Discussiones Mathematicae General Algebra and Applications 35 (2015) 21–31 doi:10.7151/dmgaa.1227

ON A PERIOD OF ELEMENTS OF PSEUDO-BCI-ALGEBRAS

GRZEGORZ DYMEK

Institute of Mathematics and Computer Science The John Paul II Catholic University of Lublin Konstantynów 1H, 20–708 Lublin, Poland

e-mail: gdymek@o2.pl

Abstract

The notions of a period of an element of a pseudo-BCI-algebra and a periodic pseudo-BCI-algebra are defined. Some of their properties and characterizations are given.

Keywords: pseudo-BCI-algebra, period.

2010 Mathematics Subject Classification: 03G25, 06F35.

1. INTRODUCTION

In 1966 K. Iséki introduced the notion of BCI-algebra (see [10]). BCI-algebras have connections with BCI-logic being the BCI-system in combinatory logic which has application in the language of functional programming. The name of BCI-algebra originates from the combinatories B, C, I in combinatory logic.

The concept of pseudo-BCI-algebra has been introduced in [1] as an extension of BCI-algebras. Pseudo-BCI-algebras are algebraic models of some extension of a noncommutative version of the BCI-logic (see [5] for details). These algebras have also connections with other algebras of logic such as pseudo-BCK-algebras, pseudo-BL-algebras and pseudo-MV-algebras introduced by G. Georgescu and A. Iorgulescu in [6, 7] and [8], respectively. More about those algebras the reader can find in [9].

In this paper we define the notion of a period of an element of a pseudo-BCIalgebra. Some of its properties are also given. Finally, we study the concept of a periodic pseudo-BCI-algebra proving some of its interesting characterization. All necessary material needed in the sequel is presented in Section 2 making our exposition self-contained.

2. Preliminaries

A pseudo-BCI-algebra is a structure $\mathcal{X} = (X; \leq, \rightarrow, \rightsquigarrow, 1)$, where \leq is binary relation on a set X, \rightarrow and \rightsquigarrow are binary operations on X and 1 is an element of X such that for all $x, y, z \in X$, we have

(a1) $x \to y \le (y \to z) \rightsquigarrow (x \to z), \quad x \rightsquigarrow y \le (y \rightsquigarrow z) \to (x \rightsquigarrow z),$

(a2)
$$x \le (x \to y) \rightsquigarrow y, \quad x \le (x \rightsquigarrow y) \to y,$$

- (a3) $x \leq x$,
- (a4) if $x \leq y$ and $y \leq x$, then x = y,
- (a5) $x \leq y$ iff $x \to y = 1$ iff $x \rightsquigarrow y = 1$.

It is obvious that any pseudo-BCI-algebra $(X; \leq, \rightarrow, \rightsquigarrow, 1)$ can be regarded as a universal algebra $(X; \rightarrow, \rightsquigarrow, 1)$ of type (2, 2, 0). Note that every pseudo-BCIalgebra satisfying $x \rightarrow y = x \rightsquigarrow y$ for all $x, y \in X$ is a BCI-algebra.

Every pseudo-BCI-algebra satisfying $x \leq 1$ for all $x \in X$ is a pseudo-BCK-algebra. A pseudo-BCI-algebra which is not a pseudo-BCK-algebra will be called *proper*.

Any pseudo-BCI-algebra $\mathcal{X} = (X; \leq, \rightarrow, \rightsquigarrow, 1)$ satisfies the following, for all $x, y, z \in X$,

- (b1) if $1 \le x$, then x = 1,
- (b2) if $x \leq y$, then $y \to z \leq x \to z$ and $y \rightsquigarrow z \leq x \rightsquigarrow z$,
- (b3) if $x \leq y$ and $y \leq z$, then $x \leq z$,
- (b4) $x \to (y \rightsquigarrow z) = y \rightsquigarrow (x \to z),$
- (b5) $x \leq y \rightarrow z$ iff $y \leq x \rightsquigarrow z$,
- (b6) $x \to y \le (z \to x) \to (z \to y), \quad x \rightsquigarrow y \le (z \rightsquigarrow x) \rightsquigarrow (z \rightsquigarrow y),$
- (b7) if $x \leq y$, then $z \to x \leq z \to y$ and $z \rightsquigarrow x \leq z \rightsquigarrow y$,
- (b8) $1 \rightarrow x = 1 \rightsquigarrow x = x$,
- (b9) $((x \to y) \rightsquigarrow y) \to y = x \to y, \quad ((x \rightsquigarrow y) \to y) \rightsquigarrow y = x \rightsquigarrow y,$
- (b10) $x \to y \le (y \to x) \rightsquigarrow 1$, $x \rightsquigarrow y \le (y \rightsquigarrow x) \to 1$,
- $(\text{b11}) \ (x \to y) \to 1 = (x \to 1) \rightsquigarrow (y \rightsquigarrow 1), \ (x \rightsquigarrow y) \rightsquigarrow 1 = (x \rightsquigarrow 1) \to (y \to 1),$
- (b12) $x \to 1 = x \rightsquigarrow 1$.

If $(X; \leq, \rightarrow, \rightsquigarrow, 1)$ is a pseudo-BCI-algebra, then, by (a3), (a4), (b3) and (b1), $(X; \leq)$ is a poset with 1 as a maximal element.

Example 2.1 ([3]). Let $X = \{a, b, c, d, e, f, 1\}$ and define binary operations \rightarrow and \rightsquigarrow on X by the following tables:

\rightarrow	a	b	c	d	e	f	1	\rightsquigarrow	a	b	c	d	e	f	1
a	1	d	e	b	c	a	a	a	1	c	b	e	d	a	a
b	c	1	a	e	d	b	b	b	d	1	e	a	c	b	b
c	e	a	1	c	b	d	d	c	b	e	1	c	a	d	d
d	b	e	d	1	a	c	c	d	e	a	d	1	b	c	c
e	d	c	b	a	1	e	e	e	c	d	a	b	1	e	e
f	a	b	c	d	e	1	1	f	a	b	c	d	e	1	1
1	a	b	c	d	e	f	1	1	a	b	c	d	e	f	1

Then $\mathcal{X} = (X; \rightarrow, \rightsquigarrow, 1)$ is a (proper) pseudo-BCI-algebra. Observe that it is not a pseudo-BCK-algebra because $a \nleq 1$.

Example 2.2 ([11]). Let $Y_1 = (-\infty, 0]$ and let \leq be the usual order on Y_1 . Define binary operations \rightarrow and \sim on Y_1 by

$$x \to y = \begin{cases} 0 & \text{if } x \le y, \\ \frac{2y}{\pi} \arctan(\ln(\frac{y}{x})) & \text{if } y < x, \end{cases}$$
$$x \rightsquigarrow y = \begin{cases} 0 & \text{if } x \le y, \\ ye^{-\tan(\frac{\pi x}{2y})} & \text{if } y < x \end{cases}$$

for all $x, y \in Y_1$. Then $\mathcal{Y}_1 = (Y_1; \leq, \rightarrow, \rightsquigarrow, 0)$ is a pseudo-BCK-algebra, and hence it is a nonproper pseudo-BCI-algebra.

Example 2.3 ([4]). Let $Y_2 = \mathbb{R}^2$ and define binary operations \rightarrow and \rightarrow and a binary relation \leq on Y_2 by

$$(x_1, y_1) \to (x_2, y_2) = (x_2 - x_1, (y_2 - y_1)e^{-x_1}), (x_1, y_1) \rightsquigarrow (x_2, y_2) = (x_2 - x_1, y_2 - y_1e^{x_2 - x_1}),$$

$$(x_1, y_1) \le (x_2, y_2) \Leftrightarrow (x_1, y_1) \to (x_2, y_2) = (0, 0) = (x_1, y_1) \rightsquigarrow (x_2, y_2)$$

for all $(x_1, y_1), (x_2, y_2) \in Y_2$. Then $\mathcal{Y}_2 = (Y_2; \leq, \rightarrow, \rightsquigarrow, (0, 0))$ is a proper pseudo-BCI-algebra. Notice that \mathcal{Y}_2 is not a pseudo-BCK-algebra because there exists $(x, y) = (1, 1) \in Y_2$ such that $(x, y) \nleq (0, 0)$.

Example 2.4 ([4]). Let \mathcal{Y} be the direct product of pseudo-BCI-algebras \mathcal{Y}_1 and \mathcal{Y}_2 from Examples 2.2 and 2.3, respectively. Then \mathcal{Y} is a proper pseudo-BCI-algebra, where $Y = (-\infty, 0] \times \mathbb{R}^2$ and binary operations \rightarrow and \rightsquigarrow and binary relation \leq are defined on Y by

$$\begin{aligned} (x_1, y_1, z_1) &\to (x_2, y_2, z_2) = \\ & \begin{cases} (0, y_2 - y_1, (z_2 - z_1)e^{-y_1}) & \text{if } x_1 \le x_2, \\ (\frac{2x_2}{\pi} \arctan(\ln(\frac{x_2}{x_1})), y_2 - y_1, (z_2 - z_1)e^{-y_1}) & \text{if } x_2 < x_1, \end{cases} \end{aligned}$$

$$\begin{aligned} (x_1, y_1, z_1) &\rightsquigarrow (x_2, y_2, z_2) = \\ & \begin{cases} (0, y_2 - y_1, z_2 - z_1 e^{y_2 - y_1}) & \text{if } x_1 \leq x_2, \\ (x_2 e^{-\tan(\frac{\pi x_1}{2x_2})}, y_2 - y_1, z_2 - z_1 e^{y_2 - y_1}) & \text{if } x_2 < x_1, \end{cases} \\ (x_1, y_1, z_1) &\leq (x_2, y_2, z_2) \Leftrightarrow x_1 \leq x_2 \text{ and } y_1 = y_2 \text{ and } z_1 = z_2. \end{aligned}$$

Notice that \mathcal{Y} is not a pseudo-BCK-algebra because there exists $(x, y, z) = (0, 1, 1) \in Y$ such that $(x, y, z) \nleq (0, 0, 0)$.

Let $\mathcal{X} = (X; \rightarrow, \rightsquigarrow, 1)$ be a pseudo-BCI-algebra. Define

$$\begin{aligned} x &\to^0 y = y, \\ x &\to^n y = x \to (x \to^{n-1} y), \end{aligned}$$

where $x, y \in X$ and n = 1, 2, ... Similarly we define $x \rightsquigarrow^n y$ for any n = 0, 1, 2, ...

Proposition 2.5. Let $\mathcal{X} = (X; \rightarrow, \rightsquigarrow, 1)$ be a pseudo-BCI-algebra. The following are equivalent for any $x, y \in X$ and $n = 0, 1, 2, \ldots$,

(i) $x \to^n y = 1$,

(ii)
$$x \rightsquigarrow^n y = 1$$
.

Proof. It follows by (a5) and (b4).

For any pseudo-BCI-algebra $\mathcal{X}=(X;\rightarrow,\rightsquigarrow,1)$ the set

$$K(X) = \{ x \in X : x \le 1 \}$$

is a subalgebra of \mathcal{X} (called pseudo-BCK-part of \mathcal{X} , see [1]). Then $(K(X); \rightarrow, \rightsquigarrow, 1)$ is a pseudo-BCK-algebra. Note that if \mathcal{X} is a pseudo-BCK-algebra, then X = K(X).

It is easily seen that for the pseudo-BCI-algebras $\mathcal{X}, \mathcal{Y}_1, \mathcal{Y}_2$ and \mathcal{Y} from Examples 2.1, 2.2, 2.3 and 2.4, respectively, we have $K(X) = \{f, 1\}, K(Y_1) = Y_1, K(Y_2) = \{(0,0)\}$ and $K(Y) = \{(x,0,0) : x \leq 0\}.$

An element a of a pseudo-BCI-algebra \mathcal{X} is called a *maximal element* of \mathcal{X} if for every $x \in X$ the following holds

if
$$a \leq x$$
, then $x = a$.

We will denote by M(X) the set of all maximal elements of \mathcal{X} . Obviously, $1 \in M(X)$. Notice that $M(X) \cap K(X) = \{1\}$. Indeed, if $a \in M(X) \cap K(X)$, then $a \leq 1$ and, by above implication, a = 1. Moreover, observe that 1 is the only maximal element of a pseudo-BCK-algebra. Therefore, for a pseudo-BCK-algebra $\mathcal{X}, M(X) = \{1\}$. In [2] there is shown that $M(X) = \{x \in X : x = (x \to 1) \to 1\}$. Moreover we have the following simple lemma.

Lemma 2.6. Let $\mathcal{X} = (X; \rightarrow, \rightsquigarrow, 1)$ be a pseudo-BCI-algebra and $x, y \in X$. If $x \leq y$, then $x \to 1 = x \rightsquigarrow 1 = y \to 1 = y \rightsquigarrow 1$.

Observe that for the pseudo-BCI-algebras \mathcal{X} , \mathcal{Y}_1 , \mathcal{Y}_2 and \mathcal{Y} from Examples 2.1, 2.2, 2.3 and 2.4, respectively, we have $M(X) = \{a, b, c, d, e, 1\}$, $M(Y_1) = \{0\}$, $M(Y_2) = Y_2$ and $M(Y) = \{(0, y, z) : y, z \in \mathbb{R}\}$.

Let $\mathcal{X} = (X; \rightarrow, \rightsquigarrow, 1)$ be a pseudo-BCI-algebra. Then \mathcal{X} is *p*-semisimple if it satisfies for all $x \in X$,

if
$$x \leq 1$$
, then $x = 1$.

Note that if \mathcal{X} is a p-semisimple pseudo-BCI-algebra, then $K(X) = \{1\}$. Hence, if \mathcal{X} is a p-semisimple pseudo-BCK-algebra, then $X = \{1\}$. Moreover, as it is proved in [4], M(X) is a p-semisimple pseudo-BCI-subalgebra of \mathcal{X} and \mathcal{X} is p-semisimple if and only if X = M(X).

Proposition 2.7 ([4]). Let $\mathcal{X} = (X; \rightarrow, \rightsquigarrow, 1)$ be a pseudo-BCI-algebra. The following are equivalent:

- (i) \mathcal{X} is p-semisimple,
- (ii) for all $x, y \in X$, $(x \to 1) \rightsquigarrow y = (y \rightsquigarrow 1) \to x$,
- (iii) for all $x \in X$, $x = (x \to 1) \to 1$.

It is not difficult to see that the pseudo-BCI-algebras \mathcal{X} , \mathcal{Y}_1 and \mathcal{Y} from Examples 2.1, 2.2 and 2.4, respectively, are not p-semisimple, and the pseudo-BCI-algebra \mathcal{Y}_2 from Example 2.3 is a p-semisimple algebra.

Theorem 2.8. Let $\mathcal{X} = (X; \rightarrow, \rightsquigarrow, 1)$ be a pseudo-BCI-algebra. The following are equivalent:

G. Dymek

- (i) \mathcal{X} is p-semisimple,
- (ii) $X = \{x \to 1 : x \in X\}.$

Proof. (i) \Rightarrow (ii) Take $y \in X$. Since \mathcal{X} is p-semisimple, $y = (y \to 1) \to 1$. Putting $x = y \to 1 \in X$, we get $y = x \to 1$.

(ii) \Rightarrow (i) Take $a \in X$. We show that a is a maximal element of \mathcal{X} , that is, X = M(X). Suppose that $a = x \to 1$ for some $x \in X$. Let $y \in X$ be such that $a \leq y$. Then $(x \to 1) \to y = 1$ and, by (b4), (b9), (b11) and (b12), we have

$$y \to a = y \to (x \to 1) = y \to (((x \to 1) \to 1) \rightsquigarrow 1)$$
$$= ((x \to 1) \to 1) \rightsquigarrow (y \to 1) = ((x \to 1) \to y) \to 1$$
$$= 1 \to 1 = 1.$$

Hence $y \leq a$. So, y = a, that is, $a \in M(X)$ and \mathcal{X} is p-semisimple.

For p-semisimple pseudo-BCI-algebras we have the following useful fact.

Theorem 2.9 [4]. A pseudo-BCI-algebra $\mathcal{X} = (X; \to, \rightsquigarrow, 1)$ is p-semisimple if and only if $(X; \cdot, ^{-1}, 1)$ is a group, where $x \cdot y = (x \to 1) \rightsquigarrow y = (y \rightsquigarrow 1) \to x$, $x^{-1} = x \to 1 = x \rightsquigarrow 1, x \to y = y \cdot x^{-1}$ and $x \rightsquigarrow y = x^{-1} \cdot y$ for any $x, y \in X$.

Let $\mathcal{X} = (X; \rightarrow, \rightsquigarrow, 1)$ be a pseudo-BCI-algebra. We say that a subset D of X is a *deductive system* of \mathcal{X} if it satisfies: (i) $1 \in D$, (ii) for all $x, y \in X$, if $x \in D$ and $x \to y \in D$, then $y \in D$. Under this definition, $\{1\}$ and X are the simplest examples of deductive systems. Note that the condition (ii) can be replaced by (ii') for all $x, y \in X$, if $x \in D$ and $x \rightsquigarrow y \in D$, then $y \in D$. It can be easily proved that for any $x, y \in X$, if $x \in D$ and $x \leq y$, then $y \in D$. A deductive system Dof a pseudo-BCI-algebra $\mathcal{X} = (X; \rightarrow, \rightsquigarrow, 1)$ is called *closed* if D is closed under operations \rightarrow and \rightsquigarrow , that is, if D is a subalgebra of \mathcal{X} . It is not difficult to show (see [3]) that a deductive system D of a pseudo-BCI-algebra $\mathcal{X} = (X; \rightarrow, \rightsquigarrow, 1)$ is closed if and only if for any $x \in D$, $x \to 1 = x \rightsquigarrow 1 \in D$. Obviously, the pseudo-BCK-part K(X) is a closed deductive system of \mathcal{X} .

Proposition 2.10 ([2]). Let $\mathcal{X} = (X; \rightarrow, \rightsquigarrow, 1)$ be a pseudo-BCI-algebra and M(X) be finite. Then every deductive system of \mathcal{X} is closed.

Let $\mathcal{X} = (X; \rightarrow, \rightsquigarrow, 1)$ be a pseudo-BCI-algebra. It is obvious that the intersection of arbitrary number of deductive systems is a deductive system. Hence, for any $A \subseteq X$ there exists the least deductive system containing A. Denote it by D(A)and call it the deductive system *generated* by A. In particular, if $A = \{a_1, \ldots, a_n\}$, then we write $D(a_1, \ldots, a_n)$ instead of $D(\{a_1, \ldots, a_n\})$. It is also obvious that $D(\emptyset) = \{1\}$. **Proposition 2.11** ([3]). Let $\mathcal{X} = (X; \rightarrow, \rightsquigarrow, 1)$ be a pseudo-BCI-algebra. For any $a \in X$,

$$D(a) = \{1\} \cup \{x \in X : a \to^n x = 1 \text{ for some } n \in \mathbb{N}\}\$$

= $\{1\} \cup \{x \in X : a \rightsquigarrow^n x = 1 \text{ for some } n \in \mathbb{N}\}.$

3. Period of elements

Proposition 3.1. Let $\mathcal{X} = (X; \rightarrow, \rightsquigarrow, 1)$ be a pseudo-BCI-algebra. The following hold for any $x, y, z \in X$ and $m, n = 0, 1, 2, \ldots$,

- (i) $x \to^n 1 = x \rightsquigarrow^n 1$,
- (ii) $x \to^n x = x \to^{n-1} 1$, $x \rightsquigarrow^n x = x \rightsquigarrow^{n-1} 1$,
- (iii) $(x \to 1) \to^n 1 = (x \to^n 1) \to 1, \quad (x \rightsquigarrow 1) \rightsquigarrow^n 1 = (x \rightsquigarrow^n 1) \rightsquigarrow 1,$
- (iv) $x \to (y \rightsquigarrow^n z) = y \rightsquigarrow^n (x \to z), \quad x \rightsquigarrow (y \to^n z) = y \to^n (x \rightsquigarrow z),$

(v)
$$x \to^m (y \rightsquigarrow^n z) = y \rightsquigarrow^n (x \to^m z),$$

$$(\mathrm{vi}) \ x \to^n 1 = ((x \to 1) \to 1) \to^n 1, \quad x \rightsquigarrow^n 1 = ((x \rightsquigarrow 1) \rightsquigarrow 1) \rightsquigarrow^n 1.$$

Proof. (i) Follows from (b4) and (b12).

(ii) Obvious.

(iii) We prove first equation by induction. The proof of second equation is analogous. For n = 0 it is obvious. Assume it for n = k:

$$(x \to 1) \to^k 1 = (x \to^k 1) \to 1.$$

We have, by definition, assumption, (i), (b11) and (b12),

$$(x \to 1) \to^{k+1} 1 = (x \to 1) \to ((x \to 1) \to^k 1) = (x \to 1) \to ((x \to^k 1) \to 1)$$
$$= (x \to 1) \to ((x \to^k 1) \to 1) = (x \to (x \to^k 1)) \to 1$$
$$= (x \to^{k+1} 1) \to 1 = (x \to^{k+1} 1) \to 1.$$

So, the equation holds for any $n = 0, 1, 2, \ldots$

(iv) We prove first equation by induction. The proof of second equation is analogous. For n = 0 it is obvious. Assume it for n = k, that is,

$$x \to (y \rightsquigarrow^k z) = y \rightsquigarrow^k (x \to z).$$

We have, by definition, assumption and (b4),

$$\begin{aligned} x \to (y \rightsquigarrow^{k+1} z) &= x \to (y \rightsquigarrow (y \rightsquigarrow^k z)) = y \rightsquigarrow (x \to (y \rightsquigarrow^k z)) \\ &= y \rightsquigarrow (y \rightsquigarrow^k (x \to z)) = y \rightsquigarrow^{k+1} (x \to z). \end{aligned}$$

Hence, the equation holds for any $n = 0, 1, 2, \ldots$

(v) We get it easily by (iv).

(vi) We prove first equation by induction. The proof of second equation is analogous. For n = 0 it is obvious. Assume it for n = k, that is,

$$x \to^k 1 = ((x \to 1) \to 1) \to^k 1$$

We have, by definition, assumption, (i), (iv), (b9) and (b12),

$$((x \to 1) \to 1) \to^{k+1} 1 = ((x \to 1) \to 1) \to (((x \to 1) \to 1) \to^k 1)$$
$$= ((x \to 1) \to 1) \to (x \to^k 1)$$
$$= ((x \to 1) \to 1) \to (x \to^k 1)$$
$$= x \to^k (((x \to 1) \to 1) \to 1)$$
$$= x \to^k (x \to 1)$$
$$= x \to (x \to^k 1)$$
$$= x \to^{k+1} 1.$$

Hence, the equation holds for any $n = 0, 1, 2, \ldots$

Let $\mathcal{X} = (X; \to, \rightsquigarrow, 1)$ be a pseudo-BCI-algebra. For any $x \in X$, if there exists the least natural number n such that $x \to^n 1 = 1$, then n is called a *period of* xdenoted p(x). If, for any natural number $n, x \to^n 1 \neq 1$, then a period of x is called to be infinite and denoted $p(x) = \infty$. Obviously, p(1) = 1.

Proposition 3.2. Let $\mathcal{X} = (X; \rightarrow, \rightsquigarrow, 1)$ be a pseudo-BCI-algebra. Then $p(x) = p(x \rightarrow 1) = p(x \rightsquigarrow 1)$ for all $x \in X$.

Proof. Obviously, $p(x \to 1) = p(x \rightsquigarrow 1)$. For any $x \in X$, by Proposition 3.1(iii,v), we have

$$x \to^k 1 = ((x \to 1) \to 1) \to^k 1 = ((x \to 1) \to^k 1) \to 1.$$

Since $(x \to 1) \to^k 1$ is a maximal element, we have that $x \to^k 1 = 1$ if and only if $(x \to 1) \to^k 1 = 1$. Thus, $p(x) = p(x \to 1)$.

Proposition 3.3. Let $\mathcal{X} = (X; \rightarrow, \rightsquigarrow, 1)$ be a pseudo-BCI-algebra and $x, y \in X$. If $x \leq y$, then p(x) = p(y). **Proof.** Let $x, y \in X$. By Lemma 2.6 and Proposition 3.2, if $x \leq y$, then $x \to 1 = y \to 1$ and $p(x) = p(x \to 1) = p(y \to 1) = p(y)$.

Theorem 3.4. Let $\mathcal{X} = (X; \rightarrow, \rightsquigarrow, 1)$ be a p-semisimple pseudo-BCI-algebra and $(X; \cdot, ^{-1}, 1)$ be a group related with \mathcal{X} . Then p(x) = o(x) for any $x \in X$, where o(x) means an order of an element x in a group $(X; \cdot, ^{-1}, 1)$.

Proof. Let $x \in X$. Since $x \to y = y \cdot x^{-1}$, it is not difficult to see that $(x \to 1) \to^k 1 = x^k$ for any $k = 0, 1, 2, \dots$ Then,

$$(x \to 1) \to^k 1 = 1$$
 iff $x^k = 1$

So, $p(x \to 1) = o(x)$. Thus, by Proposition 3.2, p(x) = o(x).

Corollary 3.5. Let $\mathcal{X} = (X; \rightarrow, \rightsquigarrow, 1)$ be a *p*-semisimple pseudo-BCI-algebra. Then the following hold for any $x, y \in X$,

- (i) $p(x \to y) = p(y \to x), \quad p(x \rightsquigarrow y) = p(y \rightsquigarrow x),$
- (ii) $p(x \rightarrow y) = p(x \rightsquigarrow y)$.

Now we prove that identities from Corollary 3.5 hold also for arbitrary pseudo-BCI-algebras.

Theorem 3.6. Let $\mathcal{X} = (X; \rightarrow, \rightsquigarrow, 1)$ be a pseudo-BCI-algebra. Then the following hold for any $x, y \in X$,

- (i) $p(x \to y) = p(y \to x), \quad p(x \rightsquigarrow y) = p(y \rightsquigarrow x),$
- (ii) $p(x \rightarrow y) = p(x \rightsquigarrow y)$.

Proof. (i) We show the first equation. The proof of the second one is analogous. Let $x, y \in X$. Then $x \to 1, y \to 1 \in M(X)$. By Proposition 3.2, (b11), (b12) and Corollary 3.5 we have

$$p(x \to y) = p((x \to y) \to 1) = p((x \to 1) \rightsquigarrow (y \to 1))$$
$$= p((y \to 1) \rightsquigarrow (x \to 1)) = p((y \to x) \to 1)$$
$$= p(y \to x).$$

(ii) Similarly we have

$$p(x \to y) = p((x \to y) \to 1) = p((x \to 1) \rightsquigarrow (y \to 1))$$
$$= p((x \rightsquigarrow 1) \to (y \rightsquigarrow 1)) = p((x \rightsquigarrow y) \to 1)$$
$$= p(x \rightsquigarrow y)$$

for any $x, y \in X$.

Let $\mathcal{X} = (X; \rightarrow, \rightsquigarrow, 1)$ be a pseudo-BCI-algebra and $x \in X$. It is not difficult to see that

$$p(x) = 1$$
 iff $x \leq 1$.

Hence we have the following proposition.

Proposition 3.7. Let $\mathcal{X} = (X; \rightarrow, \rightsquigarrow, 1)$ be a pseudo-BCI-algebra. Then it is a pseudo-BCK-algebra if and only if p(x) = 1 for any $x \in X$.

Corollary 3.8. Let $\mathcal{X} = (X; \rightarrow, \rightsquigarrow, 1)$ be a pseudo-BCI-algebra. Then it is proper if and only if there exists $x \in X$ such that p(x) > 1.

Corollary 3.9. Let $\mathcal{X} = (X; \rightarrow, \rightsquigarrow, 1)$ be a pseudo-BCI-algebra. Then it is psemisimple if and only if p(x) > 1 for any $x \in X \setminus \{1\}$.

A pseudo-BCI-algebra $\mathcal{X} = (X; \rightarrow, \rightsquigarrow, 1)$ is called *periodic* if $p(x) < \infty$ for any $x \in X$. It is immediately seen that every pseudo-BCK-algebra is periodic.

Now give an interesting characterization of periodic pseudo-BCI-algebras.

Theorem 3.10. A pseudo-BCI-algebra \mathcal{X} is periodic if and only if every deductive system of \mathcal{X} is closed.

Proof. Assume that \mathcal{X} is periodic and D is a deductice system of \mathcal{X} . Let $x \in D$. Then there exists a natural number n such that $x \to^n 1 = 1$. Since $x, x \to^n 1 \in D$ and D is a deductive system, we have $x \to 1 \in D$, that is, D is closed.

Conversely, for any $x \in X$, a deductive system D(x) is closed. Hence, $x \to 1 \in D(x)$. So, there exists a natural number n such that $x \to^n (x \to 1) = 1$, that is, $p(x) < \infty$. Thus \mathcal{X} is periodic.

By Proposition 2.10 we have the following.

Corollary 3.11. Let \mathcal{X} be a pseudo-BCI-algebra. If M(X) is finite, then \mathcal{X} is periodic.

Corollary 3.12. Every finite pseudo-BCI-algebra is periodic.

Example 3.13. The pseudo-BCI-algebra \mathcal{X} from Example 2.1 is periodic because it is finite and the pseudo-BCI-algebra \mathcal{Y} from Example 2.4 is not periodic because a deductive system $D = \{(x, y, y) : x \leq 0, y \in \mathbb{R}\}$ is not closed.

References

- W.A. Dudek and Y.B. Jun, Pseudo-BCI algebras, East Asian Math. J. 24 (2008) 187–190.
- [2] G. Dymek, Atoms and ideals of pseudo-BCI-algebras, Comment. Math. 52 (2012) 73–90.

- [3] G. Dymek, On compatible deductive systems of pseudo-BCI-algebras, J. Mult.-Valued Logic Soft Comput. 22 (2014) 167–187.
- [4] G. Dymek, *p-semisimple pseudo-BCI-algebras*, J. Mult.-Valued Logic Soft Comput. 19 (2012) 461–474.
- [5] G. Dymek and A. Kozanecka-Dymek, *Pseudo-BCI-logic*, Bull. Sect. Logic 42 (2013) 33–42.
- [6] G. Georgescu and A. Iorgulescu, Pseudo-BCK algebras: an extension of BCKalgebras, Proceedings of DMTCS'01: Combinatorics, Computability and Logic (Springer, London, 2001), 97–114.
- [7] G. Georgescu and A. Iorgulescu, Pseudo-BL algebras: a noncommutative extension of BL-algebras, Abstracts of The Fifth International Conference FSTA 2000 (Slovakia, February 2000), 90–92.
- [8] G. Georgescu and A. Iorgulescu, Pseudo-MV algebras: a noncommutative extension of MV-algebras, The Proceedings The Fourth International Symposium on Economic Informatics, INFOREC Printing House, (Bucharest, Romania, May, 1999), 961–968.
- [9] A. Iorgulescu, Algebras of logic as BCK algebras, Editura ASE (Bucharest, 2008).
- [10] K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad. 42 (1966) 26–29. doi:10.3792/pja/1195522171
- [11] Y.B. Jun, H.S. Kim and J. Neggers, On pseudo-BCI ideals of pseudo BCI-algebras, Mat. Vesnik 58 (2006) 39–46.

Received 17 September 2013 Revised 1 February 2015