Discussiones Mathematicae
General Algebra and Applications 34 (2014) 191-201
doi:10.7151/dmgaa. 1224

ON THE INTERSECTION GRAPHS OF IDEALS OF DIRECT PRODUCT OF RINGS

Nader Jafari Rad
Department of Mathematics
Shahrood University of Technology
Shahrood, Iran
e-mail: n.jafarirad@gmail.com
Sayyed Heidar Jafari
Department of Mathematics
Shahrood University of Technology
Shahrood, Iran
e-mail: shjafari55@gmail.com
AND
Shamik Ghosh
Department of Mathematics
Jadavpur University
Kolkata, India
e-mail: sghosh@math.jdvu.ac.in

Abstract

In this paper we first calculate the number of vertices and edges of the intersection graph of ideals of direct product of rings and fields. Then we study Eulerianity and Hamiltonicity in the intersection graph of ideals of direct product of commutative rings.

Keywords: ideal, direct sum, intersection graph, Eulerian, Hamiltonian.
2010 Mathematics Subject Classification: 16D25, 16D70, 05C75, 05C62.

1. Introduction

For graph theory terminology in general we follow [6]. Specifically, let $G=(V, E)$ be an (undirected) graph with vertex set V and edge set E. The size of G is $|E|$, the number of edges of G. A Hamiltonian graph is a graph with a spanning cycle, called a Hamiltonian cycle. A graph is Eulerian if it has a closed trail containing all edges. Let $F=\left\{S_{i}: i \in I\right\}$ be an arbitrary family of sets. The intersection $\operatorname{graph} G(F)$ is the one-dimensional skeleton of the nerves of F, i.e., $G(F)$ is the graph whose vertices are $S_{i}, i \in I$, and in which the vertices S_{i} and $S_{j}(i, j \in I)$ are adjacent if and only if $S_{i} \neq S_{j}$ and $S_{i} \cap S_{j} \neq \emptyset$. It is shown that every simple graph (without loops and multiple edges) is an intersection graph [5].

The study of algebraic structures using properties of graphs has become an exciting research topic in the last few decades, leading to many fascinating results and questions. It is interesting to study the intersection graphs $G(F)$ when the members of F have an algebraic structure. Several mathematicians studied such graphs on various algebraic structures. Recently Chakrabarty et al. [2] studied intersection graphs of ideals of rings. The intersection graph of ideals of a ring R, denoted by $G(R)$, is the undirected simple graph whose vertices are in a one-to-one correspondence with all nontrivial (nonzero, proper) ideals of R and two distinct vertices are joined by an edge if and only if the corresponding ideals of R have a nonzero intersection. For references on graphs related to the ring structures see for example $[2,3,4,7]$.

In this paper, we first calculate the number of vertices and the number of edges of the intersection graph of ideals of rings and fields. Then we study Eulerianity and Hamiltonicity in the intersection graph of ideals of direct product of commutative rings. For a ring R we denote the number of edges of $G(R)$ by $e(G(R))$. For ring theory terminology in general we follow [1].

2. Order and size

Theorem 1. Let R_{1} and R_{2} be two rings with identity. If R_{i} has t_{i} ideals for $i=1,2$, then $\left|V\left(G\left(R_{1} \times R_{2}\right)\right)\right|=t_{1} t_{2}-2$ and

$$
\begin{equation*}
e\left(G\left(R_{1} \times R_{2}\right)\right)=\binom{t_{1} t_{2}-2}{2}-2(x+a)(y+b)-x-y+a b \tag{1}
\end{equation*}
$$

where $x=\binom{t_{1}-2}{2}-e\left(G\left(R_{1}\right)\right), y=\binom{t_{2}-2}{2}-e\left(G\left(R_{2}\right)\right), a=t_{1}-1, b=$ $t_{2}-1$.

Proof. Let $R=R_{1} \times R_{2}$. We show that $e(\overline{G(R)})=2(x+a)(y+b)+x+y-a b$, where $\overline{G(R)}$ is the graph complement of $G(R)$ and hence the result follows.

Let I be a nontrivial ideal of R. Then $I=I_{1} \times I_{2} \notin\left\{\left\{\left(0_{R_{1}}, 0_{R_{2}}\right)\right\}, R_{1} \times R_{2}\right\}$. Let A be the set of ideals I of R such that $I=I_{1} \times I_{2}$, where $I_{1} \notin\left\{\left\{0_{R_{1}}\right\}, R_{1}\right\}$ and $I_{2} \notin\left\{\left\{0_{R_{2}}\right\}, R_{2}\right\}$. Let B be the set of all other nontrivial ideals of R. Then any ideal of R in B is one of the following forms:

$$
\left\{0_{R_{1}}\right\} \times R_{2}, R_{1} \times\left\{0_{R_{2}}\right\},\left\{0_{R_{1}}\right\} \times I_{2}, I_{1} \times\left\{0_{R_{2}}\right\}, R_{1} \times I_{2}, I_{1} \times R_{2}
$$

where I_{1} and I_{2} are nontrivial ideals of R_{1} and R_{2}, respectively.
Let $I=I_{1} \times I_{2}$ and $J=I_{3} \times I_{4}$ be two nontrivial ideals of R such that $I \cap J=\left\{\left(0_{R_{1}, 0_{R_{2}}}\right)\right\}$. Then $I_{1} \cap I_{3}=\left\{0_{R_{1}}\right\}$ and $I_{2} \cap I_{4}=\left\{0_{R_{2}}\right\}$. So the number of edges of $\overline{G(R)}$ with both end points corresponding to ideals in A is given by

$$
2 e\left(\overline{G\left(R_{1}\right)}\right) e\left(\overline{G\left(R_{2}\right)}\right)=2 x y
$$

where x and y are defined as above.
Now the vertices corresponding to the ideals $\left\{0_{R_{1}}\right\} \times R_{2}, R_{1} \times\left\{0_{R_{2}}\right\}, R_{1} \times$ $I_{2}, I_{1} \times R_{2}$ (for all nontrivial ideals I_{1} and I_{2} of R_{1} and R_{2} respectively) are adjacent to any vertex corresponding to an ideal in A in the graph $G(R)$. Thus there are no such edges in $\overline{G(R)}$.

Next we note that for each pair of nontrivial ideals I_{2}, I_{4} of R_{2} with $I_{2} \cap I_{4}=$ $\left\{0_{R_{2}}\right\}$ and for all nontrivial ideals I_{1}, I_{3} of R_{1}, we have

$$
\left\{0_{R_{1}}\right\} \times I_{2} \cap I_{3} \times I_{4}=\left\{\left(0_{R_{1}}, 0_{R_{2}}\right)\right\}=I_{1} \times I_{2} \cap\left\{0_{R_{1}}\right\} \times I_{4} .
$$

So the number of edges of $\overline{G(R)}$ with one end point corresponding to an ideal in A and the other end point corresponding to an ideal in B is given by

$$
2\left(t_{1}-2\right) e\left(\overline{G\left(R_{2}\right)}\right)+2\left(t_{2}-2\right) e\left(\overline{G\left(R_{1}\right)}\right)=2(a-1) y+2(b-1) x,
$$

where a and b are defined as above.
Finally we calculate the number of edges of $\overline{G(R)}$ with both end points corresponding to ideals in B. We denote the degree of the vertex corresponding to an ideal T in a graph X by $d_{X}(T)$.

Let M be the induced subgraph of $\overline{G(R)}$ generated by the set of vertices corresponding to ideals in B. Then the following computations are straightforward:

Fact 1. $d_{M}\left(\left\{0_{R_{1}}\right\} \times R_{2}\right)=1+\left(t_{1}-2\right)=t_{1}-1$.
Note that since the vertex corresponding to $\left\{0_{R_{1}}\right\} \times R_{2}$ is adjacent to the vertex corresponding to $R_{1} \times\left\{0_{R_{2}}\right\}$ and all the vertices corresponding to $I_{1} \times\left\{0_{R_{2}}\right\}$ (for all nontrivial ideals I_{1} of R_{1}) in M.

Fact 2. $d_{M}\left(R_{1} \times\left\{0_{R_{2}}\right\}\right)=t_{2}-1$.

Fact 3. $d_{M}\left(\left\{0_{R_{1}}\right\} \times I_{2}\right)=1+\left(t_{1}-2\right)+d_{\overline{G\left(R_{2}\right)}}\left(I_{2}\right)+d_{\overline{G\left(R_{2}\right)}}\left(I_{2}\right)=t_{1}-1+$ $2 d_{\overline{G\left(R_{2}\right)}}\left(I_{2}\right)$.

Note that since the vertex corresponding to $\left\{0_{R_{1}}\right\} \times I_{2}$ is adjacent to the vertex corresponding to $R_{1} \times\left\{0_{R_{2}}\right\}$, all the vertices corresponding to $I_{1} \times\left\{0_{R_{2}}\right\}$ (for all nontrivial ideals I_{1} of R_{1}) and all the vertices corresponding to ideals of the forms $R_{1} \times I_{4}$ and $\left\{0_{R_{1}}\right\} \times I_{4}$ (for all nontrivial ideals I_{4} of R_{2} such that $I_{2} \cap I_{4}=\left\{0_{R_{2}}\right\}$) in M.

Fact 4. $d_{M}\left(I_{1} \times\left\{0_{R_{2}}\right\}\right)=t_{2}-1+2 d_{\overline{G\left(R_{1}\right)}}\left(I_{1}\right)$.
Fact 5. $d_{M}\left(R_{1} \times I_{2}\right)=d_{\overline{G\left(R_{2}\right)}}\left(I_{2}\right)$.
Fact 6. $d_{M}\left(I_{1} \times R_{2}\right)=d_{\overline{G\left(R_{1}\right)}}\left(I_{1}\right)$.
Thus the total degree of vertices of M is
$\left(t_{1}+t_{2}-2\right)+\left(t_{2}-2\right)\left(t_{1}-1\right)+\left(t_{1}-2\right)\left(t_{2}-1\right)+3(2 x+2 y)=2(a b+3 x+3 y)$,
as the sum of degrees of all nontrivial ideals of R_{1} (respectively, R_{2}) in the graph $\overline{G\left(R_{1}\right)}$ (respectively, $\left.\overline{G\left(R_{2}\right)}\right)$ is twice the number of edges of $\overline{G\left(R_{1}\right)}$ (respectively, $\left.\overline{G\left(R_{2}\right)}\right)$. Therefore the number of edges of $\overline{G(R)}$ with both end points corresponding to ideals in B is given by

$$
a b+3 x+3 y
$$

Hence the total number of edges of $\overline{G(R)}$ is

$$
\begin{aligned}
2 x y+2(a-1) y+2(b-1) x+a b+3 x+3 y & =2 x y+2 a y+2 b x+a b+x+y \\
& =2(x+a)(y+b)+x+y-a b
\end{aligned}
$$

as required.
Corollary 2. Let $F_{1}, F_{2}, \ldots, F_{n}$ be $n \geqslant 2$ fields and $F=F_{1} \times F_{2} \times \cdots \times F_{n}$. Then $|V(G(F))|=2^{n}-2$ and

$$
e(G(F))=\frac{1}{2}\left(2^{2 n}-3 \cdot 2^{n}-3^{n}+5\right)
$$

Proof. Since the number of ideals of F is 2^{n}, we have $|V(G(F))|=2^{n}-2$. We prove the result by induction on n. For $n=2$, there are only 2 nontrivial ideals of F, namely, $F_{1} \times\left\{0_{F_{2}}\right\}$ and $\left\{0_{F_{1}}\right\} \times F_{2}$. The vertices of $G(F)$ corresponding to these ideals are non-adjacent and so $e(G(F))=0=\frac{1}{2}\left(2^{4}-3 \cdot 2^{2}-3^{2}+5\right)$.

Thus the result is true for $n=2$. Suppose the result is true for $n=k-1$. Let $R_{1}=F_{1} \times F_{2} \times \cdots \times F_{k-1}$ and $R_{2}=F_{k}$. Then $F=R_{1} \times R_{2}$. Now by inductive hypothesis, $e\left(G\left(R_{1}\right)\right)=\frac{1}{2}\left(2^{2(k-1)}-3 \cdot 2^{(k-1)}-3^{(k-1)}+5\right)$. Then straightforward calculations show that $x=\frac{1}{2}\left(3^{k-1}-2^{k}+1\right), y=0, a=2^{k-1}-1, b=1$ and $e(G(F))=\frac{1}{2}\left(2^{2 k}-3 \cdot 2^{k}-3^{k}+5\right)$, by (1), as required.

3. Eulerianity and Hamiltonicity

Let $R=R_{1} \times R_{2}$, where R_{i} is a commutative ring with identity, and with t_{i} ideals for $i=1,2$. By definition $G\left(R_{i}\right)$ has $t_{i}-2$ vertices, for $i=1,2$. Let the ideals of R_{1} be $0=I_{0}, I_{1}, \ldots, I_{t_{1}-2}, I_{t_{1}-1}=R_{1}$, and let the ideals of R_{2} be $0=J_{0}, J_{1}, \ldots, J_{t_{2}-2}, J_{t_{2}-1}=R_{2}$. It is clear that $I \unlhd R_{1} \times R_{2}$ if and only if $I=I_{1} \times I_{2}$, where $I_{1}=\left\{x_{1}:\left(x_{1}, x_{2}\right) \in I\right\}$, and $I_{2}=\left\{x_{2}:\left(x_{1}, x_{2}\right) \in I\right\}$.

For an ideal I of R in order to avoid repeating "the vertex in $G(R)$ corresponded with I " we henceforth simply use "the vertex I ". It is well known that a connected graph is Eulerian if and only if its vertices all have even degree. We now calculate the degree of a vertex in $G(R)$. Let $I_{i} \times J_{j} \unlhd R$.

If $i=0, j \notin\left\{0, t_{2}-1\right\}$, then $\operatorname{deg}_{G(R)}\left(I_{i} \times J_{j}\right)=t_{1}-1+t_{1}-1+t_{1} \operatorname{deg}_{R_{2}}\left(J_{j}\right)$. If $i=0, j=t_{2}-1$, then $\operatorname{deg}_{G(R)}\left(I_{i} \times J_{j}\right)=t_{1}\left(t_{2}-1\right)-2$. If $i \notin\left\{0, t_{1}-1\right\}$, $j=0$, then $\operatorname{deg}_{G(R)}\left(I_{i} \times J_{j}\right)=t_{2}-1+t_{2}-1+t_{2} \operatorname{deg}_{R_{1}}\left(I_{i}\right)$. If $i=t_{1}-1$, $j=0$, then $\operatorname{deg}_{G(R)}\left(I_{i} \times J_{j}\right)=t_{2}\left(t_{1}-1\right)-2$. If $i=t_{1}-1, j \notin\left\{0, t_{2}-1\right\}$, then $\operatorname{deg}_{G(R)}\left(I_{i} \times J_{j}\right)=t_{2}\left(t_{1}-1\right)-1+\operatorname{deg}_{G\left(R_{2}\right)}\left(J_{j}\right)+1$. If $i \notin\left\{0, t_{1}-1\right\}, j=t_{2}-1$, then $\operatorname{deg}_{G(R)}\left(I_{i} \times J_{j}\right)=t_{1}\left(t_{2}-1\right)-1+\operatorname{deg}_{G\left(R_{1}\right)}\left(I_{i}\right)+1$. If $\{i, j\} \cap\left\{0, t_{2}-1, t_{1}-1\right\}=\emptyset$, then

$$
\begin{aligned}
\operatorname{deg}_{G(R)}\left(I_{i} \times J_{j}\right) & =t_{2}-1+t_{1}-1+t_{1}-2+t_{2}-2 \\
& +\left(t_{2}-2\right) \operatorname{deg}_{G\left(R_{1}\right)}\left(I_{i}\right)+\left(t_{1}-2\right) d e g_{G\left(R_{2}\right)}\left(J_{j}\right) \\
& -\operatorname{deg}_{G\left(R_{1}\right)}\left(I_{i}\right) d e g_{G\left(R_{2}\right)}\left(J_{j}\right)
\end{aligned}
$$

So the degrees of vertices of $G(R)$ are listed in the following forms:

- (1): $2\left(t_{1}-1\right)+t_{1} \operatorname{deg}_{R_{2}}\left(J_{j}\right)$, and $2\left(t_{2}-1\right)+t_{2} d e g_{R_{1}}\left(I_{i}\right)$.
- (2): $t_{1}\left(t_{2}-1\right)-2$, and $t_{2}\left(t_{1}-1\right)-2$.
- (3): $t_{2}\left(t_{1}-1\right)+\operatorname{deg}_{G\left(R_{2}\right)}\left(J_{j}\right)$, and $t_{1}\left(t_{2}-1\right)+\operatorname{deg}_{G\left(R_{1}\right)}\left(I_{i}\right)$.
- (4): $2\left(t_{1}-1\right)+2\left(t_{2}-1\right)-2+\left(t_{2}-2\right) \operatorname{deg}_{G\left(R_{1}\right)}\left(I_{i}\right)+\left(t_{1}-2\right) \operatorname{deg}_{G\left(R_{2}\right)}\left(J_{j}\right)-$ $\operatorname{deg}_{G\left(R_{1}\right)}\left(I_{i}\right) \operatorname{de} g_{G\left(R_{2}\right)}\left(J_{j}\right)$.

Theorem 3. Let $G\left(R_{i}\right)$ be connected for $i=1,2$. If $G\left(R_{1} \times R_{2}\right)$ is Eulerian, then both $G\left(R_{1}\right)$ and $G\left(R_{2}\right)$ are Eulerian.

Proof. Let $G\left(R_{1} \times R_{2}\right)$ be Eulerian. Then the degree of any vertex of $G(R)$ is even. From Form (2) we have that both $t_{1}\left(t_{2}-1\right)$ and $t_{2}\left(t_{1}-1\right)$ are even. Then by Form (3), $\operatorname{deg}_{G\left(R_{1}\right)}\left(I_{i}\right)$ and $\operatorname{deg}_{G\left(R_{2}\right)}\left(J_{j}\right)$ are even. Then both $G\left(R_{1}\right)$ and $G\left(R_{2}\right)$ are Eulerian.

The converse of Theorem 3 is not true in general.
Theorem 4. Let R_{i} be a ring with t_{i} ideals such that $G\left(R_{i}\right)$ be Eulerian for $i=1,2$. Then $G\left(R_{1} \times R_{2}\right)$ is Eulerian if and only if $t_{1}+t_{2}$ is even.

Proof. Let $G\left(R_{1}\right)$ and $G\left(R_{2}\right)$ be Eulerian. Then $\operatorname{deg}_{G\left(R_{1}\right)}\left(I_{i}\right)$ and $\operatorname{deg}_{G\left(R_{2}\right)}\left(J_{j}\right)$ are even. So Forms (1) and (4) are even. If $t_{1}+t_{2}$ is even, then either both t_{1} and t_{2} are even, or both are odd. In each case Forms (2) and (3) are even. Consequently, $G(R)$ is Eulerian. For the converse suppose that $G(R)$ is Eulerian. Then Forms (2) and (3) are even. Since $\operatorname{deg}_{G\left(R_{1}\right)}\left(I_{i}\right)$ and $\operatorname{deg}_{G\left(R_{2}\right)}\left(J_{j}\right)$ are even, both $t_{1}\left(t_{2}-1\right)$ and $t_{2}\left(t_{1}-1\right)$ are even. This implies that $t_{1}+t_{2}$ is even.

We next study Hamiltonicity of the intersection graph of ideals of direct product of commutative rings. If C is a cycle in a graph with vertex set $V(C)=$ $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $\left\{v_{i} v_{i+1}: i=1,2, \ldots, n-1\right\} \cup\left\{v_{1} v_{n}\right\}$, then we refer to this cycle as $C: v_{1}-v_{2}-\cdots-v_{n}-v_{1}$. We begin with the following.

Proposition 5. If $G\left(R_{1}\right)$ or $G\left(R_{2}\right)$ is Hamiltonian, then $G(R)$ is Hamiltonian.
Proof. Let $G\left(R_{2}\right)$ be Hamiltonian. It is obvious that $t_{2} \geq 5$. Without loss of generality assume that the Hamiltonian cycle of $G\left(R_{2}\right)$ is $J_{1}-J_{2}-\cdots-J_{t_{2}-2}-J_{1}$. Consider the following cycles in $G(R)$:

$$
\begin{gathered}
C_{0}: 0 \times J_{1}-0 \times J_{2}-\cdots-0 \times J_{t_{2}-2}-0 \times R_{2}-0 \times J_{1}, \\
C_{t_{1}-1}: R_{1} \times 0-R_{1} \times J_{1}-R_{1} \times J_{2}-\cdots-R_{1} \times J_{t_{2}-2}-R_{1} \times 0,
\end{gathered}
$$

and for $1 \leq i \leq t_{1}-2$,

$$
C_{i}: I_{i} \times 0-I_{i} \times J_{1}-\cdots-I_{i} \times J_{t_{2}-2}-I_{i} \times R_{2}-I_{i} \times 0 .
$$

From the above cycles we obtain a Hamiltonian cycle as follows. Let $0 \leq r \leq$ $t_{1}-2$.

If r is even, then we remove the edges $\left(I_{r} \times J_{1}\right)\left(I_{r} \times J_{2}\right),\left(I_{r+1} \times J_{1}\right)\left(I_{r+1} \times J_{2}\right)$, and add the edges $\left(I_{r} \times J_{1}\right)\left(I_{r+1} \times J_{1}\right),\left(I_{r} \times J_{2}\right)\left(I_{r+1} \times J_{2}\right)$.

If r is odd, then we remove the edges $\left(I_{r} \times J_{2}\right)\left(I_{r} \times J_{3}\right),\left(I_{r+1} \times J_{2}\right)\left(I_{r+1} \times J_{3}\right)$, and add the edges $\left(I_{r} \times J_{2}\right)\left(I_{r+1} \times J_{2}\right),\left(I_{r} \times J_{3}\right)\left(I_{r+1} \times J_{3}\right)$.

Thus $G(R)$ is Hamiltonian.

Note that the converse of Proposition 5 is not true in general. As an example let F_{i} is a field for $i=1,2,3$. Then $F_{1} \times 0 \times 0-F_{1} \times F_{2} \times 0-0 \times F_{2} \times 0-0 \times F_{2} \times$ $F_{3}-0 \times 0 \times F_{3}-F_{1} \times 0 \times F_{3}-F_{1} \times 0 \times 0$ is a Hamiltonian cycle in $G\left(F_{1} \times F_{2} \times F_{3}\right)$. But $G(S)$ is not Hamiltonian for $S \in\left\{F_{i}, F_{i} \times F_{j}: i, j=1,2,3, i \neq j\right\}$.

Lemma 6. If $\min \left\{t_{1}, t_{2}\right\}=3$, then $G(R)$ is Hamiltonian.
Proof. Let $\min \left\{t_{1}, t_{2}\right\}=3$. Without loss of generality assume that $t_{2}=\min \left\{t_{1}, t_{2}\right\}$. If $t_{1}=3$, then $I_{1} \times 0-I_{1} \times J_{1}-0 \times J_{1}-0 \times R_{2}-I_{1} \times R_{2}-R_{1} \times J_{1}-R_{1} \times 0-I_{1} \times 0$ is a Hamiltonian cycle in $G(R)$. So we suppose that $t_{1} \geq 4$. Then,

$$
\begin{array}{rlll}
0 \times J_{1}- & 0 \times R_{2}- & \\
I_{1} & \times J_{1}- & I_{1} \times 0- & I_{1} \times R_{2}- \\
I_{2} & \times J_{1}- & I_{2} \times 0- & I_{2} \times R_{2}- \\
I_{3} & \times J_{1}- & I_{3} \times 0- & I_{3} \times R_{2}- \\
& \ldots & & \\
I_{i} \times J_{1}- & I_{i} \times 0- & I_{i} \times R_{2}- \\
\ldots & & \\
I_{t_{1}-3} \times J_{1}- & I_{t_{1}-3} \times 0- & I_{t_{1}-3} \times R_{2}- \\
I_{t_{1}-2} & \times J_{1}- & R_{1} \times 0- & I_{t_{1}-2} \times 0-I_{t_{1}-2} \times R_{2}-R_{1} \times J_{1}-0 \times J_{1}
\end{array}
$$

is a Hamiltonian cycle.
Proposition 7. If $\min \left\{t_{1}, t_{2}\right\} \geq 4$, then $G(R)$ is Hamiltonian.
Proof. Let $4 \leq t_{2} \leq t_{1}$. For $i=1,2, \ldots$ or $\ldots, t_{2}-3$ let C_{i} be the following cycle.
$I_{i} \times 0-I_{i} \times J_{1}-\cdots-I_{i} \times J_{i}-0 \times J_{i}-I_{i-1} \times R_{2}-I_{i} \times J_{i+1}-\cdots-I_{i} \times J_{t_{2}-2}-I_{i} \times 0$.
Let $C_{t_{2}-2}$ be the following cycle.
$I_{t_{2}-2} \times 0-I_{t_{2}-2} \times J_{1}-\cdots-I_{t_{2}-2} \times J_{t_{2}-2}-0 \times J_{t_{2}-2}-I_{t_{2}-3} \times R_{2}-I_{t_{2}-2} \times R_{2}-I_{t_{2}-2} \times 0$.
For $t_{2}-1 \leq i \leq t_{1}-2$, let C_{i} be the cycle
$I_{i} \times 0-I_{i} \times J_{1}-\cdots-I_{i} \times J_{t_{2}-2}-I_{i} \times R_{2}-I_{i} \times 0$.
Let $C_{t_{1}-1}$ be the cycle $R_{1} \times 0-R_{1} \times J_{1}-\cdots-R_{1} \times J_{t_{2}-2}-R_{1} \times 0$.
We produce a Hamiltonian cycle from above cycles as follows. We remove the edges $\left(0 \times J_{1}\right)\left(0 \times R_{2}\right)$ and $\left(I_{1} \times R_{2}\right)\left(I_{2} \times J_{3}\right)$, and add the edges $\left(0 \times J_{1}\right)\left(I_{1} \times R_{2}\right)$ and $\left(0 \times R_{2}\right)\left(I_{2} \times J_{3}\right)$ to obtain a cycle C_{2}^{\prime} from C_{1} and C_{2}. We remove the edges $\left(0 \times J_{2}\right)\left(I_{1} \times R_{2}\right)$ and $\left(I_{2} \times R_{2}\right)\left(I_{3} \times J_{3}\right)$ and add the edges $\left(0 \times J_{2}\right)\left(I_{2} \times R_{2}\right)$ and $\left(I_{1} \times R_{2}\right)\left(I_{3} \times J_{3}\right)$ to obtain a cycle C_{3}^{\prime} from C_{2}^{\prime} and C_{3}. In general from C_{i}^{\prime} and C_{i+1} we obtain a cycle C_{i+1}^{\prime} by removing the edges $\left(0 \times J_{i}\right)\left(I_{i-1} \times R_{2}\right)$ and $\left(I_{i} \times\right.$ $\left.R_{2}\right)\left(I_{i+1} \times J_{i+2}\right)$, and add the edges $\left(0 \times J_{i}\right)\left(I_{i} \times R_{2}\right)$ and $\left(I_{i-1} \times R_{2}\right)\left(I_{i+1} \times J_{i+2}\right)$. We proceed this process to obtain the cycle $C_{t_{2}-2}^{\prime}$.

Now we remove the edges $\left(I_{t_{2}-2} \times J_{1}\right)\left(I_{t_{2}-2} \times J_{2}\right)$ and $\left(I_{t_{2}-1} \times J_{1}\right)\left(I_{t_{2}-1} \times J_{2}\right)$ from $C_{t_{2}-2}^{\prime}$ and $C_{t_{2}-1}$ and add the edges $\left(I_{t_{2}-2} \times J_{1}\right)\left(I_{t_{2}-1} \times J_{1}\right)$ and $\left(I_{t_{2}-2} \times\right.$ $\left.J_{2}\right)\left(I_{t_{2}-1} \times J_{2}\right)$, to obtain a cycle $C_{t_{2}-1}^{\prime}$. We remove $\left(I_{t_{2}-1} \times J_{2}\right)\left(I_{t_{2}-1} \times J_{3}\right)$ and $\left(I_{t_{2}} \times J_{2}\right)\left(I_{t_{2}} \times J_{3}\right)$ from $C_{t_{2}-1}^{\prime}$ and $C_{t_{2}}$ and add the edges $\left(I_{t_{2}-1} \times J_{2}\right)\left(I_{t_{2}} \times J_{2}\right)$ and $\left(I_{t_{2}-1} \times J_{3}\right)\left(I_{t_{2}} \times J_{3}\right)$, obtain a cycle $C_{t_{2}}^{\prime}$.

We remove $\left(I_{t_{2}} \times J_{1}\right)\left(I_{t_{2}} \times J_{2}\right)$ and $\left(I_{t_{2}+1} \times J_{1}\right)\left(I_{t_{2}+1} \times J_{2}\right)$ from $C_{t_{2}}^{\prime}$ and $C_{t_{2}+1}$ and add the edges $\left(I_{t_{2}} \times J_{1}\right)\left(I_{t_{2}+1} \times J_{1}\right)$ and $\left(I_{t_{2}} \times J_{2}\right)\left(I_{t_{2}+1} \times J_{2}\right)$, obtain a cycle $C_{t_{2}+1}^{\prime}$.

We proceed this process to obtain $C_{t_{1}-2}^{\prime}$. Lastly, we remove $\left(I_{t_{1}-2} \times 0\right)\left(I_{t_{1}-2} \times\right.$ $\left.J_{1}\right)$ and $\left(R_{2} \times 0\right)\left(R_{2} \times J_{1}\right)$ from $C_{t_{1}-2}^{\prime}$, and $C_{t_{1}-1}$, and add $\left(I_{t_{1}-2} \times 0\right)\left(R_{2} \times 0\right)$ and $\left(I_{t_{1}-2} \times J_{1}\right)\left(R_{2} \times J_{1}\right)$ to obtain $C_{t_{1}-2}^{\prime}$. Then $C_{t_{1}-2}^{\prime}$ is a Hamiltonian cycle.

Corollary 8. If $\min \left\{t_{1}, t_{2}\right\} \geq 3$, then $G(R)$ is Hamiltonian.
Lemma 9. If R_{i} is a commutative ring with identity for $i=1,2,3$, then $G\left(R_{1} \times\right.$ $\left.R_{2} \times R_{3}\right)$ is Hamiltonian.

Proof. Let the number of ideals of R_{i} be equal to t_{i} for $i=1,2,3$. Since the graph of direct product of three fields is Hamiltonian, we assume that $t_{i} \geq 3$ for some i. Then Corollary 8 implies that $G\left(R_{1} \times R_{2} \times R_{3}\right)$ is Hamiltonian.

By Lemma 9, we have the following corollary.
Corollary 10. For two commutative rings R_{1} and R_{2} with identity, if R_{1} or R_{2} is direct product of two rings, then $G(R)$ is Hamiltonian.

In the rest of the paper we consider $t_{1}=2$. By Corollary 8 it remains to study Hamiltonicity in $G(R)$ when R_{1} is a field (i.e., $t_{1}=2$). The following has a straightforward proof.

Observation 11. If $t_{2} \in\{2,3\}$, then $G(R)$ is not Hamiltonian.
So henceforth we suppose that $t_{2} \geq 4$. Also by Corollary 10, we assume R_{2} is not direct product of two rings. Since R_{2} is an Artinian ring, henceforth ($R_{2} . m$) is local. (We recall that a ring is local if it has only one maximal ideal. We also refer (R, M) as a local ring R with the unique maximal ideal M).

Lemma 12. If R_{2} has a unique minimal ideal, then $G(R)$ is Hamiltonian.
Proof. First suppose that $t_{2}=4$. Let J_{1} be the unique minimal ideal of R_{2}. Let J_{2} be the other proper non-trivial ideal. Since R_{2} is not direct product of two rings, J_{2} is the unique maximal ideal of R_{2}. Now $0 \times J_{1}-0 \times R_{2}-0 \times J_{2}-R_{1} \times$ $J_{2}-R_{1} \times 0-R_{1} \times J_{1}-0 \times J_{1}$ is a Hamiltonian cycle. We next suppose that $t_{2} \geq 5$. Notice that $G\left(R_{2}\right)$ is a complete graph and so is Hamiltonian. Then the result follows by Proposition 5 .

Since for any $n \geq 2$, the ring $\mathbb{Z}_{p^{n}}$ has a unique minimal ideal, a consequence of Corollaries 8, 10, Observation 11, and Lemma 12 we obtain the following.

Proposition 13. For $k \geq 2, \mathbb{Z}_{p_{1}^{n_{1}}} \times \mathbb{Z}_{p_{2}^{n_{2}}} \times \cdots \times \mathbb{Z}_{p_{k}^{n_{k}}}$ is not Hamiltonian if and only if $k=2$ and $n_{1}+n_{2} \leq 3$.

Since for a prime $p, \mathbb{Z}_{p^{n}}$ is not Hamiltonian if and only if $n \leq 3$, as a consequence of Proposition 13 we obtain the following.

Corollary 14 (Theorem 5.2 of [2]). All the graphs of \mathbb{Z}_{n} are Hamiltonian except when n is one of the following forms: $p^{2}, p^{3}, p q, p^{2} q$, where p, q are distinct primes.

Lemma 15. If F is an infinite field and V is a n-dimensional vector space over F, then V has infinite subspaces.

Lemma 16. If F is a finite field of order q and V is a n-dimensional vector space over F, then V has $\frac{q^{n}-1}{q-1}=q^{n-1}+q^{n-2}+\cdots+1$, 1-dimensional subspaces.

Corollary 17. Let $\left(R_{2}, M\right)$ is a local ring such that $\frac{R_{2}}{M}$ is finite. If I_{1}, \ldots, I_{t} are minimal ideals of R_{2} for $t \geq 2$ such that for any $i, I_{i} \cong \frac{R_{2}}{M}$, and $I_{1}+\cdots+I_{t}=$ $I_{1} \bigoplus I_{2} \bigoplus \cdots \bigoplus I_{t}=J$, then J contains $\left|\frac{R_{2}}{M}\right|^{t-1}+\left|\frac{R_{2}}{M}\right|^{t-2}+\cdots+1$ minimal ideals of R_{2}.

Proof. Notice that R_{2} is a Noetherian ring and $M I_{i}=0$ for $i=1,2, \ldots, t$. Thus J is an $\frac{R_{2}}{M}$-module (vector space) which a subset T is an $\frac{R_{2}}{M}$-submodule of J if and only if T is an R_{2}-submodule.

Theorem 18. For $t_{2}=4,5, \ldots, 9, G(R)$ is Hamiltonian.
Proof. For $t_{2}=4$ the result follows from the proof of Lemma 12.
If R_{2} has a unique minimal ideal then by Lemma $12, G\left(R_{2}\right)$ is complete and so is Hamiltonian. Then by Proposition $5, G(R)$ is Hamiltonian. Thus we assume that R_{2} has at least two minimal ideals.

If $t_{2}=5$, then by Corollary 17, R_{2} has at least six ideals, a contradiction. Thus $t_{2} \neq 5$.

- $t_{2}=6$. Let J_{1}, J_{2} be two minimal ideals of R_{2}. By Corollary $17, J_{1}+J_{2}$ contains at least three minimal ideals of R_{2}. Without loss of generality assume that $J_{1}+J_{2}$ contains three minimal ideals J_{1}, J_{2} and J_{3}. Since $t_{2}=6$, all ideals of R_{2} are $0, J_{1}, J_{2}, J_{3}, J_{1}+J_{2}=M, R$. Now, $0 \times J_{1}-0 \times R_{2}-0 \times J_{2}-R_{1} \times J_{2}-$ $R_{1} \times J_{3}-0 \times J_{3}-0 \times\left(J_{1}+J_{2}\right)-R_{1} \times\left(J_{1}+J_{2}\right)-R_{1} \times 0-R_{1} \times J_{1}-0 \times J_{1}$ is a Hamiltonian cycle.
- $t_{2}=7$. Let J_{1}, J_{2} be two distinct minimal ideals of R_{2}. By Corollary $17, J_{1}+J_{2}$ contains at least three minimal ideals of R_{2}. Without loss of generality assume
that $J_{1}+J_{2}$ contains three minimal ideals J_{1}, J_{2} and J_{3}. Let J be an ideal of R_{2} different from J_{1}, J_{2}, J_{3} and $J_{1}+J_{2}$. If $J \cap\left(J_{1}+J_{2}\right)=0$, then R_{2} has more than 7 ideals, a contradiction. So $J \cap\left(J_{1}+J_{2}\right) \neq 0$. Now $0 \times J_{1}-0 \times\left(J_{1}+J_{2}\right)-0 \times J_{2}-R_{1} \times$ $J_{2}-R_{1} \times J_{3}-0 \times J_{3}-0 \times R_{2}-0 \times J-R_{1} \times J-R_{1} \times\left(J_{1}+J_{2}\right)-R_{1} \times 0-R_{1} \times J_{1}-0 \times J_{1}$, is a Hamiltonian cycle.
- $t_{2}=8$. Let J_{1}, J_{2} be two distinct minimal ideals of R_{2}. Since R_{2} is local, $J_{1} \cong J_{2}\left(\cong \frac{R_{2}}{M}\right)$. Then $J_{1}+J_{2}=J_{1} \bigoplus J_{2}$. If R_{2} has another minimal ideal K such that $J_{1}+J_{2}+K=J_{1} \oplus J_{2} \oplus K$, then by Corollary $17, J_{1}+J_{2}+K$ contains at least 7 minimal ideals contradicting that $t_{2}=8$. We deduce that $J_{1}+J_{2}$ contains all minimal ideals of R_{2}. Further, $\left|\frac{R_{2}}{M}\right| \leq 4$. We discuss the possiblities for $\left|\frac{R_{2}}{M}\right|$.

If $\left|\frac{R_{2}}{M}\right|=2$, then R_{2} has three minimal ideals J_{1}, J_{2}, J_{3}. Also note that $M \neq J_{1}+J_{2}$, since $t_{2}=8$. Let J be a proper non-trivial ideal different from $J_{1}, J_{2}, J_{3}, J_{1}+J_{2}, M$. Since J is not minimal we may assume that $J_{1} \subseteq J$. Now $0 \times J_{1}-0 \times\left(J_{1}+J_{2}\right)-R_{1} \times\left(J_{1}+J_{2}\right)-R_{1} \times J_{2}-0 \times J_{2}-0 \times M-R_{1} \times M-$ $R_{1} \times J_{3}-0 \times J_{3}-0 \times R_{2}-0 \times J-R_{1} \times J-R_{1} \times 0-R_{1} \times J_{1}-0 \times J_{1}$ is a Hamiltonian cycle.

If $\left|\frac{R_{2}}{M}\right|=3$, then R_{2} has four minimal ideals $J_{1}, J_{2}, J_{3}, J_{4}$. Since $t_{2}=8$, we have $M \neq J_{1}+J_{2}$ and so $0, J_{1}, J_{2}, J_{3}, J_{4}, J_{1}+J_{2}, M, R_{2}$ are all ideals of R_{2}. Now $0 \times J_{1}-0 \times\left(J_{1}+J_{2}\right)-0 \times J_{2}-R_{1} \times J_{2}-R_{1} \times J_{3}-0 \times J_{3}-0 \times R_{2}-0 \times M-$ $0 \times J_{4}-R_{1} \times J_{4}-R_{1} \times\left(J_{1}+J_{2}\right)-R_{1} \times M-R_{1} \times 0-R_{1} \times J_{1}-0 \times J_{1}$ is a Hamiltonian cycle.

If $\left|\frac{R_{2}}{M}\right|=4$, then R_{2} has five minimal ideals $J_{1}, J_{2}, J_{3}, J_{4}, J_{5}$. So $0, J_{1}, J_{2}$, $J_{3}, J_{4}, J_{5}, J_{1}+J_{2}, R_{2}$ are all ideals of R_{2}. Now $0 \times J_{1}-0 \times\left(J_{1}+J_{2}\right)-0 \times J_{2}-$ $R_{1} \times J_{2}-R_{1} \times\left(J_{1}+J_{2}\right)-0 \times J_{5}-R_{1} \times J_{5}-R_{1} \times J_{4}-0 \times J_{4}-0 \times R_{2}-0 \times$ $J_{3}-R_{1} \times J_{3}-R_{1} \times 0-R_{1} \times J_{1}-0 \times J_{1}$ is a Hamiltonian cycle.

- $t_{2}=9$. Let J_{1}, J_{2} be two distinct minimal ideals of R_{2}. Since R is local, $J_{1} \cong J_{2}$ $\left(\cong \frac{R_{2}}{M}\right)$. Let $\left|\frac{R_{2}}{M}\right|=q$. Then by Corollary $17 q \in\{2,3,4,5,7\}$, since $\frac{R_{2}}{M}$ is a field. Consequently by Corollary $17 R_{2}$ has $q+1$ minimal ideals. It is obvious that $q \neq 7$. If $q=5$, then the ideals of R_{2} are $0, J_{1}, J_{2}, J_{3}, J_{4}, J_{5}, J_{6}, J_{1}+J_{2}, R_{2}$, where J_{i} is minimal and $J_{i} \subseteq J_{1}+J_{2}$ for $i=1,2,3,4,5,6$. Then $R_{1} \times 0-R_{1} \times J_{2}-0 \times$ $J_{2}-0 \times R_{2}-0 \times J_{1}-R_{1} \times J_{1}-R_{1} \times J_{3}-0 \times J_{3}-0 \times\left(J_{1}+J_{2}\right)-0 \times J_{4}-R_{1} \times$ $J_{4}-R_{1} \times J_{5}-0 \times J_{5}-R_{1} \times\left(J_{1}+J_{2}\right)-0 \times J_{6}-R_{1} \times J_{6}-R_{1} \times 0$ is a Hamiltonian cycle. If $q=4$, then the ideals of R_{2} are $0, J_{1}, J_{2}, J_{3}, J_{4}, J_{5}, J_{1}+J_{2}, M, R_{2}$, where J_{i} is minimal for $i=1,2,3,4,5$. Then $0 \times J_{1}-0 \times\left(J_{1}+J_{2}\right)-0 \times J_{2}-R_{1} \times J_{2}-$ $R_{1} \times J_{3}-0 \times J_{3}-0 \times R_{2}-0 \times J_{4}-R_{1} \times J_{4}-R_{1} \times J_{5}-0 \times J_{5}-0 \times M-R_{1} \times M-$ $R_{1} \times\left(J_{1}+J_{2}\right)-R_{1} \times 0-R_{1} \times J_{1}-0 \times J_{1}$, is a Hamiltonian cycle. If $q=3, J_{1}+J_{2}$ contains four minimal ideals $J_{1}, J_{2}, J_{3}, J_{4}$. Let J be another proper non-trivial ideal. This time $0 \times J_{1}-0 \times\left(J_{1}+J_{2}\right)-0 \times J_{2}-0 \times M-0 \times J_{3}-0 \times R_{2}-0 \times J-$ $R_{1} \times J-R_{1} \times M-R_{1} \times 0-R_{1} \times\left(J_{1}+J_{2}\right)-0 \times J_{4}-R_{1} \times J_{4}-R_{1} \times J_{3}-R_{1} \times J_{2}-$
$R_{1} \times J_{1}-0 \times J_{1}$ is a Hamiltonian cycle. If $q=2$, then by Corollary 17, $J_{1}+J_{2}$ contains three minimal ideals of J_{1}, J_{2}, J_{3} of R_{2}. Also R_{2} has no minimal ideal. Suppose that the ideals of R_{2} are $0, J_{1}, J_{2}, J_{1}+j_{2}, J_{3}, K_{1}, K_{2}, K_{3}, R_{2}$. Without loss of generality assume that $J_{1} \subseteq K_{1}$. Note that $K_{i} \cap\left(J_{1}+J_{2}\right) \neq 0$. Then $0 \times J_{1}-0 \times K_{1}-0 \times\left(J_{1}+J_{2}\right)-0 \times J_{3}-0 \times R_{2}-0 \times J_{2}-R_{1} \times J_{2}-R_{1} \times K_{2}-0 \times K_{2}-$ $0 \times K_{3}-R_{1} \times K_{3}-R_{1} \times 0-R_{1} \times K_{1}-R_{1} \times\left(J_{1}+J_{2}\right)-R_{1} \times J_{3}-R_{1} \times J_{1}-0 \times J_{1}$ is a Hamiltonian cycle.

We close with the following problem.
Problem 19. Is $G(R)$ Hamiltonian for $t_{2} \geq 10$?

References

[1] M.F. Atiyah and I.G. Macdonald, Introduction to Commutative Algebra (AddisonWesley Publishing Co, Reading, Mass.-London-Don Mills Ont, 1969).
[2] I. Chakrabarty, Sh. Ghosh, T.K. Mukherjee and M.K. Sen, Intersection graphs of ideals of rings, Discrete Math. 309 (2009) 5381-5392. doi:10.1016/j.disc.2008.11.034
[3] B. Cskny and G. Pollk, The graph of subgroups of a finite group, Czechoslovak Math. J. 19 (1969) 241-247.
[4] R.P. Grimaldi, Graphs from rings, Congr. Numer. 71 (1990) 95-103.
[5] E. Szpilrajn-Marczewski, Sur deux proprits des classes d'ensembles, Fund. Math. 33 (1945) 303-307.
[6] D.B. West, Introduction To Graph Theory (Prentice-Hall of India Pvt. Ltd, 2003).
[7] B. Zelinka, Intersection graphs of finite abelian groups, Czechoslovak Math. J. 25 (2) (1975) 171-174.

