ≤ y,

ye
− tan(πx

2y
)

if y < x

for all x, y ∈ Y1. Then Y1 = (Y1;≤,→, , 0) is a pseudo-BCK-algebra, and hence
it is a nonproper pseudo-BCI-algebra.

Example 2.3 ([4]). Let Y2 = R2 and define binary operations → and  and a
binary relation ≤ on Y2 by

(x1, y1)→ (x2, y2) = (x2 − x1, (y2 − y1)e
−x1),

(x1, y1) (x2, y2) = (x2 − x1, y2 − y1e
x2−x1),

(x1, y1) ≤ (x2, y2)⇔ (x1, y1)→ (x2, y2) = (0, 0) = (x1, y1) (x2, y2)

for all (x1, y1), (x2, y2) ∈ Y2. Then Y2 = (Y2;≤,→, , (0, 0)) is a proper pseudo-
BCI-algebra. Notice that Y2 is not a pseudo-BCK-algebra because there exists
(x, y) = (1, 1) ∈ Y2 such that (x, y) � (0, 0).
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Example 2.4 ([4]). Let Y be the direct product of pseudo-BCI-algebras Y1 and
Y2 from Examples 2.2 and 2.3, respectively. Then Y is a proper pseudo-BCI-
algebra, where Y = (−∞, 0] × R2 and binary operations → and  and binary
relation ≤ are defined on Y by

(x1, y1, z1)→ (x2, y2, z2) ={
(0, y2 − y1, (z2 − z1)e

−y1) if x1 ≤ x2,

(2x2π arctan(ln(x2x1 )), y2 − y1, (z2 − z1)e
−y1) if x2 < x1,

(x1, y1, z1) (x2, y2, z2) ={
(0, y2 − y1, z2 − z1e

y2−y1) if x1 ≤ x2,

(x2e
− tan(

πx1
2x2

)
, y2 − y1, z2 − z1e

y2−y1) if x2 < x1,

(x1, y1, z1) ≤ (x2, y2, z2)⇔ x1 ≤ x2 and y1 = y2 and z1 = z2.

Notice that Y is not a pseudo-BCK-algebra because there exists (x, y, z) =
(0, 1, 1) ∈ Y such that (x, y, z) � (0, 0, 0).

Let X = (X;→, , 1) be a pseudo-BCI-algebra. Define

x→0 y = y,

x→n y = x→ (x→n−1 y),

where x, y ∈ X and n = 1, 2, . . .. Similarly we define x  n y for any n =
0, 1, 2, . . ..

Proposition 2.5. Let X = (X;→, , 1) be a pseudo-BCI-algebra. The following
are equivalent for any x, y ∈ X and n = 0, 1, 2, . . .,

(i) x→n y = 1,

(ii) x n y = 1.

Proof. It follows by (a5) and (b4).

For any pseudo-BCI-algebra X = (X;→, , 1) the set

K(X) = {x ∈ X : x ≤ 1}

is a subalgebra of X (called pseudo-BCK-part of X , see [1]). Then (K(X);→,
 , 1) is a pseudo-BCK-algebra. Note that if X is a pseudo-BCK-algebra, then
X = K(X).
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It is easily seen that for the pseudo-BCI-algebras X , Y1, Y2 and Y from Examples
2.1, 2.2, 2.3 and 2.4, respectively, we have K(X) = {f, 1}, K(Y1) = Y1, K(Y2) =
{(0, 0)} and K(Y ) = {(x, 0, 0) : x ≤ 0}.

An element a of a pseudo-BCI-algebra X is called a maximal element of X if
for every x ∈ X the following holds

if a ≤ x, then x = a.

We will denote by M(X) the set of all maximal elements of X . Obviously,
1 ∈M(X). Notice that M(X)∩K(X) = {1}. Indeed, if a ∈M(X)∩K(X), then
a ≤ 1 and, by above implication, a = 1. Moreover, observe that 1 is the only
maximal element of a pseudo-BCK-algebra. Therefore, for a pseudo-BCK-algebra
X , M(X) = {1}. In [2] there is shown that M(X) = {x ∈ X : x = (x→ 1)→ 1}.
Moreover we have the following simple lemma.

Lemma 2.6. Let X = (X;→, , 1) be a pseudo-BCI-algebra and x, y ∈ X. If
x ≤ y, then x→ 1 = x 1 = y → 1 = y  1.

Observe that for the pseudo-BCI-algebras X , Y1, Y2 and Y from Examples 2.1,
2.2, 2.3 and 2.4, respectively, we have M(X) = {a, b, c, d, e, 1}, M(Y1) = {0},
M(Y2) = Y2 and M(Y ) = {(0, y, z) : y, z ∈ R}.

Let X = (X;→, , 1) be a pseudo-BCI-algebra. Then X is p-semisimple if it
satisfies for all x ∈ X,

if x ≤ 1, then x = 1.

Note that if X is a p-semisimple pseudo-BCI-algebra, then K(X) = {1}. Hence,
if X is a p-semisimple pseudo-BCK-algebra, then X = {1}. Moreover, as it is
proved in [4], M(X) is a p-semisimple pseudo-BCI-subalgebra of X and X is
p-semisimple if and only if X = M(X).

Proposition 2.7 ([4]). Let X = (X;→, , 1) be a pseudo-BCI-algebra. The
following are equivalent:

(i) X is p-semisimple,

(ii) for all x, y ∈ X, (x→ 1) y = (y  1)→ x,

(iii) for all x ∈ X, x = (x→ 1)→ 1.

It is not difficult to see that the pseudo-BCI-algebras X , Y1 and Y from Examples
2.1, 2.2 and 2.4, respectively, are not p-semisimple, and the pseudo-BCI-algebra
Y2 from Example 2.3 is a p-semisimple algebra.

Theorem 2.8. Let X = (X;→, , 1) be a pseudo-BCI-algebra. The following
are equivalent:
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(i) X is p-semisimple,

(ii) X = {x→ 1 : x ∈ X}.

Proof. (i)⇒(ii) Take y ∈ X. Since X is p-semisimple, y = (y → 1)→ 1. Putting
x = y → 1 ∈ X, we get y = x→ 1.

(ii)⇒(i) Take a ∈ X. We show that a is a maximal element of X , that is,
X = M(X). Suppose that a = x → 1 for some x ∈ X. Let y ∈ X be such that
a ≤ y. Then (x→ 1)→ y = 1 and, by (b4), (b9), (b11) and (b12), we have

y → a = y → (x→ 1) = y → (((x→ 1)→ 1) 1)

= ((x→ 1)→ 1) (y → 1) = ((x→ 1)→ y)→ 1

= 1→ 1 = 1.

Hence y ≤ a. So, y = a, that is, a ∈M(X) and X is p-semisimple.

For p-semisimple pseudo-BCI-algebras we have the following useful fact.

Theorem 2.9 [4]. A pseudo-BCI-algebra X = (X;→, , 1) is p-semisimple if
and only if (X; ·,−1 , 1) is a group, where x · y = (x → 1)  y = (y  1) → x,
x−1 = x→ 1 = x 1, x→ y = y · x−1 and x y = x−1 · y for any x, y ∈ X.

Let X = (X;→, , 1) be a pseudo-BCI-algebra. We say that a subset D of X is
a deductive system of X if it satisfies: (i) 1 ∈ D, (ii) for all x, y ∈ X, if x ∈ D
and x → y ∈ D, then y ∈ D. Under this definition, {1} and X are the simplest
examples of deductive systems. Note that the condition (ii) can be replaced by
(ii’) for all x, y ∈ X, if x ∈ D and x y ∈ D, then y ∈ D. It can be easily proved
that for any x, y ∈ X, if x ∈ D and x ≤ y, then y ∈ D. A deductive system D
of a pseudo-BCI-algebra X = (X;→, , 1) is called closed if D is closed under
operations→ and , that is, if D is a subalgebra of X . It is not difficult to show
(see [3]) that a deductive system D of a pseudo-BCI-algebra X = (X;→, , 1)
is closed if and only if for any x ∈ D, x → 1 = x  1 ∈ D. Obviously, the
pseudo-BCK-part K(X) is a closed deductive system of X .

Proposition 2.10 ([2]). Let X = (X;→, , 1) be a pseudo-BCI-algebra and
M(X) be finite. Then every deductive system of X is closed.

Let X = (X;→, , 1) be a pseudo-BCI-algebra. It is obvious that the intersection
of arbitrary number of deductive systems is a deductive system. Hence, for any
A ⊆ X there exists the least deductive system containing A. Denote it by D(A)
and call it the deductive system generated by A. In particular, if A = {a1, . . . , an},
then we write D(a1, . . . , an) instead of D({a1, . . . , an}). It is also obvious that
D(∅) = {1}.
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Proposition 2.11 ([3]). Let X = (X;→, , 1) be a pseudo-BCI-algebra. For
any a ∈ X,

D(a) = {1} ∪ {x ∈ X : a→n x = 1 for some n ∈ N}
= {1} ∪ {x ∈ X : a n x = 1 for some n ∈ N}.

3. Period of elements

Proposition 3.1. Let X = (X;→, , 1) be a pseudo-BCI-algebra. The following
hold for any x, y, z ∈ X and m,n = 0, 1, 2, . . .,

(i) x→n 1 = x n 1,

(ii) x→n x = x→n−1 1, x n x = x n−1 1,

(iii) (x→ 1)→n 1 = (x→n 1)→ 1, (x 1) n 1 = (x n 1) 1,

(iv) x→ (y  n z) = y  n (x→ z), x (y →n z) = y →n (x z),

(v) x→m (y  n z) = y  n (x→m z),

(vi) x→n 1 = ((x→ 1)→ 1)→n 1, x n 1 = ((x 1) 1) n 1.

Proof. (i) Follows from (b4) and (b12).

(ii) Obvious.

(iii) We prove first equation by induction. The proof of second equation is
analogous. For n = 0 it is obvious. Assume it for n = k:

(x→ 1)→k 1 = (x→k 1)→ 1.

We have, by definition, assumption, (i), (b11) and (b12),

(x→ 1)→k+1 1 = (x→ 1)→ ((x→ 1)→k 1) = (x→ 1)→ ((x→k 1)→ 1)

= (x 1)→ ((x k 1) 1) = (x (x k 1)) 1

= (x k+1 1) 1 = (x→k+1 1)→ 1.

So, the equation holds for any n = 0, 1, 2, . . ..

(iv) We prove first equation by induction. The proof of second equation is
analogous. For n = 0 it is obvious. Assume it for n = k, that is,

x→ (y  k z) = y  k (x→ z).
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We have, by definition, assumption and (b4),

x→ (y  k+1 z) = x→ (y  (y  k z)) = y  (x→ (y  k z))

= y  (y  k (x→ z)) = y  k+1 (x→ z).

Hence, the equation holds for any n = 0, 1, 2, . . ..
(v) We get it easily by (iv).
(vi) We prove first equation by induction. The proof of second equation is

analogous. For n = 0 it is obvious. Assume it for n = k, that is,

x→k 1 = ((x→ 1)→ 1)→k 1.

We have, by definition, assumption, (i), (iv), (b9) and (b12),

((x→ 1)→ 1)→k+1 1 = ((x→ 1)→ 1)→ (((x→ 1)→ 1)→k 1)

= ((x→ 1)→ 1)→ (x→k 1)

= ((x→ 1)→ 1)→ (x k 1)

= x k (((x→ 1)→ 1)→ 1)

= x k (x→ 1)

= x→ (x k 1)

= x→ (x→k 1)

= x→k+1 1.

Hence, the equation holds for any n = 0, 1, 2, . . ..

Let X = (X;→, , 1) be a pseudo-BCI-algebra. For any x ∈ X, if there exists
the least natural number n such that x →n 1 = 1, then n is called a period of x
denoted p(x). If, for any natural number n, x →n 1 6= 1, then a period of x is
called to be infinite and denoted p(x) =∞. Obviously, p(1) = 1.

Proposition 3.2. Let X = (X;→, , 1) be a pseudo-BCI-algebra. Then p(x) =
p(x→ 1) = p(x 1) for all x ∈ X.

Proof. Obviously, p(x → 1) = p(x  1). For any x ∈ X, by Proposition
3.1(iii,v), we have

x→k 1 = ((x→ 1)→ 1)→k 1 = ((x→ 1)→k 1)→ 1.

Since (x → 1) →k 1 is a maximal element, we have that x →k 1 = 1 if and only
if (x→ 1)→k 1 = 1. Thus, p(x) = p(x→ 1).

Proposition 3.3. Let X = (X;→, , 1) be a pseudo-BCI-algebra and x, y ∈ X.
If x ≤ y, then p(x) = p(y).
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Proof. Let x, y ∈ X. By Lemma 2.6 and Proposition 3.2, if x ≤ y, then x →
1 = y → 1 and p(x) = p(x→ 1) = p(y → 1) = p(y).

Theorem 3.4. Let X = (X;→, , 1) be a p-semisimple pseudo-BCI-algebra and
(X; ·,−1 , 1) be a group related with X . Then p(x) = o(x) for any x ∈ X, where
o(x) means an order of an element x in a group (X; ·,−1 , 1).

Proof. Let x ∈ X. Since x → y = y · x−1, it is not difficult to see that (x →
1)→k 1 = xk for any k = 0, 1, 2, . . .. Then,

(x→ 1)→k 1 = 1 iff xk = 1.

So, p(x→ 1) = o(x). Thus, by Proposition 3.2, p(x) = o(x).

Corollary 3.5. Let X = (X;→, , 1) be a p-semisimple pseudo-BCI-algebra.
Then the following hold for any x, y ∈ X,

(i) p(x→ y) = p(y → x), p(x y) = p(y  x),

(ii) p(x→ y) = p(x y).

Now we prove that identities from Corollary 3.5 hold also for arbitrary pseudo-
BCI-algebras.

Theorem 3.6. Let X = (X;→, , 1) be a pseudo-BCI-algebra. Then the follow-
ing hold for any x, y ∈ X,

(i) p(x→ y) = p(y → x), p(x y) = p(y  x),

(ii) p(x→ y) = p(x y).

Proof. (i) We show the first equation. The proof of the second one is analogous.
Let x, y ∈ X. Then x→ 1, y → 1 ∈M(X). By Proposition 3.2, (b11), (b12) and
Corollary 3.5 we have

p(x→ y) = p((x→ y)→ 1) = p((x→ 1) (y → 1))

= p((y → 1) (x→ 1)) = p((y → x)→ 1)

= p(y → x).

(ii) Similarly we have

p(x→ y) = p((x→ y)→ 1) = p((x→ 1) (y → 1))

= p((x 1)→ (y  1)) = p((x y)→ 1)

= p(x y)

for any x, y ∈ X.
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Let X = (X;→, , 1) be a pseudo-BCI-algebra and x ∈ X. It is not difficult to
see that

p(x) = 1 iff x ≤ 1.

Hence we have the following proposition.

Proposition 3.7. Let X = (X;→, , 1) be a pseudo-BCI-algebra. Then it is a
pseudo-BCK-algebra if and only if p(x) = 1 for any x ∈ X.

Corollary 3.8. Let X = (X;→, , 1) be a pseudo-BCI-algebra. Then it is proper
if and only if there exists x ∈ X such that p(x) > 1.

Corollary 3.9. Let X = (X;→, , 1) be a pseudo-BCI-algebra. Then it is p-
semisimple if and only if p(x) > 1 for any x ∈ X\{1}.

A pseudo-BCI-algebra X = (X;→, , 1) is called periodic if p(x) < ∞ for any
x ∈ X. It is immediately seen that every pseudo-BCK-algebra is periodic.

Now give an interesting characterization of periodic pseudo-BCI-algebras.

Theorem 3.10. A pseudo-BCI-algebra X is periodic if and only if every deduc-
tive system of X is closed.

Proof. Assume that X is periodic and D is a deductice system of X . Let x ∈ D.
Then there exists a natural number n such that x→n 1 = 1. Since x, x→n 1 ∈ D
and D is a deductive system, we have x→ 1 ∈ D, that is, D is closed.

Conversely, for any x ∈ X, a deductive system D(x) is closed. Hence, x →
1 ∈ D(x). So, there exists a natural number n such that x→n (x→ 1) = 1, that
is, p(x) <∞. Thus X is periodic.

By Proposition 2.10 we have the following.

Corollary 3.11. Let X be a pseudo-BCI-algebra. If M(X) is finite, then X is
periodic.

Corollary 3.12. Every finite pseudo-BCI-algebra is periodic.

Example 3.13. The pseudo-BCI-algebra X from Example 2.1 is periodic because
it is finite and the pseudo-BCI-algebra Y from Example 2.4 is not periodic because
a deductive system D = {(x, y, y) : x ≤ 0, y ∈ R} is not closed.
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