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Abstract

In the paper a new combinatorical interpretation of the Jordan numbers
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1. Introduction

This paper was inspired by the wish to generalize the elementary formulae (for-
mulae (2)–(7) given below) generated by the authors in the course of discussion
on D. Knuth’s excellent publication [9] (devoted to the analysis of relations be-
tween sums of the powers of consecutive positive integers, inspired by Faulhaber’s
”old” and ”deeper” results). It led us first to find the general connection of type
(8) (known form) and (9) (probably new form). In the course of discussing
these relations a very interesting and original problem has appeared, which con-
sisted in deriving a formula of type (11), meaning a decomposition of the product
nk
∑n

l=1 l
r into the sum of type

∑k+r
s=1 as(k, r)

∑n
l=1 l

s. Section 3 is devoted to this
problem. Section 4 presents the general formula (26) (known formula) giving the
decomposition of the Stirling numbers of second kind in the linear combination
of binomial coefficients by using the Jordan numbers. Finally, in Section 5 the
new combinatoric interpretation of the Jordan numbers is presented.

http://dx.doi.org/10.7151/dmgaa.1225
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2. Stirling numbers

It should be reminded that Stirling numbers of the second kind or the partition
numbers S(n, k), k, n ∈ N, k ≤ n, satisfy the triangular recurrence relation [12,
13, 14]:

(1)
S(n, k) = S(n − 1, k − 1) + k S(n− 1, k),

S(k, k) = 1, S(k, 0) = 0.

Moreover, we adopt here Donald Knuth’s notation [6, 9]:

∑

f(n) :=

n
∑

l=1

f(l)

for every function f : N → C. For example we have

∑

nk :=

n
∑

l=1

lk, k, n ∈ N.

We shall start our deliberations by presenting the above-mentioned basic identi-
ties which can be easily verified by direct calculations. So, the following identities
hold:

(2)
∑

n = S(n + 1, n),

∑

n3 +
∑

n2 =
∑

n2(n + 1) =
1

2
(3n + 1)

(

n + 2

3

)

=
1

2

(

3(n − 1) + 4
)

(

n + 2

3

)

(3)

= 6

(

n + 2

4

)

+ 2

(

n + 2

3

)

= 2S(n + 2, n),

(4) 3
∑

n5 + 10
∑

n4 + 9
∑

n3 + 2
∑

n2 =
∑

n2(n + 1)(n + 2)(3n + 1)

= 24

(

n + 3

4

)(

n + 1

2

)

= 24S(n + 3, n),

(5) S(n + 3, n) = 15

(

n + 3

6

)

+ 10

(

n + 3

5

)

+

(

n + 3

4

)

,
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∑

n7+ 7
∑

n6+ 17
∑

n5+ 17
∑

n4+ 6
∑

n3=
∑

n3(n + 1)2(n + 2)(n + 3)

= 48S(n + 4, n) =
(

15n3 + 30n2 + 5n − 2
)

(

n + 4

5

)

,(6)

(7) S(n + 4, n) = 105

(

n + 4

8

)

+ 105

(

n + 4

7

)

+ 25

(

n + 4

6

)

+

(

n + 4

5

)

.

Stirling numbers of the second kind are presented in equations (3), (5) and (7)
which is not surprising because the following inversion formulae hold.

Proposition 1. We have

∑

nr =
r
∑

l=0

S(r, l) l!

(

n + 1

l + 1

)

(8)

=
r+1
∑

l=1

S(r + 1, l) (l − 1)!

(

n

l

)

.(9)

Proof. Formula (8) is drawn from [9], whereas the second formula seems to be
new, yet it may be easily derived from the first one:

r
∑

l=0

S(r, l) l!

(

n + 1

l + 1

)

=

r
∑

l=0

S(r, l) l!

((

n

l + 1

)

+

(

n

l

))

= S(r, 0) +
r−1
∑

l=0

(

n

l + 1

)

(

S(r, l) l! + S(r, l + 1) (l + 1)!
)

+ S(r, r) r!

(

n

r + 1

)

=

r−1
∑

l=0

(

n

l + 1

)

l!
(

S(r, l) + S(r, l + 1) (l + 1)
)

+ S(r + 1, r + 1) r!

(

n

r + 1

)

=

r+1
∑

l=1

(

n

l

)

(l − 1)!S(r + 1, l).

3. Decomposition of products nk
∑

nm

We note that from (9) we obtain

(n + 1)
∑

nr =

r+1
∑

l=1

S(r + 1, l) (l − 1)! (l + 1)

(

n + 1

l + 1

)

by (8)
=

∑

nr+1 +

r+1
∑

l=1

S(r + 1, l) (l − 1)!

(

n + 1

l + 1

)

,(10)
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which, again by (8), suggests a formula of following form

(11) nk
∑

nr =
k+r
∑

s=1

as(k, r)
∑

nk+r+1−s.

Since we have (see [6]):

(r + 1)
∑

nr =
r
∑

l=0

(−1)l
(

r + 1

l

)

Bl n
r+1−l ⇐⇒

nr+1 = (r + 1)
∑

nr + (r + 1)B1 n
r −

⌊r/2⌋
∑

k=1

(

r + 1

2 k

)

B2k n
r+1−2k,(12)

where Bl are the Bernoulli’s numbers, we obtain indeed formulae of the type (11).
From (12) the following formulae can be generated.

Theorem 2. We have

(13) (r + 1)n
∑

nr = (r + 2)
∑

nr+1 +

r
∑

s=1

(

r + 1

s

)

Bs

∑

nr−s+1,

(14)

(r + 1)n2
∑

nr = (r + 2)n
∑

nr+1 +

r
∑

s=1

(

r + 1

s

)

Bs n
∑

nr−s+1

= (r + 3)
∑

nr+2 +

r+1
∑

p=1

(

r + 2

p

)

Bp

∑

nr−p+2

+

r
∑

s=1

(

r + 1

s

)

Bs

r − s + 2

(

(r − s + 3)
∑

nr−s+2

+
r−s+1
∑

q=1

(

r − s + 2

q

)

Bq

∑

nr−s−q+2

)

= (r + 3)
∑

nr+2 +

r
∑

p=1

2 r − p + 5

r + 2

(

r + 2

p

)

Bp

∑

nr−p+2

+ (r + 2)Br+1

∑

n +
r
∑

s=1

r−s+1
∑

q=1

(

r+1

s

)(

r−s+2

q

)

BsBq

r − s + 2

∑

nr−s−q+2.
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Hence, after the appropriate regrouping, we get
(15)

(r + 1)n2
∑

nr = (r + 3)
∑

nr+2 − (r + 2)
∑

nr+1 +
1

6
(r + 1)(r + 3)

∑

nr

−
1

6

(

r + 1

2

)

∑

nr−1 −
1

15

(

r + 1

4

)

∑

nr−2 +
1

30

(

r + 1

4

)

∑

nr−3

+
1

21

(

r + 1

6

)

∑

nr−4 + . . .

+
1

2

[

(r + 5)(r + 1)Br +

r−1
∑

s=1

(

r + 1

s

)

(r − s + 1)BsBr−s

]

∑

n2

+

(

(r + 2)Br+1 +

r
∑

s=1

(

r + 1

s

)

BsBr−s+1

)

∑

n.

The last two coefficients can be reduced to the following ones (the classical split-
ting formulae are applied here [1, 5, 7, 10, 11]):

1

2

[

(r + 5)(r + 1)Br −
(

2
⌊r

2

⌋

+ 1
)

(r + 1)B2⌊ r

2
⌋

]

since we have the equality

r−1
∑

s=1

(

r + 1

s

)

(r − s + 1)BsBr−s = −
(

2
⌊r

2

⌋

+ 1
)

(r + 1)B2⌊ r

2
⌋

for every r = 3, 4, . . . (we have
(

2
⌊

r
2

⌋

+ 1
)

(r + 1)B2⌊ r

2
⌋ for r = 2), and

(r + 2)Br+1 +

r
∑

s=1

(

r + 1

s

)

BsBr−s+1 = −(r + 1)Br.

From these relations, we obtain

r−1
∑

s=1

(

r + 1

s

)

(r − s + 1)BsBr−s = (r + 1)
r−1
∑

s=1

(

r

s

)

BsBr−s

if r is odd and r ≥ 3.

Proof. We prove only (13). To this aim let us fix r ∈ N and put

(16) Tk,r := (r + 1) kr − (k + 1)r+1 + kr+1.
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We have

(17)

Tk,r = (r + 1) kr + kr+1 −

r+1
∑

i=0

(

r + 1

i

)

ki = −

r−1
∑

i=0

(

r + 1

i

)

ki,

n
∑

k=1

Tk,r = (r + 1)
∑

nr +

n
∑

k=1

(

kr+1 − (k + 1)r+1
)

= (r + 1)
∑

nr + 1 − (n + 1)r+1.

On the other hand

(18)

n
∑

k=1

Tk,r = −

r−1
∑

i=0

(

r + 1

i

)

∑

ni.

We note that (13) holds for n = 1 since it is equivalent to the following known
relation

Br+1 =
r+1
∑

s=0

(

r + 1

s

)

Bs.

Let us assume that (13) holds for some n ∈ N. Then we get

(r + 1)n
∑

nr − (r + 2)
∑

nr+1 −

r−1
∑

i=0

(

r + 1

i

)

∑

ni

=

r
∑

s=1

(

r + 1

s

)

Bs

∑

nr−s+1 −

r−1
∑

i=0

(

r + 1

i

)

∑

ni

=
r
∑

s=1

(

r + 1

s

)

Bs

∑

(n + 1)r−s+1(19)

−

r
∑

s=1

(

r + 1

s

)

Bs(n + 1)r−s+1 −

r−1
∑

i=0

(

r + 1

i

)

∑

ni,

and

−

r
∑

s=1

(

r + 1

s

)

Bs(n + 1)r−s+1

= (n + 1)r+1 − 2(r + 1)B1(n + 1)r −

r
∑

s=0

(−1)s
(

r + 1

s

)

Bs(n + 1)r−s+1

(12)
= (n + 1)r+1 + (r + 1)(n + 1)r − (r + 1)

∑

(n + 1)r

= (n + 1)r+1 − (r + 1)
∑

nr,
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which implies

(20)

−
r
∑

s=1

(

r + 1

s

)

Bs(n + 1)r−s+1 −
r−1
∑

i=0

(

r + 1

i

)

∑

ni

= (n + 1)r+1 −
r
∑

i=0

(

r + 1

i

)

∑

ni = 1.

We note that the last identity can be easily deduced after summing the following
equalities

(n + 1)r+1 = nr+1 +

r
∑

i=0

(

r + 1

i

)

ni,

nr+1 = (n− 1)r+1 +
r
∑

i=0

(

r + 1

i

)

(n− 1)i,

. . .

2r+1 = 1r+1 +
r
∑

i=0

(

r + 1

i

)

1i.

Moreover, by (17) and (18), we obtain

(21)

(r + 1)n
∑

nr − (r + 2)
∑

nr+1 −

r−1
∑

i=0

(

r + 1

i

)

∑

ni

= (r + 1)n
∑

nr − (r + 2)
∑

nr+1 + (r + 1)
∑

nr + 1 − (n + 1)r+1

= 1 + (r + 1)(n + 1)
∑

(n + 1)r − (r + 2)
∑

(n + 1)r+1.

By comparing (19)–(21) we conclude that relation (16) holds also for n replaced
by n + 1 which, by the principle of mathematical induction, ends the proof.

Corollary 3. From (15) the following special formulae can be deduced

2n2
∑

n = 4
∑

n3 − 3
∑

n2 +
∑

n,

3n2
∑

n2 = 5
∑

n4 − 4
∑

n2 +
5

2

∑

n2 −
1

2

∑

n,

4n2
∑

n3 = 6
∑

n5 − 5
∑

n4 + 4
∑

n3 −
∑

n2.

Some more general formula, than the one in (15), can be also obtained.
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Proposition 4. We have

(22) (m + 1)nk
∑

nm = (m + k + 1)
∑

nm+k −
k

2
(m + k)

∑

nm+k−1

+
k

12
(m + 2 k − 1) (m + k − 1)

∑

nm+k−2

−
k

24
(k − 1) (m + k − 1) (m + k − 2)

∑

nm+k−3

+
1

720
(m+ k− 3) k (m+ 2 k− 3)

(

3 k2 + 3 k (m− 3)−m (m+ 4) + 6
)

∑

nm+k−4

−
1

360

(

m + k − 3

2

)(

k

2

)

(

2 k2 + 2 k (m− 4) −m (m + 5) + 8
)

∑

nm+k−5 + . . .

+ coeff(m,k)
∑

n.

We have found the general formula only for the first six coefficients from above.

The last absent coefficient coeff(m,k) can be found by subtracting from the left

side of (22) the expression staying on the right side of this formula with sums
∑

np where p ≥ 2.

For example, we find

2n
∑

n = 3
∑

n2 −
∑

n,

2n3
∑

n = 5
∑

n4 − 6
∑

n3 +
9

2

∑

n2 −
7

2

∑

n,

4n
∑

n3 = 5
∑

n4 − 2
∑

n3 +
∑

n2,

3n4
∑

n2 =
1

2
n5(n + 1)(2n + 1)

= 7
∑

n6 − 12
∑

n5 + 15
∑

n4 − 10
∑

n3 +
7

2

∑

n2 −
1

2

∑

n,

and the following special one

(r + 1)n3
∑

nr = (r + 4)
∑

nr+3 −
3

2
(r + 3)

∑

nr+2 +
1

4
(r + 2)(r + 5)

∑

nr+1

−
1

4
(r + 1)(r + 2)

∑

nr −
1

240
(r − 6)r(r + 1)(r + 3)

∑

nr−1

+
1

240
(r − 2)(r − 1)r(r + 1)

∑

nr−2 + ...

4. Jordan numbers

In this section, we present the generalization of relations (3), (5) and (7).
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Proposition 5. We have

(23) S(n + k, n) =

k−1
∑

l=0

al,k

(

n + k

2 k − l

)

,

where

(24)
a0,k+1 = (2k + 1)a0,k, ak,k+1 = ak−1,k,

al,k+1 = (k − l + 1) al−1,k + (2 k − l + 1) al,k,

for l = 1, 2, . . . , k− 1. The numbers al,k are called the Jordan numbers [2, 3, 4, 8,
15]. Authors of the present paper obtained the above relations independently. For

the sake of selfcontainedness, the proof of (23) will be given now. We proceed by

induction.

Proof. (23) We shall employ the following basic formula

(25)

n
∑

k=m−l

k

(

k + l

m

)

=

n
∑

k=m−l

(

(k + l −m) + (m− l)
)

(

k + l

m

)

= (m + 1)

n
∑

k=m−l+1

(

k + l

m + 1

)

+ (m− l)

n
∑

k=m−l

(

k + l

m

)

= (m + 1)

(

n + l + 1

m + 2

)

+ (m− l)

(

n + l + 1

m + 1

)

.

Thus, assuming that formula (23) holds for certain k, n ∈ N, from (25) and (1)
the following relation can be derived

S(n + k + 1, n) = S(n + k + 1, n) − S(k + 2, 0)

=
n−1
∑

l=0

(

S(l + k + 2, l + 1) − S(l + k + 1, l)
)

=
n−1
∑

l=0

(l + 1)S(l + k + 1, l + 1)

=
n−1
∑

l=0

(l + 1)
k−1
∑

τ=0

aτ,k

(

l + k + 1

2 k − τ

)

=
k−1
∑

τ=0

aτ,k

n−1
∑

l=k−1−τ

(l + 1)

(

l + k + 1

2 k − τ

)

=

k−1
∑

τ=0

aτ,k

(

(2 k − τ + 1)

(

n + k + 1

2 k − τ + 2

)

+ (k − τ)

(

n + k + 1

2 k − τ + 1

))

= a0,k (2 k + 1)

(

n+k+1

2k+2

)

+

k−2
∑

τ=0

(

aτ,k (k − τ) + aτ+1,k (2 k − τ)
)

(

n+k+1

2k−τ+1

)

+ ak−1,k

(

n + k + 1

k + 2

)

=

k
∑

l=0

al,k+1

(

n + k + 1

2 k − l + 2

)

.
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Remark 6. It is possible to prove the following formulae:

a0,k = (2 k − 1)!!, a1,k =
k − 1

3
a0,k,

a2,k =
1

12

(

2 k − 2

3

)

(2 k − 3)!!, a3,k = S2(k, 2 k + 3),

ak−2,k = 2k+1 − k − 3 ak−1,k = 1,

where S2(n, k) denotes the 2-associated Stirling number of the second kind (see [12]
and sequences A000478 and A000247 in [14]).

In Table 1 the triangle of coefficients al,k, l = 0, 1, . . . , k − 1 is presented.

Table 1. Triangle of coefficients al,k

l,k 1 2 3 4 5 6 7 8

0 1 3 15 105 945 10395 135135 2027025

1 1 10 105 1260 17325 270270 4729725

2 1 25 490 9450 190575 4099095

3 1 56 1918 56980 1636635

4 1 119 6825 302995

5 1 246 22935

6 1 501

7 1

Remark 7. Another formula connecting Stirling numbers of the second kind
with binomial coefficients is also known

S(n, n− k) =
∑

r

〈〈

k
r

〉〉(

n + k − 1 − r

2k

)

,

where

〈〈

k
r

〉〉

are the Eulerian numbers of the second kind (see [6]).

5. Combinatoric interpretation of the Jordan and

Živković numbers

As it can be inferred from [12, pp. 76–77], the numbers an−2k−1,n−k, for k =
0, 1, . . ., ⌊(n − 1)/2⌋, enumerate the permutations of n elements with k cycles,



Jordan numbers, Stirling numbers and sums of powers 165

none of which is a unit cycle. We note that in [12] the numbers

b(n, k) := an−2k−1,n−k

are called the associated Stirling number of the second kind. Moreover, we have
the following recurrence relation

b(n + 1, k) = k b(n, k) + n b(n− 1, k − 1).

Conversely, in [15] the Živković numbers G(k, i) are defined by the following
equality

s(n, n− k) =

k
∑

i=0

(−1)i G(k, i)

(

n + i− 1

k + i

)

,

where G(k, i) = 0 if k ≥ 1 and i > k or i < 1 (G(0, i) = δ0,i), and s(n, k) denotes
the Stirling number of the first kind.

Numbers G(k, i) are determined by the initial condition G(1, i) = δ1,i and by
the recurrence relation

(26) G(k + 1, i) = iG(k, i) + (k + i)G(k, i − 1).

It is easy to check that

(27) G(r − l, r) = al,r ⇐⇒ G(k, k + l) = al,k+l (r − l := k).

Hence, as it is verifiable on the grounds of relation (26), al,k+l denotes the number
of ways of placing 2k+ l labeled balls into k indistinguishable boxes with at least
two balls in each box.

The values of numbers G(k, i) are compiled in Table 2 (we note that G(k, i),
k = i, i + 1, . . . make up i-th diagonal – Table 1 – for each i ∈ N; the diagonal is
from the main line upwards).

Table 2. Values of numbers G(k, i)

G(1, k) G(2, k) G(3, k) G(4, k) G(5, k) G(6, k)

1
1 3
1 10 15
1 25 105 105
1 56 490 1260 945
1 119 1918 9450 17325 10395
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