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Abstract

In this paper, using the notion of upper sets, we introduced the notions of
complicated BE-Algebras and gave some related properties on complicated,
self-distributive and commutative BE-algebras. In a self-distributive and
complicated BE-algebra, characterizations of ideals are obtained.
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1. INTRODUCTION

Y. Imai and K. Iséki introduced two classes of abstract algebras called BCK-
algebras and BCl-algebras [8, 10]. It is known that the class of BCK-algebras
is a proper subclass of BCl-algebras. In [5, 6], Q.P. Hu and X. Li introduced a
wide class of abstract algebras called BCH-algebras. They have shown that the
class of BCl-algebras is a proper subclass of BCH-algebras. J. Neggers and H.S.
Kim ([16]) introduced the notion of a d-algebra which is a generalization of BCK-
algebras, and also they introduced the notion of B-algebras ([17, 18]). Y.B. Jun,
E.H. Roh and H.S. Kim ([11]) introduced a new notion called BH-algebra which
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is another generalization of BCH/BCI/BCK-algebras. A. Walendziak obtained
another equivalent axioms for B-algebras ([20]). C.B. Kim and H.S. Kim ([13])
introduced the notion of BM-algebra which is a specialization of B-algebras. They
proved that the class of BM-algebras is a proper subclass of B-algebras and also
showed that a BM-algebra is equivalent to a 0-commutative B-algebra. In [14],
H.S. Kim and Y.H. Kim introduced the notion of BE-algebra as a generalization
of a BCK-algebra. Using the notion of upper sets they gave an equivalent condi-
tion of the filter in BE-algebras. In [2] and [3], S.S. Ahn and K.S. So introduced
the notion of ideals in BE-algebras, and proved several characterizations of such
ideals. Also they generalized the notion of upper sets in BE-algebras and dis-
cussed some properties of the characterizations of generalized upper sets related
to the structure of ideals in transitive and self distributive BE-algebras. In [4],
S.S. Ahn, Y.H. Kim and J.M. Ko are introduced the notion of terminal section
of BE-algebras and provided the characterization of a commutative BE-algebras.

B.M. Schein [19] considered systems of the form (¢;o0,\), where ¢ is a set of
functions closed under the composition "o” of functions (and hence (¢;0) is a
function semigroup) and the set theoretic subtraction ”\” (and hence (¢;)\) is
a subtraction algebra in the sence of [1]). B. Zelinka [22] discussed a problem
proposed by B.M. Schein concerning the structure of multiplication in a sub-
traction semigroup. He solved the problem for subtraction algebras of a special
type, called the atomic subtraction algebras. Y.B. Jun et al. [12] introduced the
complicated subtraction algebras and investigated several properties on it.

In this paper, using the notion of upper sets, we introduced the notions of
complicated BE-Algebras and gave some related properties on complicated, self-
distrubutive and commutative BE-algebras. In a self-distributive and complicated
BE-algebra, characterizations of ideals are obtained.

2. PRELIMINARIES

Definition 2.1 [14]. An algebra (X;x*,1) of type (2, 0) is called a BE-algebra if,
for all a, b, ¢ in X, the following identities hold:
(BE1) ax a =1,
(BE2) ax1=1,
(BE3) 1%a = a,
(BE4) a *( b*xc) =bx(axc).
In a BE-algebra X, the relation ” <7 is defined by a < b if and only if a xb = 1.
Proposition 2.2 [14]. If (X;*,1) is a BE-algebra, then

(i) ax(bxa) =1,
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(ii)) a* ((a*xb)*b) =1
for any a,b € X.

Example 2.1. [14] Let X = {1,a,b,c,d,0} be a set with the following table:

o0 o~
e B T O S Y
— = Q = = Q9
— Q o~ Q oo
— =0 0o oflo
— = Q2 O O
= Q o0 Q OO

Then (X;x,1) is a BE-algebra.

Definition 2.3 [14]. A BE-algebra (X;*,1) is said to be self-distributive if a %
(bxc) = (ax*xb)x*(axc) forall a,b,c e X.

Example 2.2 [14]. Let X = {1,a,b,c,d} be a set with the following table:

x11 a b ¢ d
111 a b ¢ d
all 1 b ¢ d
bl a 1 ¢ ¢
c|ll 1 b 1 b
dil1 1 1 11

Then (X;*,1) is a self-distributive BE-algebra.

Proposition 2.4 ([2, 4]). Let (X;*,1) be a self-distributive BE-algebra. If a <'b,
then, for all a, b, ¢ in X, the following hold:
(i) cxa <cxb,
(ii)) bxc<a=x*c,
(iii) axb < (bx*c)x*(ax*c).

Definition 2.5 [21]. Let X be a BE-algebra. We say that X is commutative if
(C) (axb)xb=(bxa)*a
for all a,b € X.

Proposition 2.6 [21]. If (X;*,1) is a commutative BE-algebra, then for all
a,be X,
axb=1andbxa=1 implya=2>.
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Definition 2.7 [2]. Let X be a BE-algebra. A nonempty subset I of X is called
an ideal of X if

(I1) Vx € X and Va € I imply zxa € I,
(I12) Vz € X and Va,b € I imply (a* (bxz))*xx € I.

Corollary 2.8 [2]. Let I be an ideal of X. If a € I and a < x, then z € I.

Corollary 2.9 [2]. Let X be a self-distributive BE-algebra. A nonempty subset
I of X is an ideal of X if and only if it satisfies the following conditions

(I3) 1€ 1,
(I4) zx(yxz) €l andy € I imply x xz € I for all x,y,z € X.

3. COMPLICATED BE-ALGEBRAS

Definition 3.1. Let (X;*, 1) be a BE-algebra and a,b € X. The set
Ala,b) ={r e X :ax*(bxx) =1}
is called an upper set of a and b. It is easy to see that 1,a,b € A(a,b).

Proposition 3.2. Let (X;*,1) be a BE-algebra. Then A(a,b) = A(b,a) for all
a,be X.

Proof. 1t is clear by (BE4). ]

Example 3.1. Let X = {1,a,b,c} be a set with the following table:

*‘1abc
1|1 a b ¢
all 1 b c
b1 1 1 ¢
cll 1 1 1

It is clear that X is a BE-algebra and A(1,1) = {1}, A(1,a) = A(a,a) =
{1,a}, A(1,b) = A(a,b) = A(b,b) = {1,a,b} and A(1,c) = A(a,c) = A(b,c) =
A(c,c) = X.

Example 3.2. Let X = {1,a,b,c} be a set with the following table:

*‘1abc
1|1 a b ¢
all 1 b c
bll a 1 ¢
cll 1 1 1
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It is clear that X is a BE-algebra and A(1,1) = {1}, A(1,a) = A(a,a) =
{1,a}, A(1,b) = A(b,b) = {1,b},A(a,b) = {1,a,b} and A(l,c) = A(a,c) =
A(b,c) = A(e,c) = X.

Definition 3.3. A BE-algebra (X;*,1) is called a complicated BE-algebra (c-
BE-algebra, shortly) if for all a,b € X, the set A(a,b) has the smallest element.
The smallest element of A(a,b) is denoted by a®b.

Example 3.3. The BE-algebra X in Example 3.1 is a c-BE-algebra since 181 =
1,18a = a,aBa = a,18b = a®b = b@b = b and 18)c = aBc = bSc = B¢ = c.
But the BE-algebra in Example 3.2 is not a c-BE-algebra since A(a, b) = {1,a,b}
has no the smallest element.

Proposition 3.4. Let (X;*,1) be a c-BE-algebra. Then, for all a,b € X,
(i) a®b < a and a®b < b,

(ii)) a®1 = a,
(iii) a®b = b@®a,
(iv) a®(a*b) <b.

Proof. (i) and (ii) are easily seen by the definition of the ¢-BE algebra.

(iii) is clear since A(a,b) = A(b,a).

(iv) From Proposition 2.1 (i), since a* ((a*b) *b) = 1, we have b € A(a,a*b)
and hence a®(a x b) < b. ]

Proposition 3.5. Let (X;x*,1) be a self-distributive BE-algebra. If, for all a,b,c
eX,a<bandb<c thena<ec.

Proof. Since ax c=1x%(axc) = (axb)*x(axc)=ax(bxc)=ax1=1, we have
a<c. [ |

Proposition 3.6. Let (X;x*,1) be a self-distributive c-BE-algebra. Then, for all
a,b,ce X,

(i) a < b implies a®c < b,
(ii) (a*xb)®(b*c) < ax*c.

Proof. (i) Let a < b. Since X is self-distributive, by Proposition 2.4 (ii), we have
b (bBc) < ax* (bc). Also since b®c € A(b,c), we have ¢ < b* (b®c). Then
by Proposition 3.5, we get ¢ < a * (b@c). Hence we obtain b®c € A(a,c) and
a®c < bS)c.

(ii) By Proposition 2.4. (iii), we have axb < (b*c) x (a*c). Hence we see that
axce Alaxbbxc) and (a*b)®(bx*c) <axc. ]
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Theorem 3.7. Let (X;*,1) be a self-distributive and commutative c-BE-algebra.
Then (X;®) is a commutative monoid.

Proof. By Proposition 3.4 (i) and (iii), we need only to show that (X;@®) is
associative. Say (a@®b)®c = u. Then, since u € A(a®b,c) and A(a®b,c) =
A(c,a®b), we know that

(3.1) a®b < cxu
and
(3.2) ¢ < (a®b) * u.

Hence using the equation (3.1), we have, by Proposition 2.4 (i) and (BE4),
(3.3) bx (a®b) < bx (cxu)=cx* (bxu).

Since a < b * (a@®b), using the equation (3.3) and Proposition 3.5, we obtain
(3.4) a<cx*(bxu).

From the equation (3.4), we have bxu € A(a,c) and a®c < b u. So we see that
u € A(a®e,b), that is,

(3.5) (a®c)®b < (a®b)©c = u.

Since the equation (3.5) is true for all a, b, ¢ € X, the following inequality is true:
(3.6) (a®@D)Oc < (a®c)®b.

Hence by Proposition 2.6, using the equation (3.5) and (3.6), we get

(3.7) (a®b)®c = (a®c)©b.

Then we obtain (a®b)®c = (bBa)®c = (b®c)Ba = a®(b®)¢). |

Proposition 3.8. If (X;*,1) is a self-distributive and commutative c-BE-algebra
and X # {1}, then (X;®) has no group structure.

Proof. Let 1 # a € X. Hence we have a < 1. If there exists an element b € X
such that a®b = bSa = 1, then since 1 = a®b < a < 1, we have ¢ = 1.This is a
contradiction. u
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Proposition 3.9. Let (X;x*,1) be a self-distributive and commutative c-BE-
algebra. Then a < b implies a®b = a.

Proof. (i) Let a < b. Hence we have a * b = 1. Then we get

* (a®b) = 1% (a* (a®b))

= (a*b) * (a* (a®b))
=ax* (bx (a®b)), by self-distributivity property
=1

since a®b € A(a,b). Hence a < b (a®b). Then we have a < a@®b. Also we know
that a®b < a. Hence we obtain a®b = a by Proposition 2.6. [ ]

Now, in a c-BE-algebra, define the set
(3.8) B(a,b) ={z € X : 28a < b}

Theorem 3.10. Let (X;%,1) is a self-distributive c-BE-algebra. Then the set
B(a,b) in equation (3.8) has the greatest element and it is a * b.

Proof. Since a b < a*b, we have b € A(a xb,a). Hence we get (a * b)®a < b.
So, it is seen that axb € B(a,b). If ¢ € B(a, b), we write c®a < b. By Proposition
2.4 (i), we have a * (¢®a) < a *b. Since c®a € A(c,a), we have ¢ < a * (c®a).
Then we obtain ¢ < a * b, by Proposition 3.5. Hence a b is the greatest element
of B(a,b). ]

Proposition 3.11. Let (X;x,1) be a self-distributive and commutative c-BE-
algebra. Then

(i) a®b < axb < (a®c) * (cOD),

(ii) (a*b)®a = a@®b,

(iii) (a®b)*xc=ax* (b*c),

(iv) a* (b®c) = (a*xb)S(a * ),

(v) a®b is the greatest lower bound of the set {a,b}.

Proof. (i) Using Proposition 3.4 (iv) and Proposition 3.6 (i), we have c®(a@®(a *
b)) < c®b. We get (c®a)®(a *x b)) < ¢®b or by Proposition 3.4 (iii), (a *
b)®(c®a) < c«®b. Hence since a * b € B(c®a, c®b), we obtain a *x b < (a®c) *
(c®b). Also it is known that a®b < b < a * b. By Proposition 3.5, we get
a®b < axb < (a®c) * (c®D).

(ii) Since a * b € B(a,b), we have (a * b)®a < b. Using Proposition 3.4 (i),
commutativity and associativity of the operation ), we get (axb)®(a®a) < a®b.
By Proposition 3.9, we see that a®a = a since a < a. Hence (a * b)Qa < a®b.
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Secondly, since b < a * b, by commutativity of the operation () and Proposition
3.6 (i), we have a@®b < (a * b)®a. So we obtain (a * b)®a = a®b by Proposition
2.6.

(iii) a®b € A(a,b) implies a < b * (a®b). Also from Proposition 2.4 (iii), we
have bx (a®b) < ((a®b)xc)*(bxc). So we get a < ((a@b)*c)*(bxc) by Proposition
3.5. Then we have (a®b) x ¢ < a * (b* c)). Secondly, using Proposition 2.2 (ii),
Proposition 2.4 (iii) and (BE4), since

b

<(bxc
<(a
a

)% c
x (bxc))* (axc)
(a *

(bxc))*c),

*(

we have b < a* ((ax (bxc)) *c) or a
a®b < (a*(b*c))*cor a* (bxc)
ax* (bxc) = (a®b) *

(iv) By (i), we have axc < (a®b) * (b®c) or a®b < (a * c¢) * (b®c). Then we
get ax (a®b) < ax* ((a*c)* (bSc)) by Proposition 2.4 (i). We can write a * b <
(a®a) * (a®b) < (axc)* (ax* (b®c)) by (i). Hence since a* (bSc) € A(axb,axc),

we have

< bx*((a*(bxc))*c). Then we obtain
< (

©b) * c. Consequently we see that

(3.9) (axb)®(axc) < ax*(bBc).

Secondly, since b®c < b, we have a * (bSc) < a x b by Proposition 2.4 (i). Hence
we get

(3.10) (a* (bBc))®(ax*c) < (axb)S(axc).

Also since b®c < ¢, we have a * (b@c) < a * ¢ and so we get (a * (bSc))®(a *
(b)) < (a* (bBc))®(a * c), that is

(3.11) ax* (b®c) < (ax* (b®c))®(a * c).
Hence from the equation (3.10) and (3.11) and by Proposition 3.5, we obtain
(3.12) a* (bSc) < (ax* (bBSc))®(a * c).

The equations (3.9) and (3.12) show that a * (b®c) = (a * (b®c))S(a * ¢) by
Proposition 2.6.

(v) Since a®b < a and a®b < b, a®b is the lower bound of the set {a,b}.
Let ¢ be another lower bound of the set {a,b}. Then we know that cxa =1 and
cxb=1. So since ¢ * (a®b) = (cxa)®(c*xb) =101 =1, we have c < a®b. =
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Remark 3.1. Let (X;%,1) be a BE-algebra. In [21], the binary operation ”+”
on X was defined as the following: for any a,b € X,

a+b=(axb)xb.

Also the author proved that if (X; %, 1) is a commutative BE-algebra, then (X; +)
is a semilattice. By Proposition 3.11 (v), we proved that a self-distributive and
commutative c-BE-algebra X is a semilattice under the operation ”©)”. In a self-
distributive and commutative c-BE-algebra, since a < a + b by Proposition 2.2
(ii) and using Proposition 3.9, we see that a®(a + b) = a. Also, since a < b
implies a + b = b and since a®b < a, we have (a®b) + a = a. Therefore any self-
distributive and commutative c-BE-algebra is a lattice with respect to operations
77@77 a‘]:1(1 ” _'_77‘

Now we provide characterizations of ideals in a self-distributive c-BE-algebra.

Corollary 3.12 [2]. Let (X;*,1) be a self-distributive BE-algebra. A nonempty
subset I of X is an ideal of X if and only if A(u,v) C I for all u,v € I.

Theorem 3.13. Let (X;%,1) be a self-distributive c-BE-algebra. A nonempty
subset I of X is an ideal of X if and only if it satisfies the following conditions:

(i) Vae Ve X,a<z=—x€l,
(ii) Va,be I,3c€ I, c<a and c <b.

Proof. Let I be an ideal of X. (i) follows from the Corollary 2.8. Let a,b € I.
From Corollary 3.12, we have A(a,b) C I. Then we get a®b € I. If we take
a®b = ¢, then we have ¢ < a and ¢ < b by Proposition 3.4 (i) which proves (ii).
Conversely, let I be a non-empty subset of X satisfying (i) and (ii). Since for
a € I,a <1 by (BE2), we have 1 € I by (i). For any a,b,c € X, let b € I and
ax(bxc) € I. By (ii), there exists d € I such that d < b and d < a* (bxc). Then
using (BE3), (BE4), and self-distributivity, we have

l=dx(ax(bxc))=dx(bx(axc))=(dxb)*(d*(a*xc)) =dx(axc).

Hence, we get d < a * c. By (i), it is obtained a * ¢ € I. So I is an ideal of X by
Corollary 2.9. m

Theorem 3.14. Let (X;x*,1) be a self-distributive c-BE-algebra. A non-empty
subset I of X is an ideal of X if and only if it satisfies the following conditions:

(i) VaeI,Vee X, a<z=uz€l,
(ii) Va,be I, a®b € I.
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Proof. The necessity is given in the proof of Theorem 3.13. Conversely, since
for a € I,a < 1 by (BE2), we have 1 € I by (i). Let I be a non-empty subset
of X satisfying (i) and (ii). We know that x x y € B(x,y) in a self-distributive
c-BE-algebra. So (z *y) ®z < y and hence

(3.13) x®(z xy) < y.

Now let y € I and = = (y * z) € I. By (ii) and (BE4), we get y®(z * (y * 2)) =
y®(y* (r*2z)) € I. From the equation 3.13, it is clear that y®(y* (zxz2)) < x*z.
Hence it is obtained xxz € I by (i). Consequently, I is an ideal of X by Corollary
2.9. u
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