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Abstract

In this paper, using the notion of upper sets, we introduced the notions of
complicated BE-Algebras and gave some related properties on complicated,
self-distributive and commutative BE-algebras. In a self-distributive and
complicated BE-algebra, characterizations of ideals are obtained.
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1. Introduction

Y. Imai and K. Isėki introduced two classes of abstract algebras called BCK-
algebras and BCI-algebras [8, 10]. It is known that the class of BCK-algebras
is a proper subclass of BCI-algebras. In [5, 6], Q.P. Hu and X. Li introduced a
wide class of abstract algebras called BCH-algebras. They have shown that the
class of BCI-algebras is a proper subclass of BCH-algebras. J. Neggers and H.S.
Kim ([16]) introduced the notion of a d-algebra which is a generalization of BCK-
algebras, and also they introduced the notion of B-algebras ([17, 18]). Y.B. Jun,
E.H. Roh and H.S. Kim ([11]) introduced a new notion called BH-algebra which
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is another generalization of BCH/BCI/BCK-algebras. A. Walendziak obtained
another equivalent axioms for B-algebras ([20]). C.B. Kim and H.S. Kim ([13])
introduced the notion of BM-algebra which is a specialization of B-algebras. They
proved that the class of BM-algebras is a proper subclass of B-algebras and also
showed that a BM-algebra is equivalent to a 0-commutative B-algebra. In [14],
H.S. Kim and Y.H. Kim introduced the notion of BE-algebra as a generalization
of a BCK-algebra. Using the notion of upper sets they gave an equivalent condi-
tion of the filter in BE-algebras. In [2] and [3], S.S. Ahn and K.S. So introduced
the notion of ideals in BE-algebras, and proved several characterizations of such
ideals. Also they generalized the notion of upper sets in BE-algebras and dis-
cussed some properties of the characterizations of generalized upper sets related
to the structure of ideals in transitive and self distributive BE-algebras. In [4],
S.S. Ahn, Y.H. Kim and J.M. Ko are introduced the notion of terminal section
of BE-algebras and provided the characterization of a commutative BE-algebras.

B.M. Schein [19] considered systems of the form (φ; ◦, \), where φ is a set of
functions closed under the composition ”◦” of functions (and hence (φ; ◦) is a
function semigroup) and the set theoretic subtraction ”\” (and hence (φ; \) is
a subtraction algebra in the sence of [1]). B. Zelinka [22] discussed a problem
proposed by B.M. Schein concerning the structure of multiplication in a sub-
traction semigroup. He solved the problem for subtraction algebras of a special
type, called the atomic subtraction algebras. Y.B. Jun et al. [12] introduced the
complicated subtraction algebras and investigated several properties on it.

In this paper, using the notion of upper sets, we introduced the notions of
complicated BE-Algebras and gave some related properties on complicated, self-
distrubutive and commutative BE-algebras. In a self-distributive and complicated
BE-algebra, characterizations of ideals are obtained.

2. Preliminaries

Definition 2.1 [14]. An algebra (X; ∗, 1) of type (2, 0) is called a BE-algebra if,
for all a, b, c in X, the following identities hold:

(BE1) a∗ a = 1,

(BE2) a ∗ 1 = 1,

(BE3) 1 ∗ a = a,

(BE4) a ∗( b ∗ c) = b ∗ (a ∗ c).

In a BE-algebra X, the relation ” ≤ ” is defined by a ≤ b if and only if a ∗ b = 1.

Proposition 2.2 [14]. If (X; ∗, 1) is a BE-algebra, then

(i) a ∗ (b ∗ a) = 1,



Complicated BE-Algebras 43

(ii) a ∗ ((a ∗ b) ∗ b) = 1

for any a, b ∈ X.

Example 2.1. [14] Let X = {1, a, b, c, d, 0} be a set with the following table:

∗ 1 a b c d 0

1 1 a b c d 0
a 1 1 a c c d
b 1 1 1 c c c
c 1 a b 1 a b
d 1 1 a 1 1 a
0 1 1 1 1 1 1

.

Then (X; ∗, 1) is a BE-algebra.

Definition 2.3 [14]. A BE-algebra (X; ∗, 1) is said to be self-distributive if a ∗
(b ∗ c) = (a ∗ b) ∗ (a ∗ c) for all a, b, c ∈ X.

Example 2.2 [14]. Let X = {1, a, b, c, d} be a set with the following table:

∗ 1 a b c d

1 1 a b c d
a 1 1 b c d
b 1 a 1 c c
c 1 1 b 1 b
d 1 1 1 1 1

.

Then (X; ∗, 1) is a self-distributive BE-algebra.

Proposition 2.4 ([2, 4]). Let (X; ∗, 1) be a self-distributive BE-algebra. If a ≤ b,
then, for all a, b, c in X, the following hold:

(i) c ∗ a ≤ c ∗ b,
(ii) b ∗ c ≤ a ∗ c,
(iii) a ∗ b ≤ (b ∗ c) ∗ (a ∗ c).

Definition 2.5 [21]. Let X be a BE-algebra. We say that X is commutative if

(C) (a ∗ b) ∗ b = (b ∗ a) ∗ a
for all a, b ∈ X.

Proposition 2.6 [21]. If (X; ∗, 1) is a commutative BE-algebra, then for all
a, b ∈ X,

a ∗ b = 1 and b ∗ a = 1 imply a = b.
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Definition 2.7 [2]. Let X be a BE-algebra. A nonempty subset I of X is called
an ideal of X if

(I1) ∀x ∈ X and ∀a ∈ I imply x ∗ a ∈ I,
(I2) ∀x ∈ X and ∀a, b ∈ I imply (a ∗ (b ∗ x)) ∗ x ∈ I.

Corollary 2.8 [2]. Let I be an ideal of X. If a ∈ I and a ≤ x, then x ∈ I.

Corollary 2.9 [2]. Let X be a self-distributive BE-algebra. A nonempty subset
I of X is an ideal of X if and only if it satisfies the following conditions

(I3) 1 ∈ I,
(I4) x ∗ (y ∗ z) ∈ I and y ∈ I imply x ∗ z ∈ I for all x, y, z ∈ X.

3. Complicated BE-algebras

Definition 3.1. Let (X; ∗, 1) be a BE-algebra and a, b ∈ X. The set

A(a, b) = {x ∈ X : a ∗ (b ∗ x) = 1}

is called an upper set of a and b. It is easy to see that 1, a, b ∈ A(a, b).

Proposition 3.2. Let (X; ∗, 1) be a BE-algebra. Then A(a, b) = A(b, a) for all
a, b ∈ X.

Proof. It is clear by (BE4).

Example 3.1. Let X = {1, a, b, c} be a set with the following table:

∗ 1 a b c

1 1 a b c
a 1 1 b c
b 1 1 1 c
c 1 1 1 1

.

It is clear that X is a BE-algebra and A(1, 1) = {1}, A(1, a) = A(a, a) =
{1, a}, A(1, b) = A(a, b) = A(b, b) = {1, a, b} and A(1, c) = A(a, c) = A(b, c) =
A(c, c) = X.

Example 3.2. Let X = {1, a, b, c} be a set with the following table:

∗ 1 a b c

1 1 a b c
a 1 1 b c
b 1 a 1 c
c 1 1 1 1

.
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It is clear that X is a BE-algebra and A(1, 1) = {1}, A(1, a) = A(a, a) =
{1, a}, A(1, b) = A(b, b) = {1, b}, A(a, b) = {1, a, b} and A(1, c) = A(a, c) =
A(b, c) = A(c, c) = X.

Definition 3.3. A BE-algebra (X; ∗, 1) is called a complicated BE-algebra (c-
BE-algebra, shortly) if for all a, b ∈ X, the set A(a, b) has the smallest element.
The smallest element of A(a, b) is denoted by asb.

Example 3.3. The BE-algebra X in Example 3.1 is a c-BE-algebra since 1s1 =
1, 1sa = a, asa = a, 1sb = asb = bsb = b and 1sc = asc = bsc = csc = c.
But the BE-algebra in Example 3.2 is not a c-BE-algebra since A(a, b) = {1, a, b}
has no the smallest element.

Proposition 3.4. Let (X; ∗, 1) be a c-BE-algebra. Then, for all a, b ∈ X,

(i) asb ≤ a and asb ≤ b,
(ii) as1 = a,

(iii) asb = bsa,

(iv) as(a ∗ b) ≤ b.

Proof. (i) and (ii) are easily seen by the definition of the c-BE algebra.

(iii) is clear since A(a, b) = A(b, a).

(iv) From Proposition 2.1 (i), since a ∗ ((a ∗ b) ∗ b) = 1, we have b ∈ A(a, a ∗ b)
and hence as(a ∗ b) ≤ b.

Proposition 3.5. Let (X; ∗, 1) be a self-distributive BE-algebra. If, for all a, b, c
∈ X, a ≤ b and b ≤ c then a ≤ c.

Proof. Since a∗ c = 1 ∗ (a ∗ c) = (a ∗ b) ∗ (a ∗ c) = a ∗ (b ∗ c) = a ∗ 1 = 1, we have
a ≤ c.

Proposition 3.6. Let (X; ∗, 1) be a self-distributive c-BE-algebra. Then, for all
a, b, c ∈ X,

(i) a ≤ b implies asc ≤ bsc,
(ii) (a ∗ b)s(b ∗ c) ≤ a ∗ c.

Proof. (i) Let a ≤ b. Since X is self-distributive, by Proposition 2.4 (ii), we have
b ∗ (bsc) ≤ a ∗ (bsc). Also since bsc ∈ A(b, c), we have c ≤ b ∗ (bsc). Then
by Proposition 3.5, we get c ≤ a ∗ (bsc). Hence we obtain bsc ∈ A(a, c) and
asc ≤ bsc.

(ii) By Proposition 2.4. (iii), we have a ∗ b ≤ (b ∗ c) ∗ (a ∗ c). Hence we see that
a ∗ c ∈ A(a ∗ b, b ∗ c) and (a ∗ b)s(b ∗ c) ≤ a ∗ c.
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Theorem 3.7. Let (X; ∗, 1) be a self-distributive and commutative c-BE-algebra.
Then (X;s) is a commutative monoid.

Proof. By Proposition 3.4 (ii) and (iii), we need only to show that (X;s) is
associative. Say (asb)sc = u. Then, since u ∈ A(asb, c) and A(asb, c) =
A(c, asb), we know that

(3.1) asb ≤ c ∗ u

and

(3.2) c ≤ (asb) ∗ u.

Hence using the equation (3.1), we have, by Proposition 2.4 (i) and (BE4),

(3.3) b ∗ (asb) ≤ b ∗ (c ∗ u) = c ∗ (b ∗ u).

Since a ≤ b ∗ (asb), using the equation (3.3) and Proposition 3.5, we obtain

(3.4) a ≤ c ∗ (b ∗ u).

From the equation (3.4), we have b ∗ u ∈ A(a, c) and asc ≤ b ∗ u. So we see that
u ∈ A(asc, b), that is,

(3.5) (asc)sb ≤ (asb)sc = u.

Since the equation (3.5) is true for all a, b, c ∈ X, the following inequality is true:

(3.6) (asb)sc ≤ (asc)sb.

Hence by Proposition 2.6, using the equation (3.5) and (3.6), we get

(3.7) (asb)sc = (asc)sb.

Then we obtain (asb)sc = (bsa)sc = (bsc)sa = as(bsc).

Proposition 3.8. If (X; ∗, 1) is a self-distributive and commutative c-BE-algebra
and X 6= {1}, then (X;s) has no group structure.

Proof. Let 1 6= a ∈ X. Hence we have a ≤ 1. If there exists an element b ∈ X
such that asb = bsa = 1, then since 1 = asb ≤ a ≤ 1, we have a = 1.This is a
contradiction.
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Proposition 3.9. Let (X; ∗, 1) be a self-distributive and commutative c-BE-
algebra. Then a ≤ b implies asb = a.

Proof. (i) Let a ≤ b. Hence we have a ∗ b = 1. Then we get

a ∗ (asb) = 1 ∗ (a ∗ (asb))

= (a ∗ b) ∗ (a ∗ (asb))

= a ∗ (b ∗ (asb)), by self-distributivity property

= 1

since asb ∈ A(a, b). Hence a ≤ b ∗ (asb). Then we have a ≤ asb. Also we know
that asb ≤ a. Hence we obtain asb = a by Proposition 2.6.

Now, in a c-BE-algebra, define the set

(3.8) B(a, b) = {x ∈ X : xsa ≤ b}

Theorem 3.10. Let (X; ∗, 1) is a self-distributive c-BE-algebra. Then the set
B(a, b) in equation (3.8) has the greatest element and it is a ∗ b.

Proof. Since a ∗ b ≤ a ∗ b, we have b ∈ A(a ∗ b, a). Hence we get (a ∗ b)sa ≤ b.
So, it is seen that a∗b ∈ B(a, b). If c ∈ B(a, b), we write csa ≤ b. By Proposition
2.4 (i), we have a ∗ (csa) ≤ a ∗ b. Since csa ∈ A(c, a), we have c ≤ a ∗ (csa).
Then we obtain c ≤ a ∗ b, by Proposition 3.5. Hence a ∗ b is the greatest element
of B(a, b).

Proposition 3.11. Let (X; ∗, 1) be a self-distributive and commutative c-BE-
algebra. Then

(i) asb ≤ a ∗ b ≤ (asc) ∗ (csb),

(ii) (a ∗ b)sa = asb,

(iii) (asb) ∗ c = a ∗ (b ∗ c),
(iv) a ∗ (bsc) = (a ∗ b)s(a ∗ c),
(v) asb is the greatest lower bound of the set {a, b}.

Proof. (i) Using Proposition 3.4 (iv) and Proposition 3.6 (i), we have cs(as(a∗
b)) ≤ csb. We get (csa)s(a ∗ b)) ≤ csb or by Proposition 3.4 (iii), (a ∗
b)s(csa) ≤ csb. Hence since a ∗ b ∈ B(csa, csb), we obtain a ∗ b ≤ (asc) ∗
(csb). Also it is known that asb ≤ b ≤ a ∗ b. By Proposition 3.5, we get
asb ≤ a ∗ b ≤ (asc) ∗ (csb).

(ii) Since a ∗ b ∈ B(a, b), we have (a ∗ b)sa ≤ b. Using Proposition 3.4 (i),
commutativity and associativity of the operation s, we get (a∗b)s(asa) ≤ asb.
By Proposition 3.9, we see that asa = a since a ≤ a. Hence (a ∗ b)sa ≤ asb.
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Secondly, since b ≤ a ∗ b, by commutativity of the operation s and Proposition
3.6 (i), we have asb ≤ (a ∗ b)sa. So we obtain (a ∗ b)sa = asb by Proposition
2.6.

(iii) asb ∈ A(a, b) implies a ≤ b ∗ (asb). Also from Proposition 2.4 (iii), we
have b∗(asb) ≤ ((asb)∗c)∗(b∗c). So we get a ≤ ((asb)∗c)∗(b∗c) by Proposition
3.5. Then we have (asb) ∗ c ≤ a ∗ (b ∗ c)). Secondly, using Proposition 2.2 (ii),
Proposition 2.4 (iii) and (BE4), since

b ≤ (b ∗ c) ∗ c
≤ (a ∗ (b ∗ c)) ∗ (a ∗ c)
= a ∗ ((a ∗ (b ∗ c)) ∗ c),

we have b ≤ a ∗ ((a ∗ (b ∗ c)) ∗ c) or a ≤ b ∗ ((a ∗ (b ∗ c)) ∗ c). Then we obtain
asb ≤ (a ∗ (b ∗ c)) ∗ c or a ∗ (b ∗ c) ≤ (asb) ∗ c. Consequently we see that
a ∗ (b ∗ c) = (asb) ∗ c.

(iv) By (i), we have a ∗ c ≤ (asb) ∗ (bsc) or asb ≤ (a ∗ c) ∗ (bsc). Then we
get a ∗ (asb) ≤ a ∗ ((a ∗ c) ∗ (bsc)) by Proposition 2.4 (i). We can write a ∗ b ≤
(asa)∗ (asb) ≤ (a∗ c)∗ (a∗ (bsc)) by (i). Hence since a∗ (bsc) ∈ A(a∗ b, a∗ c),
we have

(3.9) (a ∗ b)s(a ∗ c) ≤ a ∗ (bsc).

Secondly, since bsc ≤ b, we have a ∗ (bsc) ≤ a ∗ b by Proposition 2.4 (i). Hence
we get

(3.10) (a ∗ (bsc))s(a ∗ c) ≤ (a ∗ b)s(a ∗ c).

Also since bsc ≤ c, we have a ∗ (bsc) ≤ a ∗ c and so we get (a ∗ (bsc))s(a ∗
(bsc)) ≤ (a ∗ (bsc))s(a ∗ c), that is

(3.11) a ∗ (bsc) ≤ (a ∗ (bsc))s(a ∗ c).

Hence from the equation (3.10) and (3.11) and by Proposition 3.5, we obtain

(3.12) a ∗ (bsc) ≤ (a ∗ (bsc))s(a ∗ c).

The equations (3.9) and (3.12) show that a ∗ (bsc) = (a ∗ (bsc))s(a ∗ c) by
Proposition 2.6.

(v) Since asb ≤ a and asb ≤ b, asb is the lower bound of the set {a, b}.
Let c be another lower bound of the set {a, b}. Then we know that c ∗ a = 1 and
c ∗ b = 1. So since c ∗ (asb) = (c ∗ a)s(c ∗ b) = 1s1 = 1, we have c ≤ asb.
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Remark 3.1. Let (X; ∗, 1) be a BE-algebra. In [21], the binary operation ”+”
on X was defined as the following: for any a, b ∈ X,

a+ b = (a ∗ b) ∗ b.

Also the author proved that if (X; ∗, 1) is a commutative BE-algebra, then (X; +)
is a semilattice. By Proposition 3.11 (v), we proved that a self-distributive and
commutative c-BE-algebra X is a semilattice under the operation ”s”. In a self-
distributive and commutative c-BE-algebra, since a ≤ a + b by Proposition 2.2
(ii) and using Proposition 3.9, we see that as(a + b) = a. Also, since a ≤ b
implies a+ b = b and since asb ≤ a, we have (asb) + a = a. Therefore any self-
distributive and commutative c-BE-algebra is a lattice with respect to operations
”s” and ”+”.

Now we provide characterizations of ideals in a self-distributive c-BE-algebra.

Corollary 3.12 [2]. Let (X; ∗, 1) be a self-distributive BE-algebra. A nonempty
subset I of X is an ideal of X if and only if A(u, v) ⊆ I for all u, v ∈ I.

Theorem 3.13. Let (X; ∗, 1) be a self-distributive c-BE-algebra. A nonempty
subset I of X is an ideal of X if and only if it satisfies the following conditions:

(i) ∀a ∈ I, ∀x ∈ X, a ≤ x =⇒ x ∈ I,
(ii) ∀a, b ∈ I, ∃c ∈ I, c ≤ a and c ≤ b.

Proof. Let I be an ideal of X. (i) follows from the Corollary 2.8. Let a, b ∈ I.
From Corollary 3.12, we have A(a, b) ⊆ I. Then we get asb ∈ I. If we take
asb = c, then we have c ≤ a and c ≤ b by Proposition 3.4 (i) which proves (ii).
Conversely, let I be a non-empty subset of X satisfying (i) and (ii). Since for
a ∈ I, a ≤ 1 by (BE2), we have 1 ∈ I by (i). For any a, b, c ∈ X, let b ∈ I and
a ∗ (b ∗ c) ∈ I. By (ii), there exists d ∈ I such that d ≤ b and d ≤ a ∗ (b ∗ c). Then
using (BE3), (BE4), and self-distributivity, we have

1 = d ∗ (a ∗ (b ∗ c)) = d ∗ (b ∗ (a ∗ c)) = (d ∗ b) ∗ (d ∗ (a ∗ c)) = d ∗ (a ∗ c).

Hence, we get d ≤ a ∗ c. By (i), it is obtained a ∗ c ∈ I. So I is an ideal of X by
Corollary 2.9.

Theorem 3.14. Let (X; ∗, 1) be a self-distributive c-BE-algebra. A non-empty
subset I of X is an ideal of X if and only if it satisfies the following conditions:

(i) ∀a ∈ I, ∀x ∈ X, a ≤ x =⇒ x ∈ I,
(ii) ∀a, b ∈ I, asb ∈ I.
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Proof. The necessity is given in the proof of Theorem 3.13. Conversely, since
for a ∈ I, a ≤ 1 by (BE2), we have 1 ∈ I by (i). Let I be a non-empty subset
of X satisfying (i) and (ii). We know that x ∗ y ∈ B(x, y) in a self-distributive
c-BE-algebra. So (x ∗ y) sx ≤ y and hence

(3.13) xs(x ∗ y) ≤ y.

Now let y ∈ I and x ∗ (y ∗ z) ∈ I. By (ii) and (BE4), we get ys(x ∗ (y ∗ z)) =
ys(y ∗ (x∗z)) ∈ I. From the equation 3.13, it is clear that ys(y ∗ (x∗z)) ≤ x∗z.
Hence it is obtained x∗z ∈ I by (i). Consequently, I is an ideal of X by Corollary
2.9.
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