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1. Introduction

For graph theory terminology in general we follow [6]. Specifically, let G = (V,E)
be an (undirected) graph with vertex set V and edge set E. The size of G is |E|,
the number of edges of G. A Hamiltonian graph is a graph with a spanning cycle,
called a Hamiltonian cycle. A graph is Eulerian if it has a closed trail containing
all edges. Let F = {Si : i ∈ I} be an arbitrary family of sets. The intersection

graph G(F ) is the one-dimensional skeleton of the nerves of F , i.e., G(F ) is the
graph whose vertices are Si, i ∈ I, and in which the vertices Si and Sj (i, j ∈ I)
are adjacent if and only if Si 6= Sj and Si ∩Sj 6= ∅. It is shown that every simple
graph (without loops and multiple edges) is an intersection graph [5].

The study of algebraic structures using properties of graphs has become an
exciting research topic in the last few decades, leading to many fascinating results
and questions. It is interesting to study the intersection graphs G(F ) when the
members of F have an algebraic structure. Several mathematicians studied such
graphs on various algebraic structures. Recently Chakrabarty et al. [2] studied
intersection graphs of ideals of rings. The intersection graph of ideals of a ring

R, denoted by G(R), is the undirected simple graph whose vertices are in a one-
to-one correspondence with all nontrivial (nonzero, proper) ideals of R and two
distinct vertices are joined by an edge if and only if the corresponding ideals
of R have a nonzero intersection. For references on graphs related to the ring
structures see for example [2, 3, 4, 7].

In this paper, we first calculate the number of vertices and the number of
edges of the intersection graph of ideals of rings and fields. Then we study
Eulerianity and Hamiltonicity in the intersection graph of ideals of direct product
of commutative rings. For a ring R we denote the number of edges of G(R) by
e(G(R)). For ring theory terminology in general we follow [1].

2. Order and size

Theorem 1. Let R1 and R2 be two rings with identity. If Ri has ti ideals for

i = 1, 2, then |V (G(R1 ×R2))| = t1t2 − 2 and

e(G(R1 ×R2)) =

(

t1t2 − 2
2

)

− 2(x+ a)(y + b)− x− y + ab,(1)

where x =

(

t1 − 2
2

)

− e(G(R1)), y =

(

t2 − 2
2

)

− e(G(R2)), a = t1 − 1, b =

t2 − 1.

Proof. Let R = R1 ×R2. We show that e(G(R)) = 2(x+ a)(y+ b) + x+ y− ab,
where G(R) is the graph complement of G(R) and hence the result follows.
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Let I be a nontrivial ideal of R. Then I = I1 × I2 /∈ {{(0R1
, 0R2

)} , R1 ×R2}.
Let A be the set of ideals I of R such that I = I1 × I2, where I1 /∈ {{0R1

} , R1}
and I2 /∈ {{0R2

} , R2}. Let B be the set of all other nontrivial ideals of R. Then
any ideal of R in B is one of the following forms:

{0R1
} ×R2, R1 × {0R2

} , {0R1
} × I2, I1 × {0R2

} , R1 × I2, I1 ×R2

where I1 and I2 are nontrivial ideals of R1 and R2, respectively.

Let I = I1 × I2 and J = I3 × I4 be two nontrivial ideals of R such that
I ∩ J = {(0R1

, 0R2
)}. Then I1 ∩ I3 = {0R1

} and I2 ∩ I4 = {0R2
}. So the number

of edges of G(R) with both end points corresponding to ideals in A is given by

2 e(G(R1)) e(G(R2)) = 2xy,

where x and y are defined as above.

Now the vertices corresponding to the ideals {0R1
} × R2, R1 × {0R2

} , R1 ×
I2, I1 × R2 (for all nontrivial ideals I1 and I2 of R1 and R2 respectively) are
adjacent to any vertex corresponding to an ideal in A in the graph G(R). Thus
there are no such edges in G(R).

Next we note that for each pair of nontrivial ideals I2, I4 of R2 with I2 ∩ I4 =
{0R2

} and for all nontrivial ideals I1, I3 of R1, we have

{0R1
} × I2 ∩ I3 × I4 = {(0R1

, 0R2
)} = I1 × I2 ∩ {0R1

} × I4.

So the number of edges of G(R) with one end point corresponding to an ideal in
A and the other end point corresponding to an ideal in B is given by

2(t1 − 2)e(G(R2)) + 2(t2 − 2)e(G(R1)) = 2(a − 1)y + 2(b− 1)x,

where a and b are defined as above.

Finally we calculate the number of edges of G(R) with both end points cor-
responding to ideals in B. We denote the degree of the vertex corresponding to
an ideal T in a graph X by dX(T ).

Let M be the induced subgraph of G(R) generated by the set of vertices cor-
responding to ideals in B. Then the following computations are straightforward:

Fact 1. dM ({0R1
} ×R2) = 1 + (t1 − 2) = t1 − 1.

Note that since the vertex corresponding to {0R1
}×R2 is adjacent to the vertex

corresponding to R1×{0R2
} and all the vertices corresponding to I1×{0R2

} (for
all nontrivial ideals I1 of R1) in M .

Fact 2. dM (R1 × {0R2
}) = t2 − 1.
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Fact 3. dM ({0R1
} × I2) = 1 + (t1 − 2) + d

G(R2)
(I2) + d

G(R2)
(I2) = t1 − 1 +

2d
G(R2)

(I2).

Note that since the vertex corresponding to {0R1
} × I2 is adjacent to the vertex

corresponding to R1 ×{0R2
}, all the vertices corresponding to I1 ×{0R2

} (for all
nontrivial ideals I1 of R1) and all the vertices corresponding to ideals of the forms
R1×I4 and {0R1

}×I4 (for all nontrivial ideals I4 of R2 such that I2∩I4 = {0R2
})

in M .

Fact 4. dM (I1 × {0R2
}) = t2 − 1 + 2d

G(R1)
(I1).

Fact 5. dM (R1 × I2) = d
G(R2)

(I2).

Fact 6. dM (I1 ×R2) = d
G(R1)

(I1).

Thus the total degree of vertices of M is

(t1 + t2 − 2) + (t2 − 2)(t1 − 1) + (t1 − 2)(t2 − 1) + 3(2x + 2y) = 2(ab+ 3x+ 3y),

as the sum of degrees of all nontrivial ideals of R1 (respectively, R2) in the graph
G(R1) (respectively, G(R2)) is twice the number of edges of G(R1) (respectively,
G(R2)). Therefore the number of edges of G(R) with both end points corre-
sponding to ideals in B is given by

ab+ 3x+ 3y.

Hence the total number of edges of G(R) is

2xy + 2(a− 1)y + 2(b− 1)x+ ab+ 3x+ 3y = 2xy + 2ay + 2bx+ ab+ x+ y

= 2(x+ a)(y + b) + x+ y − ab

as required.

Corollary 2. Let F1, F2, . . . , Fn be n > 2 fields and F = F1 × F2 × · · · × Fn.

Then |V (G(F ))| = 2n − 2 and

e(G(F )) =
1

2
(22n − 3 · 2n − 3n + 5).

Proof. Since the number of ideals of F is 2n, we have |V (G(F ))| = 2n − 2. We
prove the result by induction on n. For n = 2, there are only 2 nontrivial ideals
of F , namely, F1 × {0F2

} and {0F1
} × F2. The vertices of G(F ) corresponding

to these ideals are non-adjacent and so e(G(F )) = 0 = 1
2(2

4 − 3 · 22 − 32 + 5).
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Thus the result is true for n = 2. Suppose the result is true for n = k − 1. Let
R1 = F1 × F2 × · · · × Fk−1 and R2 = Fk. Then F = R1 ×R2. Now by inductive
hypothesis, e(G(R1)) =

1
2(2

2(k−1) − 3 · 2(k−1) − 3(k−1) +5). Then straightforward
calculations show that x = 1

2 (3
k−1 − 2k + 1), y = 0, a = 2k−1 − 1, b = 1 and

e(G(F )) = 1
2(2

2k − 3 · 2k − 3k + 5), by (1), as required.

3. Eulerianity and Hamiltonicity

Let R = R1 × R2, where Ri is a commutative ring with identity, and with ti
ideals for i = 1, 2. By definition G(Ri) has ti − 2 vertices, for i = 1, 2. Let
the ideals of R1 be 0 = I0, I1, . . . , It1−2, It1−1 = R1, and let the ideals of R2 be
0 = J0, J1, . . . , Jt2−2, Jt2−1 = R2. It is clear that I E R1 × R2 if and only if
I = I1 × I2, where I1 = {x1 : (x1, x2) ∈ I}, and I2 = {x2 : (x1, x2) ∈ I}.

For an ideal I of R in order to avoid repeating “the vertex in G(R) corre-
sponded with I” we henceforth simply use “the vertex I”. It is well known that
a connected graph is Eulerian if and only if its vertices all have even degree. We
now calculate the degree of a vertex in G(R). Let Ii × Jj ER.

If i = 0, j 6∈ {0, t2 − 1}, then degG(R)(Ii × Jj) = t1 − 1 + t1 − 1 + t1degR2
(Jj).

If i = 0, j = t2 − 1, then degG(R)(Ii × Jj) = t1(t2 − 1) − 2. If i 6∈ {0, t1 − 1},
j = 0, then degG(R)(Ii × Jj) = t2 − 1 + t2 − 1 + t2degR1

(Ii). If i = t1 − 1,
j = 0, then degG(R)(Ii × Jj) = t2(t1 − 1) − 2. If i = t1 − 1, j 6∈ {0, t2 − 1}, then
degG(R)(Ii×Jj) = t2(t1−1)−1+degG(R2)(Jj)+1. If i 6∈ {0, t1−1}, j = t2−1, then
degG(R)(Ii×Jj) = t1(t2−1)−1+degG(R1)(Ii)+1. If {i, j}∩{0, t2−1, t1−1} = ∅,
then

degG(R)(Ii × Jj) = t2 − 1 + t1 − 1 + t1 − 2 + t2 − 2

+ (t2 − 2)degG(R1)(Ii) + (t1 − 2)degG(R2)(Jj)

− degG(R1)(Ii)degG(R2)(Jj).

So the degrees of vertices of G(R) are listed in the following forms:

• (1): 2(t1 − 1) + t1degR2
(Jj), and 2(t2 − 1) + t2degR1

(Ii).

• (2): t1(t2 − 1)− 2, and t2(t1 − 1)− 2.

• (3): t2(t1 − 1) + degG(R2)(Jj), and t1(t2 − 1) + degG(R1)(Ii).

• (4): 2(t1 − 1) + 2(t2 − 1)− 2 + (t2 − 2)degG(R1)(Ii) + (t1 − 2)degG(R2)(Jj)−

degG(R1)(Ii)degG(R2)(Jj).

Theorem 3. Let G(Ri) be connected for i = 1, 2. If G(R1 × R2) is Eulerian,

then both G(R1) and G(R2) are Eulerian.



196 N. Jafari Rad, S.H. Jafari and S. Ghosh

Proof. Let G(R1 × R2) be Eulerian. Then the degree of any vertex of G(R) is
even. From Form (2) we have that both t1(t2−1) and t2(t1−1) are even. Then by
Form (3), degG(R1)(Ii) and degG(R2)(Jj) are even. Then both G(R1) and G(R2)
are Eulerian.

The converse of Theorem 3 is not true in general.

Theorem 4. Let Ri be a ring with ti ideals such that G(Ri) be Eulerian for

i = 1, 2. Then G(R1 ×R2) is Eulerian if and only if t1 + t2 is even.

Proof. Let G(R1) and G(R2) be Eulerian. Then degG(R1)(Ii) and degG(R2)(Jj)
are even. So Forms (1) and (4) are even. If t1 + t2 is even, then either both
t1 and t2 are even, or both are odd. In each case Forms (2) and (3) are even.
Consequently, G(R) is Eulerian. For the converse suppose that G(R) is Eulerian.
Then Forms (2) and (3) are even. Since degG(R1)(Ii) and degG(R2)(Jj) are even,
both t1(t2 − 1) and t2(t1 − 1) are even. This implies that t1 + t2 is even.

We next study Hamiltonicity of the intersection graph of ideals of direct prod-
uct of commutative rings. If C is a cycle in a graph with vertex set V (C) =
{v1, v2, . . . , vn} and edge set {vivi+1 : i = 1, 2, . . . , n− 1} ∪ {v1vn}, then we refer
to this cycle as C : v1 − v2 − · · · − vn − v1. We begin with the following.

Proposition 5. If G(R1) or G(R2) is Hamiltonian, then G(R) is Hamiltonian.

Proof. Let G(R2) be Hamiltonian. It is obvious that t2 ≥ 5. Without loss of
generality assume that the Hamiltonian cycle of G(R2) is J1−J2−· · ·−Jt2−2−J1.
Consider the following cycles in G(R):

C0 : 0× J1 − 0× J2 − · · · − 0× Jt2−2 − 0×R2 − 0× J1,

Ct1−1 : R1 × 0−R1 × J1 −R1 × J2 − · · · −R1 × Jt2−2 −R1 × 0,

and for 1 ≤ i ≤ t1 − 2,

Ci : Ii × 0− Ii × J1 − · · · − Ii × Jt2−2 − Ii ×R2 − Ii × 0.

From the above cycles we obtain a Hamiltonian cycle as follows. Let 0 ≤ r ≤
t1 − 2.

If r is even, then we remove the edges (Ir×J1)(Ir×J2), (Ir+1×J1)(Ir+1×J2),
and add the edges (Ir × J1)(Ir+1 × J1), (Ir × J2)(Ir+1 × J2).

If r is odd, then we remove the edges (Ir×J2)(Ir×J3), (Ir+1×J2)(Ir+1×J3),
and add the edges (Ir × J2)(Ir+1 × J2), (Ir × J3)(Ir+1 × J3).

Thus G(R) is Hamiltonian.
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Note that the converse of Proposition 5 is not true in general. As an example let
Fi is a field for i = 1, 2, 3. Then F1 × 0× 0−F1 ×F2 × 0− 0×F2 × 0− 0×F2 ×
F3−0×0×F3−F1×0×F3−F1×0×0 is a Hamiltonian cycle in G(F1×F2×F3).
But G(S) is not Hamiltonian for S ∈ {Fi, Fi × Fj : i, j = 1, 2, 3, i 6= j}.

Lemma 6. If min{t1, t2} = 3, then G(R) is Hamiltonian.

Proof. Let min{t1, t2} = 3. Without loss of generality assume that t2 = min{t1, t2}.
If t1 = 3, then I1×0−I1×J1−0×J1−0×R2−I1×R2−R1×J1−R1×0−I1×0
is a Hamiltonian cycle in G(R). So we suppose that t1 ≥ 4. Then,

0× J1− 0×R2−

I1 × J1− I1 × 0− I1 ×R2−

I2 × J1− I2 × 0− I2 ×R2−

I3 × J1− I3 × 0− I3 ×R2−

· · ·

Ii × J1− Ii × 0− Ii ×R2−

· · ·

It1−3 × J1− It1−3 × 0− It1−3 ×R2−

It1−2 × J1− R1 × 0− It1−2 × 0− It1−2 ×R2 −R1 × J1 − 0× J1

is a Hamiltonian cycle.

Proposition 7. If min{t1, t2} ≥ 4, then G(R) is Hamiltonian.

Proof. Let 4 ≤ t2 ≤ t1. For i = 1, 2, . . . or . . . , t2 − 3 let Ci be the following
cycle.

Ii×0−Ii×J1−· · ·−Ii×Ji−0×Ji−Ii−1×R2−Ii×Ji+1−· · ·−Ii×Jt2−2−Ii×0.

Let Ct2−2 be the following cycle.

It2−2×0−It2−2×J1−· · ·−It2−2×Jt2−2−0×Jt2−2−It2−3×R2−It2−2×R2−It2−2×0.

For t2 − 1 ≤ i ≤ t1 − 2, let Ci be the cycle

Ii × 0− Ii × J1 − · · · − Ii × Jt2−2 − Ii ×R2 − Ii × 0.

Let Ct1−1 be the cycle R1 × 0−R1 × J1 − · · · −R1 × Jt2−2 −R1 × 0.

We produce a Hamiltonian cycle from above cycles as follows. We remove the
edges (0×J1)(0×R2) and (I1×R2)(I2×J3), and add the edges (0×J1)(I1×R2)
and (0×R2)(I2×J3) to obtain a cycle C ′

2 from C1 and C2. We remove the edges
(0× J2)(I1 ×R2) and (I2 ×R2)(I3 × J3) and add the edges (0× J2)(I2 ×R2) and
(I1 ×R2)(I3 × J3) to obtain a cycle C ′

3 from C ′

2 and C3. In general from C ′

i and
Ci+1 we obtain a cycle C ′

i+1 by removing the edges (0× Ji)(Ii−1 ×R2) and (Ii ×
R2)(Ii+1×Ji+2), and add the edges (0×Ji)(Ii×R2) and (Ii−1×R2)(Ii+1×Ji+2).
We proceed this process to obtain the cycle C ′

t2−2.
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Now we remove the edges (It2−2 × J1)(It2−2 × J2) and (It2−1 × J1)(It2−1 × J2)
from C ′

t2−2 and Ct2−1 and add the edges (It2−2 × J1)(It2−1 × J1) and (It2−2 ×
J2)(It2−1 × J2), to obtain a cycle C ′

t2−1. We remove (It2−1 × J2)(It2−1 × J3) and
(It2 × J2)(It2 × J3) from C ′

t2−1 and Ct2 and add the edges (It2−1 × J2)(It2 × J2)
and (It2−1 × J3)(It2 × J3), obtain a cycle C ′

t2
.

We remove (It2 ×J1)(It2 ×J2) and (It2+1×J1)(It2+1×J2) from C ′

t2
and Ct2+1

and add the edges (It2 × J1)(It2+1 × J1) and (It2 × J2)(It2+1× J2), obtain a cycle
C ′

t2+1.
We proceed this process to obtain C ′

t1−2. Lastly, we remove (It1−2×0)(It1−2×
J1) and (R2 × 0)(R2 × J1) from C ′

t1−2, and Ct1−1, and add (It1−2 × 0)(R2 × 0)
and (It1−2×J1)(R2×J1) to obtain C ′

t1−2. Then C ′

t1−2 is a Hamiltonian cycle.

Corollary 8. If min{t1, t2} ≥ 3, then G(R) is Hamiltonian.

Lemma 9. If Ri is a commutative ring with identity for i = 1, 2, 3, then G(R1 ×
R2 ×R3) is Hamiltonian.

Proof. Let the number of ideals of Ri be equal to ti for i = 1, 2, 3. Since the
graph of direct product of three fields is Hamiltonian, we assume that ti ≥ 3 for
some i. Then Corollary 8 implies that G(R1 ×R2 ×R3) is Hamiltonian.

By Lemma 9, we have the following corollary.

Corollary 10. For two commutative rings R1 and R2 with identity, if R1 or R2

is direct product of two rings, then G(R) is Hamiltonian.

In the rest of the paper we consider t1 = 2. By Corollary 8 it remains to study
Hamiltonicity in G(R) when R1 is a field (i.e., t1 = 2). The following has a
straightforward proof.

Observation 11. If t2 ∈ {2, 3}, then G(R) is not Hamiltonian.

So henceforth we suppose that t2 ≥ 4. Also by Corollary 10, we assume R2 is
not direct product of two rings. Since R2 is an Artinian ring, henceforth (R2.m)
is local. (We recall that a ring is local if it has only one maximal ideal. We also
refer (R,M) as a local ring R with the unique maximal ideal M).

Lemma 12. If R2 has a unique minimal ideal, then G(R) is Hamiltonian.

Proof. First suppose that t2 = 4. Let J1 be the unique minimal ideal of R2. Let
J2 be the other proper non-trivial ideal. Since R2 is not direct product of two
rings, J2 is the unique maximal ideal of R2. Now 0× J1 − 0×R2 − 0× J2 −R1 ×
J2 − R1 × 0 − R1 × J1 − 0 × J1 is a Hamiltonian cycle. We next suppose that
t2 ≥ 5. Notice that G(R2) is a complete graph and so is Hamiltonian. Then the
result follows by Proposition 5.
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Since for any n ≥ 2, the ring Zpn has a unique minimal ideal, a consequence of
Corollaries 8, 10, Observation 11, and Lemma 12 we obtain the following.

Proposition 13. For k ≥ 2, Zp
n1

1

× Zp
n2

2

× · · · ×Z
p
n
k

k

is not Hamiltonian if and

only if k = 2 and n1 + n2 ≤ 3.

Since for a prime p, Zpn is not Hamiltonian if and only if n ≤ 3, as a consequence
of Proposition 13 we obtain the following.

Corollary 14 (Theorem 5.2 of [2]). All the graphs of Zn are Hamiltonian except

when n is one of the following forms: p2, p3, pq, p2q, where p, q are distinct primes.

Lemma 15. If F is an infinite field and V is a n-dimensional vector space over

F , then V has infinite subspaces.

Lemma 16. If F is a finite field of order q and V is a n-dimensional vector

space over F , then V has qn−1
q−1 = qn−1+ qn−2+ · · ·+1, 1-dimensional subspaces.

Corollary 17. Let (R2,M) is a local ring such that R2

M
is finite. If I1, . . . , It are

minimal ideals of R2 for t ≥ 2 such that for any i, Ii ∼=
R2

M
, and I1 + · · · + It =

I1
⊕

I2
⊕

· · ·
⊕

It = J , then J contains |R2

M
|t−1+ |R2

M
|t−2+ · · ·+1 minimal ideals

of R2.

Proof. Notice that R2 is a Noetherian ring and MIi = 0 for i = 1, 2, . . . , t. Thus
J is an R2

M
-module (vector space) which a subset T is an R2

M
-submodule of J if

and only if T is an R2-submodule.

Theorem 18. For t2 = 4, 5, . . . , 9, G(R) is Hamiltonian.

Proof. For t2 = 4 the result follows from the proof of Lemma 12.
If R2 has a unique minimal ideal then by Lemma 12, G(R2) is complete and so
is Hamiltonian. Then by Proposition 5, G(R) is Hamiltonian. Thus we assume
that R2 has at least two minimal ideals.

If t2 = 5, then by Corollary 17, R2 has at least six ideals, a contradiction.
Thus t2 6= 5.

• t2 = 6. Let J1, J2 be two minimal ideals of R2. By Corollary 17, J1 + J2
contains at least three minimal ideals of R2. Without loss of generality assume
that J1 + J2 contains three minimal ideals J1, J2 and J3. Since t2 = 6, all ideals
of R2 are 0, J1, J2, J3, J1 + J2 = M,R. Now, 0× J1 − 0×R2 − 0× J2 −R1 × J2 −
R1 × J3 − 0× J3 − 0× (J1 + J2)−R1 × (J1 + J2)−R1 × 0−R1 × J1 − 0× J1 is
a Hamiltonian cycle.

• t2 = 7. Let J1, J2 be two distinct minimal ideals of R2. By Corollary 17, J1+J2
contains at least three minimal ideals of R2. Without loss of generality assume
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that J1 + J2 contains three minimal ideals J1, J2 and J3. Let J be an ideal of R2

different from J1, J2, J3 and J1+J2. If J∩(J1+J2) = 0, then R2 has more than 7
ideals, a contradiction. So J∩(J1+J2) 6= 0. Now 0×J1−0×(J1+J2)−0×J2−R1×
J2−R1×J3−0×J3−0×R2−0×J−R1×J−R1×(J1+J2)−R1×0−R1×J1−0×J1,
is a Hamiltonian cycle.

• t2 = 8. Let J1, J2 be two distinct minimal ideals of R2. Since R2 is local,
J1 ∼= J2 (∼= R2

M
). Then J1 + J2 = J1

⊕

J2. If R2 has another minimal ideal
K such that J1 + J2 + K = J1

⊕

J2
⊕

K, then by Corollary 17, J1 + J2 + K
contains at least 7 minimal ideals contradicting that t2 = 8. We deduce that
J1 + J2 contains all minimal ideals of R2. Further, |R2

M
| ≤ 4. We discuss the

possiblities for |R2

M
|.

If |R2

M
| = 2, then R2 has three minimal ideals J1, J2, J3. Also note that

M 6= J1 + J2, since t2 = 8. Let J be a proper non-trivial ideal different from
J1, J2, J3, J1 + J2,M . Since J is not minimal we may assume that J1 ⊆ J . Now
0× J1 − 0× (J1 + J2)−R1 × (J1 + J2)−R1 × J2 − 0× J2 − 0×M −R1 ×M −
R1 × J3 − 0 × J3 − 0 × R2 − 0 × J − R1 × J − R1 × 0 − R1 × J1 − 0 × J1 is a
Hamiltonian cycle.

If |R2

M
| = 3, then R2 has four minimal ideals J1, J2, J3, J4. Since t2 = 8, we

have M 6= J1 + J2 and so 0, J1, J2, J3, J4, J1 + J2,M,R2 are all ideals of R2. Now
0× J1 − 0× (J1 + J2)− 0× J2 −R1 × J2 −R1 × J3 − 0× J3 − 0×R2 − 0×M −
0 × J4 − R1 × J4 − R1 × (J1 + J2) − R1 ×M − R1 × 0 − R1 × J1 − 0 × J1 is a
Hamiltonian cycle.

If |R2

M
| = 4, then R2 has five minimal ideals J1, J2, J3, J4, J5. So 0, J1, J2,

J3, J4, J5, J1 + J2, R2 are all ideals of R2. Now 0× J1 − 0× (J1 + J2)− 0× J2 −
R1 × J2 −R1 × (J1 + J2)− 0× J5 −R1 × J5 −R1 × J4 − 0× J4 − 0×R2 − 0×
J3 −R1 × J3 −R1 × 0−R1 × J1 − 0× J1 is a Hamiltonian cycle.

• t2 = 9. Let J1, J2 be two distinct minimal ideals of R2. Since R is local, J1 ∼= J2
(∼= R2

M
). Let |R2

M
| = q. Then by Corollary 17 q ∈ {2, 3, 4, 5, 7}, since R2

M
is a field.

Consequently by Corollary 17 R2 has q + 1 minimal ideals. It is obvious that
q 6= 7. If q = 5, then the ideals of R2 are 0, J1, J2, J3, J4, J5, J6, J1+J2, R2, where
Ji is minimal and Ji ⊆ J1 + J2 for i = 1, 2, 3, 4, 5, 6. Then R1 × 0−R1 × J2 − 0×
J2 − 0×R2 − 0× J1 −R1 × J1 −R1 × J3 − 0× J3 − 0× (J1 + J2)− 0× J4 −R1 ×
J4−R1×J5−0×J5−R1× (J1+J2)−0×J6−R1×J6−R1×0 is a Hamiltonian
cycle. If q = 4, then the ideals of R2 are 0, J1, J2, J3, J4, J5, J1+J2,M,R2, where
Ji is minimal for i = 1, 2, 3, 4, 5. Then 0× J1 − 0× (J1 + J2)− 0× J2 −R1 × J2 −
R1×J3−0×J3−0×R2−0×J4−R1×J4−R1×J5−0×J5−0×M−R1×M −
R1× (J1+J2)−R1×0−R1×J1−0×J1, is a Hamiltonian cycle. If q = 3, J1+J2
contains four minimal ideals J1, J2, J3, J4. Let J be another proper non-trivial
ideal. This time 0×J1−0× (J1+J2)−0×J2−0×M−0×J3−0×R2−0×J−
R1×J−R1×M−R1×0−R1× (J1+J2)−0×J4−R1×J4−R1×J3−R1×J2−
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R1 × J1 − 0× J1 is a Hamiltonian cycle. If q = 2, then by Corollary 17, J1 + J2
contains three minimal ideals of J1, J2, J3 of R2. Also R2 has no minimal ideal.
Suppose that the ideals of R2 are 0, J1, J2, J1 + j2, J3,K1,K2,K3, R2. Without
loss of generality assume that J1 ⊆ K1. Note that Ki ∩ (J1 + J2) 6= 0. Then
0×J1−0×K1−0×(J1+J2)−0×J3−0×R2−0×J2−R1×J2−R1×K2−0×K2−
0×K3−R1×K3−R1×0−R1×K1−R1× (J1+J2)−R1×J3−R1×J1−0×J1
is a Hamiltonian cycle.

We close with the following problem.

Problem 19. Is G(R) Hamiltonian for t2 ≥ 10?
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